池妍+譚治良
摘 要 光聲層析成像技術(shù)是一種新興的醫(yī)學(xué)成像技術(shù),具有高分辨率、高對比度、高穿透深度的優(yōu)點。文章簡要介紹光聲層析成像技術(shù)的原理,并報道基于單聚焦換能器掃描的層析成像技術(shù)和基于多探元超聲探測方式的層析成像技術(shù),指出該技術(shù)在醫(yī)學(xué)檢測上具有重要的應(yīng)用前景。
關(guān)鍵詞 光聲層析成像技術(shù);高分辨率;高穿透深度
中圖分類號:TP3 文獻(xiàn)標(biāo)識碼:A 文章編號:1671-7597(2014)05-0002-02
光聲成像技術(shù)是基于光聲效應(yīng)的一種成像技術(shù)。當(dāng)物質(zhì)受到短脈沖激光或者周期性的強度調(diào)制的光照時,物質(zhì)內(nèi)部將會產(chǎn)生周期的溫度變化,溫度變化使這部分物質(zhì)及其鄰近介質(zhì)產(chǎn)生周期性的漲縮,從而產(chǎn)生聲信號,這種聲信號被稱為光聲信號。光聲成像技術(shù)具有高分辨率、高對比度、高穿透深度的優(yōu)點,主要包括光聲內(nèi)窺鏡、光聲顯微成像、光聲層析成像等。本文闡述了光聲層析成像技術(shù)的原理,并報道基于單聚焦換能器掃描的層析成像技術(shù)和基于多探元超聲探測方式的層析成像技術(shù)。
1 光聲層析成像技術(shù)原理
光聲層析成像技術(shù)利用大照射面積的脈沖激光作為照射源,當(dāng)激光照射在樣品時,由于樣品介質(zhì)的散射作用,使到樣品內(nèi)部目標(biāo)組織被均勻照射,所激發(fā)超聲信號傳播到組織表面的時候用帶掃描機制的超聲探測器或者超聲探測器陣列進(jìn)行探測,直接或者通過特定的算法進(jìn)行圖像重構(gòu)。由于樣品內(nèi)部不同深度位置的聲信號到達(dá)樣品表面的超聲信號存在時間差異,因此,利用時間分辨技術(shù)可以獲得不同層析面的光聲信號,從而獲得組織的三維光聲圖像。
2 光聲層析成像技術(shù)
2.1 基于單聚焦換能器掃描的層析成像技術(shù)
在光聲層析成像技術(shù)的應(yīng)用領(lǐng)域最簡單的探測方式就是采用單探元的傳感方式來進(jìn)行探測,利用單個聚焦換能器橫向掃描探測外部的光聲信號就可以獲得組織內(nèi)部某一層析層面的光聲圖像的一種方法。該想法最早由Kruger等于1994年提出,并于2004年被Kolkman等用一個PVDF材料制造的雙環(huán)換能器實現(xiàn)了聚焦探測光聲信號。
2.2 基于多探元超聲探測方式的層析成像技術(shù)
逐點掃描的成像方式存在一個嚴(yán)重的問題,就是成像速度過慢,因此很多小組相繼采用了多元探測的方式,并結(jié)合一定算法實現(xiàn)了光聲層析成像。從探元分布情況上分,多探元的超聲探測系統(tǒng)可以分為球形、圓柱形以及平面形多探元分布機制。球形和圓柱形多元超聲探測系統(tǒng)需要接觸整個目標(biāo)樣品的各個方向,因此只能被限制在對乳房以及小動物(如老鼠)等體積較小的樣品進(jìn)行光聲成像。而平面形掃描的多元超聲探測系統(tǒng)應(yīng)用范圍更廣,尤其在淺表層(譬如皮膚)的探測更有優(yōu)勢。面狀掃描的光聲成像方式有很多種,其中比較典型的有以下幾種。
2.2.1 多元探測器相控聚焦光聲成像法
Da Xing等人提出利用320個換能器陣元組成一個換能器線陣,結(jié)合相控聚焦重構(gòu)算法,如圖1所示,用電子掃描代替機械掃描,然后對陣列探測器每個探頭測得的信號依據(jù)該探頭到探測點的距離作一個時間延時,再根據(jù)信號傳輸距離及探測器作一幅值權(quán)重,然后求和便可得到被測點的光聲信號。由于無須旋轉(zhuǎn)探測器,從而極大地縮短了成像時間,使成像時間從幾十分鐘縮短到幾秒,但由于受多元探測器的像素和間距的限制(基于相控聚焦算法的圖像分辨率取決于多元探測器的像素和間距),其橫向分辨率可以達(dá)到幾百微米,但無法用于細(xì)胞水平的光聲成像。
圖1 相控聚焦原理圖
圖2 法布里-波羅薄膜探測法
2.2.2 以法布里-波羅(Fabry-Perot,簡稱FP)高分子薄膜作為探測器探測光聲信號
如圖2所示,其原理利用FP薄膜前后表面鍍上高反射率的銀膜或鋁膜,超聲信號會引起高分子薄膜的厚度發(fā)生空間的變化,而兩個反射面反射的干涉光強變化也隨著薄膜厚度變化而變化,然后對探測光進(jìn)行解調(diào),就能獲取超聲的二維空間分布。Beard P.C.等用此方法獲得了手上皮膚下面4 mm厚度不同層面的微細(xì)血管的三維光聲圖像。
2.2.3 聲透鏡成像法
從傅里葉成像理論出發(fā),利用具有空間傅里葉變換性質(zhì)的聲透鏡,可對光聲信號進(jìn)行二維成像,這類似于光學(xué)透鏡的成像原理,通過探測聲透鏡像面上的聲壓分布情況便可重建聲源的分布情況,如圖3所示。M.Fenz等以及Zhilie Tang等都通過了聲透鏡對獲得了光聲圖像,前者通過一個光學(xué)暗場成像系統(tǒng)直接用CCD拍攝到像面的光聲壓分布,最后通過計算機還原物面聲源分布;而后者則通過掃描一維線陣獲取像面光聲圖像。
圖3 聲透鏡層析成像法
3 結(jié)束語
光聲成像技術(shù)的信息載體是聲信號,它的傳輸與組織的散射特性沒有直接關(guān)系。因此光聲成像技術(shù)的成像深度遠(yuǎn)遠(yuǎn)超過激光掃描激光顯微鏡、雙光子熒光顯微鏡和OCT等三維光學(xué)成像技術(shù)。因此,光聲層析成像技術(shù)在探測組織病變等醫(yī)學(xué)領(lǐng)域中有巨大的應(yīng)用價值。
參考文獻(xiàn)
[1]殷慶瑞.光聲光熱技術(shù)及其應(yīng)用[M].北京:科學(xué)出版社,1991.
[2]Kruger R. A. , Liu P.Y.. Ultrasound: Pulse production and detection in 0.5% Liposyn [J] Med. Phys., 1994, 21:1179.
[3]Kolkman G. M., Hondebrink E.,SteenbergenW.In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor[J]. IEEE J. Select. Top. Quan. Elect., 2003, 9: 343.
[4]Yang D. W., Xing D., Tan Y., Gu H. M., Yang S. H.. Integrative prototype B-scan , photoacoustic tomography system based on a novel hybridized scanning head [J], Appl. Phys. Lett., 2006, 88, 174101-3endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint
[5]Zeng Yaguang, Xing Da, Wang Yi et al. Photoacoustic and ultrasonic co-image with a linear transducer array [J]. Opt. Lett., 2004, 29: 1760-1762
[6]Yin B. Z., Xing D., Wang Y. et al.. Fast photoacoustic imaging system based on 320-element linear transducer array [J]. Phys. Med. Biol., 2004, 49: 1339-1346.
[7]Wang Y., Xing D., Zeng Y. G.. Photoacoustic imaging with deconvolution algorithm[J]. Phys. Med. Biol., 2004, 49: 3117-3124
[8]Zhang.E., Laufer. J., Beard.P.C. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry·Perot polymer film ultrasound sensor for high-res-olution three-dimensional imaging of biological tissues [J]. Appl. Opt. , 2008, 47: 561-577.
[9]Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatom [J]. Phys. Med. Biol. ,2009 54: 1035-1046.
[10]Beard. P. C., Perennes, F., Mills. T. N. Transduction mechanisms of the Fabry·Perot polymer film sensing concept for wideband ultrasound detection [J]. IEEE Trans. Ultrason. Ferroelect. Freq. Cont. ,1999, 46: 1575-1582.
[11]Niederhauser J. J., Jaeger M., and Frenz M.. Real-time three-dimensional optoacoustic imaging using an acoustic lens system [J]. Appl. Phys. Lett. , 2004, 85(5): 846-848.
[12]He Yongheng, Tang, Zhilie, Chen Zhanxu, Wan Wei and Li Jianghua. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system [J], Phys. Med. Bio.51, 2671-2680,
[13]Chen Z. X., Tang Z. L., Wan W.. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system [J]. Opt. Express, 2007 15: 4966-4976.
[14]Wei Y. D., Tang Z. L., Zhang H. C., He Y. H., and Liu H. F.. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology [J]. Opt. Express,2008, 16: 5314-5319.
[15]Chen Xian, Tang Zhilie, He Yongheng, Liu Haifeng, Wei Yadong, and Wu Yongbo, Simultaneous photoacoustic imaging technique using an acoustic imaging lens [J] Journal of Biomedical Optics, 2009 Vol. 14(3): 030511-1-3.endprint