吳方紅+戈偉+周學軍+鄭永法+文靜
[摘要] 目的 探討青蒿琥酯對大胃癌細胞系HGC27細胞增殖、凋亡的影響及其機制。 方法 體外培養(yǎng)HGC27細胞,采用不同濃度青蒿琥酯處理24、48、72 h,MTT法測定其對HGC27細胞增殖的影響;倒置顯微鏡下觀察細胞的形態(tài)學變化;青蒿琥酯(濃度分別為20、40、80 mg/L)處理HGC27細胞48 h后,分別采用流式細胞儀檢測細胞凋亡、分光光度計檢測Casepase-3、Caspase-9相對活性、Western blot法檢RUNX-3蛋白表達情況。 結(jié)果 青蒿琥酯(濃度10~100 mg/L)能抑制HGC27細胞的增殖,呈劑量和時間依賴性;倒置顯微鏡下可觀察到典型的細胞凋亡形態(tài)。青蒿琥酯(濃度分別為20、40、80 mg/L)作用HGC27細胞48 h后,細胞凋亡率分別為11.5%、21.4%、36.6%,而對照組凋亡率僅為2.2%;處理后Casepase-3相對活性分別為(0.19±0.02)、(0.25±0.04)和(0.31±0.03),對照組為(0.11±0.02),Casepase-9相對活性分別為(0.18±0.02)、(0.23±0.03)和(0.30±0.04),對照組為(0.10±0.02),與對照組比較,青蒿琥酯處理組Casepase-3、Caspase-9相對活性顯著增加,差異均有統(tǒng)計學意義(均P < 0.05);RUNX-3蛋白表達上調(diào),呈劑量依賴性。 結(jié)論 青蒿琥酯能抑制HGC27細胞的增殖并誘導其凋亡,其作用機制可能與增加細胞Casepase-3、Caspase-9活性、上調(diào)RUNX-3蛋白的表達有關(guān)。青蒿琥酯是一種前景廣闊的抗腫瘤藥物。
[關(guān)鍵詞] 青蒿琥酯;HGC27細胞;Caspase-3;Caspase-9;人類相關(guān)轉(zhuǎn)錄因子3
[中圖分類號] R285.5 [文獻標識碼] A [文章編號] 1673-7210(2014)02(b)-0009-04
Effects of artesunate on cell proliferation and apoptosis in human gastric cancer HGC27 cells and its mechanisms
WU Fanghong GE Wei ZHOU Xuejun ZHENG Yongfa WEN Jing
Department of Oncology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan 430060, China
[Abstract] Objective To investigate the effect of artesunate on cell proliferation and apoptosis in gastric cancer line HGC27 cells and discuss its possible mechanisms. Methods HGC27 cells were cultured in vitro. After treatment by artesunate at different concentrations respectively at 24, 48, 72 h, the cell survival was determined by the MTT method. The changes of cell morphology were observed by inverted microscope. After 48 h treatment by artesunate (20, 40, 80 mg/L), the HGC27 cell apoptosis was detected by flow cytometry, the relative activity of Caspase-3 and Caspase-9 was monitored by spectrophotometer, the change of protein expression of RUNX-3 was detected by western blot. Results From the data of MTT, the cell proliferation of human gastricl cancer HGC27 cells was inhibited by artesunate (10-100 mg/L) in a dose-dependent and time-dependent manner. Typical apoptosis morphology of HGC27 cells was observed by inverted microscope. Flow cytometry assays showed that artesunate significantly induced apoptosis in HGC27 cells. After treated with artesunate (20, 40, 80 mg/L), the apoptosis rate of HGC27 cells was 11.5%, 21.4% and 36.6% respectively, which showed an obvious concentration-effect relationship, while the apoptosis rate of HGC27 cells was 2.2% in the control group. The relative activity of Caspase-3 of artesunate group was (0.19±0.02), (0.25±0.04) and (0.31±0.03) respectively, which was significantly increased than the control group (0.11±0.02) (P < 0.05). And the relative activity of Caspase-9 of artesunate group was (0.18±0.02), (0.23±0.03) and (0.30±0.04), which was significantly increased than the control group (0.10±0.02) (P < 0.05). The data of Western blot showed that artesunate up-regulated RUNX-3 in a dose-dependent manner. Conclusion Artesunate can inhibit the proliferation of HGC27 cells and induce apoptosis, and the mechanism of artesunate on apoptosis may be related to the up-regulation of RUNX-3 expression, as well as the increase of relative activity of Caspase-3 and Caspase-9. Artesunate may be a promising antitumor agent for gastric cancer treatment.
[Key words] Artesunate; HGC27 cell; Caspase-3; Caspase-9; RUNX-3
胃癌是常見的消化道惡性腫瘤,胃癌死亡率居腫瘤相關(guān)死亡率前列[1]。我國胃癌的發(fā)病率呈逐年上升趨勢,嚴重威脅著人民群眾的生命健康。胃癌治療方法以手術(shù)切除為主,輔以化療,但常規(guī)的化療藥物毒性大且常出現(xiàn)耐藥性,因此尋找有效且毒副作用小的抗腫瘤藥已經(jīng)成為國內(nèi)外研究熱點。青蒿素及其衍生物是我國自主知識產(chǎn)權(quán)的高效速效抗瘧藥物。近年來研究發(fā)現(xiàn),青蒿素及其衍生物除了有抗瘧作用外,還對人類多種腫瘤細胞具有明顯的殺傷或抑制作用[2-4],但具體機制尚不十分清楚。為探討青蒿素衍生物之一青蒿琥酯的抗癌機制,本研究以人胃癌HGC27細胞為對象,觀察青蒿琥酯對人胃癌細胞增殖、凋亡的影響,并檢測青蒿琥酯對人胃癌細胞Caspase-3、Caspase-9活性變化及抑癌基因人類相關(guān)轉(zhuǎn)錄因子3(human runt-related transcription factor 3,RUNX3)表達的影響。
1 材料與方法
1.1 材料
人胃癌細胞HGC27細胞購自中國科學院上海細胞庫;青蒿琥酯購于桂林南藥股份有限公司;AnnexinV/PI試劑盒購于BENDER公司;胎牛血清購自Invitrogen公司;RPMI1640培養(yǎng)液購于杭州四季青生物材料研究所;胎牛血清系GIBCO產(chǎn)品;MTT試劑盒購于武漢谷歌生物科技有限公司;Caspase-3、Caspase-9活性檢測試劑盒購于南京凱基生物科技發(fā)展有限公司;RUNX-3單克隆抗體購自Cell Signaling Technology公司;辣根酶標記兔抗山羊IgG購自武漢博士德生物科技有限公司。
1.2 方法
1.2.1 細胞培養(yǎng) HGC27細胞培養(yǎng)于RPMI1640培養(yǎng)液中(含10%小牛血清,100 U/mL青霉素,100 μg/mL鏈霉素),置于37℃,飽和濕度,5%CO2培養(yǎng)箱內(nèi)培養(yǎng),根據(jù)生長情況3~5 d傳代一次。
1.2.2 MTT法檢測細胞增殖抑制率 取對數(shù)生長期的HGC27細胞,制成細胞懸液,以1×104/mL的濃度接種于96孔板,每孔200 μL,待細胞貼壁后分組:青蒿琥酯組加入青蒿琥酯終濃度為10、20、40、80、100 mg/L的培養(yǎng)液,對照組加入等量的培養(yǎng)液,并設(shè)立調(diào)零孔。每組設(shè)5個復孔,分別培養(yǎng)24、48、72 h,實驗結(jié)束前4 h加入MTT試劑20 μL/每孔,繼續(xù)孵育4 h,小心吸掉上清,每孔加150 μL DMSO,振蕩10 min,使結(jié)晶充分溶解,酶標儀上檢測每孔在570 nm處的吸光值(A值)。抑制率=[1-(實驗組平均A值-調(diào)零孔A值)/(對照組平均A值-調(diào)零孔A值)]×100%。
1.2.3 顯微鏡下觀察細胞形態(tài) 取對數(shù)生長期細胞消化傳代并培養(yǎng)24 h后,換青蒿琥酯終濃度為10、20、40、80、100 mg/L的培養(yǎng)液連續(xù)培養(yǎng)24、48、72 h后置于倒置顯微鏡下觀察細胞生長情況。
1.2.4 流式細胞儀檢測細胞凋亡 取對數(shù)生長期細胞,以1×106/mL濃度接種于6孔培養(yǎng)板中,貼壁后分為實驗組和對照組,實驗組分別加入青蒿琥酯終濃度為20、40、80 mg/L的培養(yǎng)液,對照組加入等量培養(yǎng)液,培養(yǎng)48 h后,收集細胞,離洗固定后加入Annexin V-FITC 和PI染色。篩網(wǎng)過濾送流式細胞儀檢測細胞凋亡率。
1.2.5 分光光度法檢測Caspase-3、Caspase-9活性變化 細胞接種及分組同“1.2.4”項下,培養(yǎng)48 h后,收集細胞,分別加入50 μL冷裂解緩沖液,冰浴裂解15 min,然后4℃,1200 r/min離心15 min,將上清移至預冷的離心管中,置于冰上,取5 μL用BCA法測定蛋白濃度,取50 μL調(diào)好蛋白濃度(2~4 g/L),加入20 μL反應緩沖液吹打均勻,加入5 μL Caspase-3、Caspase-9反應底物Ac-DEVD-pNA和Ac-LEHD-pNA,細胞培養(yǎng)箱中避光孵育4 h,酶標儀上405 nm處測定吸光度(OD405)。
1.2.6 Western blot法檢測RUNX-3 蛋白表達變化 細胞接種及分組同“1.2.4”項下,收集細胞,用PBS漂洗,參照細胞漿蛋白抽提試劑盒說明書進行操作,提取細胞總蛋白,并測定蛋白濃度,蛋白樣品加入1/5體積的5×上樣緩沖液,沸水煮沸5 min后離心,以每孔20 μg上樣,行10%SDS-聚丙烯酰胺凝膠電泳,然后電轉(zhuǎn)至PVDF膜上,用5%脫脂奶粉室溫封閉1 h,加入1∶1000稀釋的兔抗人RUNX-3蛋白,4℃過夜,β-actin作為內(nèi)參,TBST洗膜3次,加入1∶1000稀釋的辣根酶標記的兔抗山羊IgG,室溫孵育2 h,同樣洗膜3次,ECL顯色,觀察各條帶深淺變化。
1.3 統(tǒng)計學方法
所有資料經(jīng)SPSS 17.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,多組間的比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗,以P < 0.05 為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 青蒿琥酯對HGC27細胞增殖的影響
MTT檢測數(shù)據(jù)顯示,青蒿琥酯在不同濃度和不同作用時間均能顯著抑制HGC27細胞增殖(P < 0.05),且隨著青蒿琥酯濃度的增加和作用時間的延長,其抑制作用逐漸增強,呈明顯的濃度和時間依賴效應(圖1)。
2.2 細胞形態(tài)觀察
倒置顯微鏡下可見對照組HGC27細胞生長旺盛,折光率較高,胞體大,形態(tài)成梭形或多邊形,胞質(zhì)均勻透明,隨培養(yǎng)時間的延長形態(tài)無明顯變化。青蒿琥酯處理的細胞增殖減慢,且隨著青蒿琥酯濃度的升高和作用時間的延長,細胞逐漸變小、變圓,折光率減弱,核濃縮等,部分脫落漂浮于培養(yǎng)瓶中,但細胞膜完整,最后裂解。青蒿琥酯濃度越高,作用時間越長,上述表現(xiàn)越明顯,漂浮細胞越多。
2.3 青蒿琥酯對細胞凋亡的影響
流式細胞儀檢測結(jié)果顯示,不同濃度(20、40、80 mg/L)青蒿琥酯處理HGC27細胞48 h后,細胞凋亡率分別為11.5%、21.4%、36.6%,而對照組凋亡率僅為2.2%,表明青蒿琥酯能誘導HGC27細胞凋亡(圖2)。
A: 對照組; B: 20 mg/L青蒿琥酯處理組; C: 40 mg/L青蒿琥酯處理組; D: 80 mg/L青蒿琥酯處理組
圖2 流式細胞儀檢測青蒿琥酯對HGC27細胞凋亡率的影響
2.4 青蒿琥酯對Caspase-3、Caspase-9活性的影響
Caspase-3、Caspase-9活性檢測示,20、40、80 mg/L青蒿琥酯作用HGC27細胞48 h后,Caspase-3相對活性明顯升高,分別為(0.19±0.02)、(0.25±0.04)和(0.31±0.03),與對照組(0.11±0.02)比較,差異有統(tǒng)計學意義(P < 0.05);Caspase-9活性亦明顯升高,分別為(0.18±0.02)、(0.23±0.03)和(0.30±0.04),與對照組(0.10±0.02)比較,差異有統(tǒng)計學意義(P < 0.05),表明青蒿琥酯能活化Caspase-3、Caspase-9。
2.5 青蒿琥酯對RUNX-3蛋白表達的影響
青蒿琥酯處理HGC27細胞48 h后,結(jié)果顯示隨著青蒿琥酯濃度的升高,RUNX-3蛋白表達量也逐漸升高,見圖3。
圖3 Western blot檢測青蒿琥酯對HGC27細胞
RUNX3 蛋白表達的影響
3 討論
細胞凋亡是多細胞機體維持內(nèi)環(huán)境穩(wěn)定的自我調(diào)節(jié)機制[5],細胞凋亡與細胞增殖之間的平衡在胃癌發(fā)生發(fā)展中起重要作用[6],細胞凋亡是程序化、多基因調(diào)控的細胞死亡過程,通過誘導細胞凋亡已經(jīng)成為抗腫瘤研究的熱點。本研究發(fā)現(xiàn),青蒿琥酯在10~100 mg/L濃度范圍,對人胃癌HGC27細胞的增殖均有抑制作用,隨著藥物濃度的升高和作用時間的延長,抑制細胞增殖的作用亦逐步增強,呈現(xiàn)明顯的濃度效應及時間效應關(guān)系。青蒿琥酯處理HGC27細胞后,在倒置顯微鏡下均可見到凋亡細胞的形態(tài);流式細胞儀檢測其細胞凋亡率隨著青蒿琥酯處理濃度的增加而升高,呈明顯的劑量依賴效應。表明青蒿琥酯可抑制胃癌HGC27細胞的增殖及誘導其發(fā)生凋亡。
在細胞凋亡的機制研究中,目前認為主要由3條信號途徑:線粒體途徑、死亡受體途徑及內(nèi)質(zhì)網(wǎng)途徑。Caspase家族的激活在細胞凋亡過程中起著關(guān)鍵作用,被認為是引起凋亡的直接效應物。Caspase-9是線粒體凋亡途徑的關(guān)鍵蛋白酶,處于Caspase“瀑布式”激活的頂端,它的活化對線粒體凋亡通路尤為重要,并進一步激活Caspase-3,Caspase-3活化后可裂解DNA修復相關(guān)分子、凋亡抑制蛋白、細胞外基質(zhì)蛋白和骨架蛋白等,促進細胞凋亡。Caspase-3是凋亡過程的主要效應分子,其活化標志著凋亡進入不可逆階段[7]。本研究發(fā)現(xiàn),青蒿琥酯處理HGC27細胞48 h后,細胞Caspase-3、Caspase-9活性明顯升高,并呈明顯濃度依賴效應,提示青蒿琥酯可能通過激活Caspase-3、Caspase-9級聯(lián)的線粒體依賴性途徑誘導人胃癌HGC27細胞凋亡。
此外,本研究還發(fā)現(xiàn),青蒿琥酯能上調(diào)HGC27細胞中RUNX3基因表達,且表達量隨著藥物濃度的升高而增加,呈明顯濃度效應。大量研究證明,轉(zhuǎn)錄生長因子β(transforming growth factor,TGF-β)和Wnt信號通路在腫瘤的發(fā)生發(fā)展過程中發(fā)揮著重要作用[8-9]。RUNX3參與TGF-β信號通路誘導生長抑制的過程[10]。研究證實,RUNX3基因在多種腫瘤如乳腺癌、胃癌、大腸癌、肝癌及肺癌中表達下調(diào)甚至缺失,在腫瘤的發(fā)生發(fā)展中起重要作用[11-12]。有證據(jù)表明,恢復RUNX3基因的表達能通過誘導細胞凋亡、調(diào)節(jié)細胞周期及下調(diào)cyclin D1的表達而顯著抑制腫瘤細胞增殖及轉(zhuǎn)移[13]。前期研究發(fā)現(xiàn),青蒿琥酯能將腫瘤細胞阻滯于G1期并誘導細胞凋亡[14-15]。且RUNX3基因表達上調(diào)趨勢與流式細胞儀檢測的凋亡率增升高趨勢是一致的。因此,提示青蒿琥酯能通過上調(diào)RUNX3基因表達影響細胞周期促進細胞凋亡,進而發(fā)揮抗腫瘤作用。
總之,本研究發(fā)現(xiàn),青蒿琥酯在體外能抑制大胃癌HGC27細胞增殖并誘導其凋亡,可能的機制是上調(diào)抑癌基因RUNX-3表達及增強Caspase-3、Caspase-9活性。腫瘤的凋亡是一個復雜而又精確調(diào)控的網(wǎng)絡(luò)系統(tǒng),盡管青蒿琥酯抑制細胞增殖及誘導細胞凋亡的機制還有待于進一步探索和研究來闡明,筆者相信青蒿琥酯在抗腫瘤方面具有廣闊前景,并期待包括青蒿琥酯在內(nèi)的青蒿素及其衍生物能成為高效低度的抗腫瘤藥物應用于臨床。
[參考文獻]
[1] Cooper K,Squires H,Carroll C,et al. Chemoprevention of colorectal cancer: systematic review and economic evaluation [J]. Health Technol Assess,2010,14(32):1-206.
[2] Rasheed SAK,Efferth T,Asangani IA,et al. First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases [J]. International Journal of Cancer,2010,127:1475-1485.
[3] Wang Y,Han Y,Yang Y,et al. Effect of interaction of magnetic nanoparticles of Fe304 and artesunate on apoptosis of K562 cells [J]. International Journal of Nanomedicine,2011, 10:1185-1192.
[4] 王利娟,楊玉琮,茍文麗.青蒿琥酯抑制人子宮內(nèi)膜癌HEC-1B細胞增殖及誘導其凋亡的機制[J].西安交通大學學報:醫(yī)學版,2013,34(1):93-97.
[5] LaCasse EC,Mahoney DJ,Cheung HH,et al. IAP-targeted therapies for cancer [J]. Oncogene,2008,27(28):6252-6275.
[6] Huang WS,Wang JP,Wang T,et al. ShRNA-mediated gene silencing of beta-catenin inhibits growth of human colon cancer cells [J]. World J Gastroenterol,2007,13(48):6581-6587.
[7] Mazumder S,Plesca D,Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis [J]. Methods Mol Biol,2008,414:13-21.
[8] Calone I,Souchelnytskyi S. Inhibition of TGF-β Signaling and its implications in anticancer treatments [J]. Exp Oncol,2012,34(1):9-16.
[9] Liu LC,Tsao TC,Hsu SR,et al. EGCG inhibits Transforming Growth Factor-β-mediated Epithelial-to-Mesenchymal Transition via inhibition of Smads and Erk1/2 Signaling Pathways in Non-small Cell Lung Cancer Cells [J]. J Agric Food Chem,2012,60(39):9863-9873.
[10] Watanabe K,Sugai M,Nambu Y,et al. Requirement for RUNX proteins in IgA class awitching acting downstream of TGF-beta 1 and retinoic acid signaling [J]. J Immunol,2010,184(6):2785-2792.
[11] Jeong P,Min BD,Ha YS,et al. Runx3 methylation in normal surrounding urothelium of patients with non-muscle-invasive bladder cancer:Potential role in the prediction of tumor progression [J]. Eur J Surg Oncol,2012,38(11):1095-1100.
[12] Shiraha H,Nishina S,Yamamoto K. Loss of runt-related transcription factor 3 causes development and progression of hepatocellular carcinoma [J]. J Cell Biochem,2011,112(3):745-749.
[13] Chi XZ,Yang JO,Lee KY,et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1)expression in cooperation with transforming growth factor {beta}-activated SMAD [J]. Mol Cell Biol,2005,25(18):8097-107.
[14] Li Y,Shan F,Wu JM,et al. Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle [J]. Bioorg Med Chem Lett,2001,11(1):5-8.
[15] Wu JM,Shan F,Wu G,et al. Synthesis and cytotoxicity of artemisinin derivatives containing cyanoarylmethyl group [J]. Eur J Med Chem,2001,36(5):467-479.
(收稿日期:2013-10-26 本文編輯:程 銘)
[3] Wang Y,Han Y,Yang Y,et al. Effect of interaction of magnetic nanoparticles of Fe304 and artesunate on apoptosis of K562 cells [J]. International Journal of Nanomedicine,2011, 10:1185-1192.
[4] 王利娟,楊玉琮,茍文麗.青蒿琥酯抑制人子宮內(nèi)膜癌HEC-1B細胞增殖及誘導其凋亡的機制[J].西安交通大學學報:醫(yī)學版,2013,34(1):93-97.
[5] LaCasse EC,Mahoney DJ,Cheung HH,et al. IAP-targeted therapies for cancer [J]. Oncogene,2008,27(28):6252-6275.
[6] Huang WS,Wang JP,Wang T,et al. ShRNA-mediated gene silencing of beta-catenin inhibits growth of human colon cancer cells [J]. World J Gastroenterol,2007,13(48):6581-6587.
[7] Mazumder S,Plesca D,Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis [J]. Methods Mol Biol,2008,414:13-21.
[8] Calone I,Souchelnytskyi S. Inhibition of TGF-β Signaling and its implications in anticancer treatments [J]. Exp Oncol,2012,34(1):9-16.
[9] Liu LC,Tsao TC,Hsu SR,et al. EGCG inhibits Transforming Growth Factor-β-mediated Epithelial-to-Mesenchymal Transition via inhibition of Smads and Erk1/2 Signaling Pathways in Non-small Cell Lung Cancer Cells [J]. J Agric Food Chem,2012,60(39):9863-9873.
[10] Watanabe K,Sugai M,Nambu Y,et al. Requirement for RUNX proteins in IgA class awitching acting downstream of TGF-beta 1 and retinoic acid signaling [J]. J Immunol,2010,184(6):2785-2792.
[11] Jeong P,Min BD,Ha YS,et al. Runx3 methylation in normal surrounding urothelium of patients with non-muscle-invasive bladder cancer:Potential role in the prediction of tumor progression [J]. Eur J Surg Oncol,2012,38(11):1095-1100.
[12] Shiraha H,Nishina S,Yamamoto K. Loss of runt-related transcription factor 3 causes development and progression of hepatocellular carcinoma [J]. J Cell Biochem,2011,112(3):745-749.
[13] Chi XZ,Yang JO,Lee KY,et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1)expression in cooperation with transforming growth factor {beta}-activated SMAD [J]. Mol Cell Biol,2005,25(18):8097-107.
[14] Li Y,Shan F,Wu JM,et al. Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle [J]. Bioorg Med Chem Lett,2001,11(1):5-8.
[15] Wu JM,Shan F,Wu G,et al. Synthesis and cytotoxicity of artemisinin derivatives containing cyanoarylmethyl group [J]. Eur J Med Chem,2001,36(5):467-479.
(收稿日期:2013-10-26 本文編輯:程 銘)
[3] Wang Y,Han Y,Yang Y,et al. Effect of interaction of magnetic nanoparticles of Fe304 and artesunate on apoptosis of K562 cells [J]. International Journal of Nanomedicine,2011, 10:1185-1192.
[4] 王利娟,楊玉琮,茍文麗.青蒿琥酯抑制人子宮內(nèi)膜癌HEC-1B細胞增殖及誘導其凋亡的機制[J].西安交通大學學報:醫(yī)學版,2013,34(1):93-97.
[5] LaCasse EC,Mahoney DJ,Cheung HH,et al. IAP-targeted therapies for cancer [J]. Oncogene,2008,27(28):6252-6275.
[6] Huang WS,Wang JP,Wang T,et al. ShRNA-mediated gene silencing of beta-catenin inhibits growth of human colon cancer cells [J]. World J Gastroenterol,2007,13(48):6581-6587.
[7] Mazumder S,Plesca D,Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis [J]. Methods Mol Biol,2008,414:13-21.
[8] Calone I,Souchelnytskyi S. Inhibition of TGF-β Signaling and its implications in anticancer treatments [J]. Exp Oncol,2012,34(1):9-16.
[9] Liu LC,Tsao TC,Hsu SR,et al. EGCG inhibits Transforming Growth Factor-β-mediated Epithelial-to-Mesenchymal Transition via inhibition of Smads and Erk1/2 Signaling Pathways in Non-small Cell Lung Cancer Cells [J]. J Agric Food Chem,2012,60(39):9863-9873.
[10] Watanabe K,Sugai M,Nambu Y,et al. Requirement for RUNX proteins in IgA class awitching acting downstream of TGF-beta 1 and retinoic acid signaling [J]. J Immunol,2010,184(6):2785-2792.
[11] Jeong P,Min BD,Ha YS,et al. Runx3 methylation in normal surrounding urothelium of patients with non-muscle-invasive bladder cancer:Potential role in the prediction of tumor progression [J]. Eur J Surg Oncol,2012,38(11):1095-1100.
[12] Shiraha H,Nishina S,Yamamoto K. Loss of runt-related transcription factor 3 causes development and progression of hepatocellular carcinoma [J]. J Cell Biochem,2011,112(3):745-749.
[13] Chi XZ,Yang JO,Lee KY,et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1)expression in cooperation with transforming growth factor {beta}-activated SMAD [J]. Mol Cell Biol,2005,25(18):8097-107.
[14] Li Y,Shan F,Wu JM,et al. Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle [J]. Bioorg Med Chem Lett,2001,11(1):5-8.
[15] Wu JM,Shan F,Wu G,et al. Synthesis and cytotoxicity of artemisinin derivatives containing cyanoarylmethyl group [J]. Eur J Med Chem,2001,36(5):467-479.
(收稿日期:2013-10-26 本文編輯:程 銘)