王 政,孟倩倩,鐘國華
(華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,廣州 510642)
昆蟲的取食行為是昆蟲在接受內(nèi)外信息后,由神經(jīng)系統(tǒng)和肌肉系統(tǒng)作出的綜合反應(yīng),表現(xiàn)出攝取食物以及與此相關(guān)的一系列活動(周天牧等,2004)。一般同種昆蟲個體的取食行為既表現(xiàn)出種群的相似性又表現(xiàn)出種所特有的固定模式,其主要受兩個因素的影響:營養(yǎng)需求和食物適合度(Dus et al.,2011)。盡管昆蟲對食物的選擇方式不同,但其覓食行為可以分解為一個相當(dāng)恒定的連鎖過程,并且每個環(huán)節(jié)的完成都能促進(jìn)下一環(huán)節(jié)的開始。這一連鎖過程可分五部分:(1)定位寄主棲境,其中絕大多數(shù)定向行為是通過遺傳而不是學(xué)習(xí)獲得的(高月波和翟保平,2010);(2)尋找食物;(3)辨別食物;(4)接受食物;(5)選擇最適食物(Matthews and Matthews,2010)。然而各個環(huán)節(jié)又有著不同的感覺機(jī)制,昆蟲在接觸植物前的定向、降落運(yùn)動階段,主要受植物的光學(xué)和氣味特點(diǎn)的影響,因此視覺和嗅覺起著主導(dǎo)作用;當(dāng)其接觸到植物后,觸角、跗足等部位的味覺感受器會對植物適合度進(jìn)行評價(jià)(陸宴輝等,2008)。該行為鏈幾乎涉及昆蟲所有的感覺機(jī)制,其中化學(xué)感受占主導(dǎo)地位(Matthews and Matthews,2010),且在各種感覺機(jī)制相互作用的同時,神經(jīng)與激素調(diào)節(jié)也貫穿著信號傳導(dǎo)過程的始終,如神經(jīng)肽F (NPF)在昆蟲取食與代謝過程中的重要作用(N?ssel and Wegener,2011;Wielendaele et al.2013)。
由于在昆蟲個體生存、種群繁衍、環(huán)境適應(yīng)、害蟲防治方面的重要意義,昆蟲取食行為一直是國內(nèi)外的研究熱點(diǎn)。本文將重點(diǎn)介紹昆蟲取食行為機(jī)制研究進(jìn)展,以期為明確昆蟲與環(huán)境相互關(guān)系、開發(fā)害蟲行為調(diào)控新技術(shù)等相關(guān)研究提供參考。
昆蟲對食物有一定的選擇性,用以識別和選擇食物的方式多種多樣,但多以化學(xué)刺激作為決定擇食的最主要因素?;瘜W(xué)感受器是昆蟲識別寄主的主要工具,昆蟲的取食行為取決于從化學(xué)感受器輸入的感覺信號,如植食性昆蟲通常以植物的次生物質(zhì)作為信息化合物或取食刺激劑,捕食性昆蟲則多以獵物的氣味為刺激取食的因子。昆蟲借助內(nèi)部和外部信號主動調(diào)整姿態(tài)及其空間位置(Jander,1963),視覺、氣味、聲音、信息素和熱源輻射等都對昆蟲近距離尋找食物寄主行為有重要幫助 (Farkas and Shorey,1972;Tobin,1981;Flores and Lazzari,1996;Poulet et al.,2005)。
昆蟲的視覺感受器是感受光波刺激的器官,其感覺細(xì)胞中的色素能對一定范圍內(nèi)的光譜(253-700 nm)產(chǎn)生生物電位,傳遞給中樞神經(jīng)系統(tǒng)引起視覺反應(yīng)。昆蟲在寄主定向過程中視覺感器具有對物體顏色、形狀及大小的分辨能力,當(dāng)收到一定的光波刺激后,視覺感受器表面的膜產(chǎn)生激應(yīng)性,引起膜電位改變產(chǎn)生動作電位,動作電位沿著感覺細(xì)胞的端突或樹突傳到神經(jīng)細(xì)胞,引起神經(jīng)纖維產(chǎn)生神經(jīng)沖動(彩萬志等,2001)?,F(xiàn)已證實(shí)梅象Conotrachelus nenuphar 由越冬地區(qū)的春季遷出是通過氣味和視覺線索共同定位寄主的(Butkewich and Prokopy,1997);實(shí)蠅類和甲蟲的磁羅盤定向過程(magnetic compass orientation)是依賴光波的(Dommer et al.,2008;Phillips et al.,2010);視覺信號在天牛寄主選擇過程中亦扮演著重要角色 (De Groot and Nott,2001;Mcintosh et al.,2001;Morewood et al.,2002);樹的輪廓可以為小蠹蟲提供了視覺刺激以幫助小蠹蟲遠(yuǎn)距離寄主定位 (Tilden et al.,1983;Wyatt et al.,1997);蚋Simulium annulus 在沒有化學(xué)氣味作為線索的情況下,仍可通過視覺線索定位寄主鳥類(Weinandt et al.,2012)。但昆蟲在寄主定位過程中視覺感受行為并不是獨(dú)立的,其在視覺定位的同時嗅覺感受也發(fā)揮著重要作用,如Vuts 等(2012)的田間誘捕實(shí)驗(yàn)中,花金龜Oxythyrea cinctella 分別通過嗅覺線索或視覺線索定位寄主的能力遠(yuǎn)低于通過二者協(xié)同定位的能力。近期研究表明,一些昆蟲在缺乏嗅覺線索的時候,可以用視覺線索來取代嗅覺線索來定位寄主 (Reeves,2011),特別是對植食性森林昆蟲而言,視覺刺激在昆蟲寄主定位過程中與嗅覺刺激同等重要(Machial et al.,2012)。
昆蟲在覓食和尋找寄主行為中,嗅覺感受器發(fā)揮著極其重要的作用。昆蟲的嗅覺感受器腔中存在一種蛋白,該蛋白能夠結(jié)合外界揮發(fā)性的小分子化合物,并運(yùn)送這些外界信號分子到達(dá)受體分子,這種氣味受體被認(rèn)為是一種G 蛋白偶聯(lián)受體,胞外化學(xué)信號到達(dá)受體后,將化學(xué)信號轉(zhuǎn)變?yōu)樯窠?jīng)元內(nèi)電信號,最后將沖動傳到神經(jīng)中樞,調(diào)控昆蟲的行為 (Vogt and Riddiford,1981;Hildebrand and Shepherd,1997;Brockmann et al.,1998;Steinbrecht,1998;王桂榮等,2001,2002)。Webster (2012)認(rèn)為蚜蟲在寄主定位過程中通過嗅覺感受植物揮發(fā)物以識別寄主及確認(rèn)取食適合度。Zheng 等(2012)發(fā)現(xiàn)成熟的果蠅雄蟲可以在0.5 h 內(nèi)對甲基丁香酚(methyl eugenol,ME)表現(xiàn)出明顯的趨性,同時觸角中氣味受體Orco 的表達(dá)量明顯地上調(diào)。Sun 等(2012)通過GC-EAG和GC-MS 方法確定了煙草中的4種活性化合物,且含有這4種物質(zhì)活性成分的混合物可引起煙夜蛾Helicoverpa assulta 在一定距離內(nèi)的逆風(fēng)趨向行為。
相比嗅覺機(jī)制,對昆蟲味覺感受機(jī)制的研究較少(楊慧等,2008)。嗅覺感受器一般感受揮發(fā)性物質(zhì),而味覺感受器通過與植物體的直接接觸來感知植物體所含的非揮發(fā)性物質(zhì)的性質(zhì),最典型的特征是感受器頂端開口,神經(jīng)元以不分枝的樹突伸入其中,允許外界非揮發(fā)性物質(zhì)從頂孔進(jìn)入感覺腔內(nèi)刺激受體神經(jīng)元(Kvello et al.,2006)。感受器內(nèi)味覺神經(jīng)元中的味覺受體也屬于G 蛋白偶聯(lián)受體(Clyne et al.,2000),能夠編碼外界化學(xué)物質(zhì)的刺激信息,Miyamoto 等(2012)在果蠅大腦神經(jīng)元中發(fā)現(xiàn)一種味覺受體(Gr43a),其可作為營養(yǎng)感受器感受血淋巴中果糖含量,并促使饑餓果蠅取食或抑制飽食果蠅取食。
昆蟲可通過味覺感受系統(tǒng)辨別促進(jìn)取食的營養(yǎng)化合物和抑制取食的有毒化合物以確認(rèn)和評估潛在食物(Miyamoto et al.,2012)。當(dāng)昆蟲接觸到寄主植物時,其利用觸角、跗足、口器、產(chǎn)卵器等部位上的接觸性感受器對植物表面的形態(tài)結(jié)構(gòu)和化學(xué)性質(zhì)等進(jìn)行評價(jià)。Renwikc and Chew(1994)認(rèn)為,昆蟲在葉面上的化學(xué)嘗試主要是通過前足跗節(jié)在植物表面上的“觸診”(palpation)行為或在植物表面上的爬行,以保證其感覺器官與刺激劑及營養(yǎng)物質(zhì)的充分接觸。如煙草天蛾Manduca sexta 只有當(dāng)味覺感受細(xì)胞接受足夠的化學(xué)感受信息時才能形成專性取食行為,否則幼蟲將是多食性的(del Campo and Renwick,2000;del Campo and Miles,2003);血紅扇頭蜱Rhipicephalus sanguineus 通過螯肢上的味覺感受器感受植物甾酮類物質(zhì) (Soares et al.,2012);步甲Anchomenus dorsalis 通過觸角上的味覺受體神經(jīng)元感覺蚜蟲蜜露以搜捕蚜蟲(Merivee et al.,2012)。
昆蟲借視覺、嗅覺、味覺等感覺通道感受外界植物及環(huán)境所產(chǎn)生的刺激后產(chǎn)生動作電位,還需進(jìn)一步傳導(dǎo)至神經(jīng)中樞引起神經(jīng)沖動,對植物的取舍作出選擇(彩萬志等,2001)。關(guān)于取食的神經(jīng)調(diào)節(jié)機(jī)制極其復(fù)雜,近年來神經(jīng)肽在調(diào)節(jié)昆蟲取食行為中的作用引起了眾多研究者的興趣。脊椎動物的神經(jīng)肽Y (NPY)涉及很多生理過程,如取食、能量平衡、學(xué)習(xí)等(Benoit et al.,2008;Chee and Colmers,2008 ;Nguven et al.,2011),那么無脊椎動物中是否也存在相似功能的神經(jīng)肽呢?已有研究表明作為NPY 的同源物神經(jīng)肽F (NPF)在無脊椎動物中有著相似的作用 (N?ssel and Wegener,2011),昆蟲各種不同的取食行為特征亦受大腦神經(jīng)肽的控制(N?ssel and Homberg,2006;Xu et al.,2010),如果阻斷對取食刺激物有反應(yīng)的感受器的信號輸入或者刺激特異性的抑制型感覺細(xì)胞,便可使取食行為受到抑制 (Dethier,1982),如 Wielendaele 等 (2013) 對沙漠Schistocerca gregaria 成蟲注射trNPF 后其取食量增加,而用RNAi 技術(shù)沉默trNPF 基因后其取食量減少。類胰島素肽(DILPs)和NPF 是兩個進(jìn)化上保守的神經(jīng)信號系統(tǒng),在果蠅幼蟲取食反應(yīng)的各個方面都至關(guān)重要(Lingo et al.,2007),Shen and Cai (2000)證明了果蠅NPF 是用于調(diào)節(jié)取食的感覺系統(tǒng)中不可缺少的一部分,從而為無脊椎動物神經(jīng)肽Y 調(diào)節(jié)取食反應(yīng)理論提供了有利證據(jù)。Wu等(2005)研究發(fā)現(xiàn)上調(diào)果蠅類胰島素肽(DILPs)神經(jīng)元中S6 激酶活性可以導(dǎo)致饑餓幼蟲的饑餓反應(yīng)減弱,相反降低S6 激酶活性會引起取食過的幼蟲表現(xiàn)出活躍的覓食行為。
昆蟲必須利用植物或其他動物所制成的有機(jī)物以取得生命活動過程所需要的能源,有沒有所需的食物,關(guān)系到能不能在這個生境中生存的問題;存在的食物是否適合于這種昆蟲的要求,又關(guān)系到這個生境中的種群數(shù)量的問題。從進(jìn)化的角度講,昆蟲有發(fā)展高度敏感的嗅覺系統(tǒng)用以檢測并定位賴以生存的寄主的選擇壓力(Bruce and Pickett,2011),而植物的進(jìn)化壓力在于避免植食性昆蟲的傷害或者吸引傳粉昆蟲和天敵昆蟲(Dicke and Baldwin,2010),因此植物可產(chǎn)生多種不同的揮發(fā)性物質(zhì)影響昆蟲的活動。如果在揮發(fā)性物質(zhì)不能有效調(diào)節(jié)昆蟲取食的情況下,寄主植物就可能通過長期的進(jìn)化選擇,產(chǎn)生有利于保護(hù)自己或有利于寄主植物種群擴(kuò)散的性狀,以調(diào)節(jié)昆蟲的取食行為,這些性狀包括植物的顏色、形狀、大小等物理特性,因此,植物的物理和化學(xué)因素共同作用于昆蟲取食過程中的寄主選擇。
昆蟲在識別寄主植物的過程中,寄主植物釋放的揮發(fā)性信息化合物起著重要的通訊引導(dǎo)作用(杜家緯,2001),植物次生物質(zhì)不僅影響昆蟲交配、產(chǎn)卵等繁殖行為(Mitchell et al.,1990),還影響昆蟲的取食行為(盧偉等,2007)。昆蟲對寄主植物的識別是由于識別了植物氣味的由一定組分、按照嚴(yán)格比例組成的化學(xué)指紋圖(魯玉杰和張孝羲,2001),如蔥屬植物揮發(fā)出的含硫化合物可作為蔥蚜Neotoxoptera formosana 嗅覺定位寄主的線索(Hori,2007);辣椒提取物對煙草夜蛾成蟲有明顯的引誘作用(Mahroof and Phillips,2007);馬尾松揮發(fā)出的萜類化合物可吸引日本松墨天牛Monochamus alternatus (Fan et al.,2007)。同時,植物也可產(chǎn)生大量的次生性化學(xué)物質(zhì),對前來取食的昆蟲產(chǎn)生拒避或拒食作用(李欣和白素芬,2003),如馬郁蘭、薰衣草、薄荷、迷迭香等植物的精油對蔥薊馬Thrips tabaci 有明顯的拒食作用(Koschier et al.,2002);寄主次生化合物和硬度均可影響黑翅土白蟻Odontotermes formosanus 取食偏好(Kasseney et al.,2011);丁香、苦丁茶、賽赤楠、肉桂等7種植物精油對粉紋夜蛾Trichoplusia ni 產(chǎn)生拒食作用,且不同成分的人工混合優(yōu)化可用于不同害蟲的防控(Akhtar et al.,2012)。
昆蟲復(fù)眼能夠感知寄主的形狀、運(yùn)動狀態(tài)以及周圍環(huán)境的顏色和植物的物理特性,即植物表面、葉表結(jié)構(gòu)、葉表蠟質(zhì)等,并能夠?qū)⑦@些物理信號與寄主及其與寄主相關(guān)的化學(xué)刺激信號聯(lián)系起來。植物表面蠟質(zhì)的物理結(jié)構(gòu)和數(shù)量能夠影響植食性昆蟲的附著和移動,并可通過影響天敵對植食性害蟲的捕食,從而間接影響植食性害蟲的行為(王美芳等,2009)。Bodnaryk (1992)認(rèn)為十字花科植物葉片表面蠟質(zhì)是抵御葉甲取食的一個重要因素,它能影響葉甲的取食率和取食方式。Kasseney 等(2011)認(rèn)為寄主的硬度影響黑翅土白蟻的取食,其偏好較軟的木材;Markwick 等(2013)發(fā)現(xiàn)蘋果褐卷蛾Epiphyas postvittana 偏好綠色葉子多于轉(zhuǎn)基因紅色葉子,而在黑暗條件下卻沒有此現(xiàn)象,說明顏色影響其寄主定位。Colares等(2013)通過選擇性實(shí)驗(yàn)也發(fā)現(xiàn)小菜蛾P(guān)lutella xylostella 偏好綠色卷心菜多于紅色卷心菜;Machial 等(2012)對加拿大本地的一種松樹根頸象鼻蟲Hylobius warreni 進(jìn)行兩年的寄主選擇實(shí)驗(yàn),發(fā)現(xiàn)其容易被樹狀輪廓的垂直塑料所吸引,說明寄主形狀影響其定位行為。
相對而言,溫度、濕度、光照、空氣等環(huán)境因子僅單方面對昆蟲產(chǎn)生影響,其對昆蟲的影響是比較均勻的,且與昆蟲種群大小無關(guān),一般通過影響植物的代謝間接對昆蟲的寄主選擇產(chǎn)生作用(王曉偉等,2006)。Lawler 等(1996)認(rèn)為昆蟲的取食受CO2濃度的影響,CO2濃度升高主要通過影響植物的光合作用和呼吸作用改變植物營養(yǎng)組分,從而影響昆蟲的取食行為。同時,昆蟲的取食總量和取食速率又與溫度密切相關(guān)(陳瑜和馬春森,2010),Arab 等(2005)的研究表明兩種白蟻Heterotermes tenuis 和Coptotermes gestroi 的覓食活動依賴于最低溫度界限。氣候變暖也影響昆蟲取食,溫度升高使植物C/N 比增加營養(yǎng)下降,昆蟲需要多食以滿足自身需要(Wilf et al.,1999;Wolf et al.,2008)。Santos 等(2010)的研究認(rèn)為印緬乳白蟻Coptotermes gestroi 的取食行為與相對濕度、土壤濕度和降雨呈負(fù)相關(guān),且環(huán)境因子影響其季節(jié)性的覓食活動。Chen and Poland 等(2009)研究表明白蠟窄吉丁Agrilus planipennis 始終偏好生長在陽光下的寄主樹木。因此,環(huán)境因子能在一定程度上對昆蟲的取食行為產(chǎn)生影響。
此外,昆蟲自身先前經(jīng)歷(學(xué)習(xí)行為)也能影響其取食行為(Barron,2001),昆蟲幼蟲期和成蟲期對寄主的取食經(jīng)歷可以改變該蟲態(tài)取食和產(chǎn)卵的寄主偏嗜行為(王爭艷等,2011),例如,煙草夜蛾若蟲取食非寄主植物豇豆后可在短時間內(nèi)表現(xiàn)出對豇豆的偏好性(de Boer,2004);雜食性斑潛蠅對寄主植物的取食經(jīng)歷影響其對寄主植物的偏好性(Radziute and Buda,2013)。
總體來講,昆蟲偏好營養(yǎng)豐富的寄主(Scheirs and De Bruyn,2002;West and Cunningham,2002),但寄主定位不是簡單的由植物營養(yǎng)狀況決定的(Courtney et al.,1989),除寄主植物理化因素、環(huán)境因素和昆蟲自身學(xué)習(xí)經(jīng)歷外,寄主豐富度、成蟲取食位點(diǎn)、幼蟲活動、躲避天敵等因素也影響著昆蟲的寄主選擇(Ballabeni et al.,2001;Cunningham et al.,2001;Scheirs and De Bruyn,2002;West and Cunningham,2002;Cunningham and West,2008)。
長期以來,人類一直被化學(xué)農(nóng)藥帶來的抗藥性、環(huán)境污染等問題所困擾,尋找可持續(xù)的害蟲防控措施已成為大家關(guān)注的焦點(diǎn)。近代農(nóng)藥的發(fā)展不再以“殺死”為唯一特征 (尚稚珍等,1999),從昆蟲行為生理學(xué)的角度研究害蟲取食行為調(diào)控機(jī)制開辟了害蟲防治領(lǐng)域的新視角,特別是與取食行為相關(guān)的大量化學(xué)感受蛋白的發(fā)現(xiàn)與功能研究(劉金香等,2005)、取食行為的神經(jīng)和激素調(diào)控的深入研究,都將為逐步揭開昆蟲取食行為之謎提供扎實(shí)的基礎(chǔ),如Liu 等(2010)克隆了小菜蛾4種化學(xué)感受蛋白(CSP)基因,并發(fā)現(xiàn)PxylCSP1 能夠結(jié)合非揮發(fā)性物質(zhì),從而可能影響寄主植物的確定;Zhang 等(2012)通過同源建模發(fā)現(xiàn)斜紋夜蛾CSP 對其識別拒食劑與產(chǎn)卵拒避劑鬧羊花素-Ⅲ(rhodojaponin-Ⅲ)起重要作用,Dong 等(2013)研究了小菜蛾在鬧羊花素-III 處理下的蛋白質(zhì)組學(xué)水平的變化。但昆蟲取食行為過程復(fù)雜,涉及機(jī)理繁多,仍然有太多的問題尚未解決。展望今后研究昆蟲取食行為機(jī)制,可綜合運(yùn)用分子生物學(xué)、神經(jīng)生物學(xué)等多學(xué)科手段,深入研究視覺、味覺、嗅覺、觸覺等感覺機(jī)制,全面闡明其取食行為的神經(jīng)機(jī)制、激素調(diào)控機(jī)制等;可利用RNA 干擾和轉(zhuǎn)基因等手段,深入研究昆蟲對取食化學(xué)信息的識別、接受、信號傳遞、加工處理以及導(dǎo)致的取食行為反應(yīng)等;重點(diǎn)研究植物源取食行為忌避劑、拒食劑的活性成分、作用機(jī)制,結(jié)合基于作用靶標(biāo)的高通量篩選,研究開發(fā)昆蟲取食行為調(diào)控劑,實(shí)現(xiàn)對昆蟲取食行為的有效調(diào)控,最終達(dá)到控制害蟲和利用益蟲的目的。這類措施針對性強(qiáng),防治效果可觀,而且對其它生物以及環(huán)境沒有負(fù)面影響。可以預(yù)計(jì),昆蟲取食行為生理學(xué)將持續(xù)成為昆蟲學(xué)研究熱點(diǎn),且有可能為害蟲綜合治理提供新思路。
References)
Akhtar Y,Pages E,Stevens A,et al.Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper[J].Physiological Entomology,2012,37 (1):81-91.
Arab A,Costa-leonardo AM,Casarin FE,et al.Foraging activity and demographic patterns of two termite species (Isoptera:Rhinotermitidae)living in urban landscapes in southeastern Brazil[J].European Journal of Entomology,2005,102:691-697.
Ballabeni P,Wlodarczyk M,Rahier M.Does enemy-free space for eggs contribute to a leaf beetle's oviposition preference for a nutritionally inferior host plant[J]?Functional Ecology,2001,15 (3):318-324.
Barron AB.The life and death of Hopkins'host-selection principle[J].Journal of Insect Behavior,2001,14 (6):725-737.http://www.sciencedirect.com/science/article/pii/S0261219401001247-AFFB#AFFB
Benoit SC,Tracy AL,Davis JF,et al.Novel functions of orexigenic hypothalamic peptides:from genes to behavior [J].Nutrition,2008,24 (9):843-847.
Bodnaryk RP.Leaf epicuticular wax,an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles,Phyllotreta cruciferae (Goeze)[J].Canadian Journal of Plant Science,1992,72 (4):1295-1303.
Brockmann A,Brueckner D,Crewe RM.The EAG response of workers and drones to queen honeybee mandibular gland components:the evolution of a social signal [J].Naturwissenschaften,1998,85(6):283-285.
Bruce TJA,Pickett JA.Perception of plant volatile blends by herbivorous insects-Finding the right mix [J].Phytochemistry,2011,72(13):1605-1611.
Butkewich SL,Prokopy RJ.Attraction of adult plum curculios(Coleoptera:Curculionidae)to host-tree odor and visual stimuli in the field[J].Journal of Entomological Science,1997,32 (1):1-6.
Cai WZ,Pang XF,Huang BZ,et al.General Entomology[M].2001,Beijing:China Agricultural University Press.[彩萬志,龐雄飛,花保禎,等.普通昆蟲學(xué)[M].2001,北京:中國農(nóng)業(yè)大學(xué)出版社]
Chee MJ,William F.Yeat[J].Nutrition,2008,24 (9):869-877.
Chen Y,Ma CS.Effect of global warming on insect:a literature review[J].Acta Ecologica Sinica,2010,30 (8):2159-2192.[陳瑜,馬春森.氣候變暖對昆蟲影響研究進(jìn)展[J].生態(tài)學(xué)報(bào),2010,30 (8):2159-2192]
Chen YG,Poland TM.Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference [J].Environmental Entomology,2009,38 (6):1756-1764.
Clyne PJ,Warr CG,Carlson JR.Candidate taste receptors in Drosophila[J].Science,2000,287:1830-1834.
Colares F,Silva-Torres CSA,Torres JB,et al.Influence of cabbage resistance and colour upon the diamondback moth and its parasitoid Oomyzus sokolowskii [J].Entomologia Experimentalis et Applicata,2013,148 (1):84-93.
Courtney SP,Chen GK,Gardner A.A general model for individual host selection[J].OIKOS,1989,55 (1):55-65.
Cunningham JP,West SA.How host plant variability influences the advantages to learning:A theoretical model for oviposition behaviour in Lepidoptera [J].Journal of Theoretical Biology,2008,251(3):404-410.
Cunningham JP,West SA,Zalucki MP.Host selection in phytophagous insects:a new explanation for learning in adults [J].OIKOS,2001,95 (3):537-543.
De Boer G.Temporal and developmental aspects of diet-induced food preferences in larvae of the tobacco hornworm,Manduca sexta[J].Entomologia Experimentalis et Applicata,2004,35 (2):177-193.
De Groot P,Nott R.Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera:Cerambycidae)[J].Agricultural and Forest Entomology,2001,3 (2):107-111.
del Campo ML,Miles CI.Chemosensory tuning to a host recognition cue in the facultative specialist larvae of the moth Manduca sexta[J].Journal of Experimental Biology,2003,206:3979-3990.
del Campo ML,Renwick JAA.Induction of host specificity in larvae of Manduca sexta:chemical dependence controlling host recognition and developmental rate[J].Chemoecology,2000,10 (3):115-121.
Dethier VG.Mechanism of host-plant recognition [J].Entomologia Experimentalis et Applicata,1982,31 (1):49-56.
Dicke M,Baldwin IT.The evolutionary context for herbivore-induced plant volatiles:beyond the‘cry for help’[J].Trends in Plant Science,2010,15 (3):167-175.
Dommer DH,Gazallo PJ,Painter MS,et al.Magnetic compass orientation by larval Drosophila melanogaster [J].Journal of Insect Physiology.2008,54 (4):719-726.
Dong XL,Zhai YF,Hu MY,et al.Proteomic and properties analysis of botanical insecticide rhodojaponin III-induced response of the diamondback moth,Plutella xyllostella (L.)[J].PLoS ONE,2013,8 (7):e67723.
Du JW.Plant-insect chemical communication and its behavior control[J].Acta Phytophysiologica Sinica,2001,27 (3):193-200.[杜家緯.植物-昆蟲間的化學(xué)通訊及其行為控制[J].植物生理學(xué)報(bào),2001,27 (3):193-200]
Dus M,Min S,Keene AC,et al.Taste-independent detection of the caloric content of sugar in Drosophila [J].PNAS,2011,108(28):11644-11649.
Fan JT,Sun JH,Shi J.Attraction of the Japanese pine sawyer,Monochamus alternatus,to volatiles from stressed host in China[J].Annals of Forest Science,2007,64 (1):67-71.
Farkas SR,Shorey HH.Chemical trail-following by flying insects:a mechanism for orientation to a distant odor source [J].Science,1972,178 (4056):67-68.
Flores GB,Lazzari CR.The role of the antennae in Triatoma infestans:orientation towards thermal sources [J].Journal of Insect Physiology,1996,42 (5):433-440.
Gao YB,Zhai BP.Progress in the mechanism of insect orientation[J].Chinese Bulletin of Entomology,2010,47 (6):1055-1065.[高月波,翟保平.昆蟲定向機(jī)制研究進(jìn)展[J].昆蟲知識,2010,47 (6):1055-1065]
Hildebrand JG,Shepherd GM.Mechanisms of olfactory discrimination:converging evidence for common principles across phyla [J].Annual Review of Neuroscience,1997,20:595-631.
Hori M.Onion aphid (Neotoxoptera formosana)attractants,in the headspace of Allium fistulosum and A.tuberosum leaves [J].Journal of Applied Entomology,2007,131 (1):8-12.
Jander R.Insect orientation[J].Annual Review of Entomology,1963,8:95-114.
Kasseney BD,Deng TF,Mo JC.Effect of wood hardness and secondary compounds on feeding preference of Odontotermes formosanus(Isoptera:Termitidae)[J].Journal of Economic Entomology,2011,104 (3):862-867.
Koschier EH,Sedy KA,Novak J.Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci [J].Crop Protection,2002,21 (5):419-425.
Kvello P,Almaas TJ,Mustaparta H.A confined taste area in a lepidopteran brain[J].Arthropod Structure & Development,2006,35 (1):35-45.
Lawler IR,F(xiàn)oley WJ,Woodrow IE,et al.The effects of elevated CO2atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability[J].Oecologia,1996,109 (1):59-68.
Li X,Bai SF.Advances in the studies on the chemical ecology of tritrophic interactions among host-plant,herbivore and natural enemies[J].Journal of Henan Agricultural University,2003,37(3):224-232.[李欣,白素芬.寄主植物-植食性昆蟲-天敵三重營養(yǎng)關(guān)系中化學(xué)生態(tài)學(xué)的研究進(jìn)展[J].河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2003,37 (3):224-232]
Lingo PR,Zhao Z,Shen P.Co-regulation of cold-resistant food acquisition by insulin-and neuropeptide Y-like systems in Drosophila melanogaster[J].Neuroscience,2007,148 (2):371-374.
Liu JX,Zhong GH,Xie JJ,et al.Recent advances in chemosensory protein of insect[J].Acta Entomologica Sinica,2005,48 (3):418-426.[劉金香,鐘國華,謝建軍,等.昆蟲化學(xué)感受蛋白研究進(jìn)展[J].昆蟲學(xué)報(bào),2005,48 (3):418-426]
Liu XL,Luo Q,Zhong GH,et al.Molecular characterization and expression pattern of four chemosensory proteins from diamondback moth,Plutella xylostella (Lepidoptera:Plutellidae)[J].The Journal of Biochemistry,2010,148 (2):189-200.
Lu W,Hou ML,Wen JH,et al.Effects of plant volatiles on herbivorous insects[J].Plant Protection,2007,33 (3):7-11.[盧偉,侯茂林,文吉輝,等.植物揮發(fā)性次生物質(zhì)對植食性昆蟲的影響[J].植物保護(hù),2007,33 (3):7-11]
Lu YH,Zhang YJ,Wu KM.Host-plant selection mechanisms and behavioural manipulation strategies of phytophagous insects [J].Acta Ecologica Sinica,2008,28 (10):5113-5122.[陸宴輝,張永軍,吳孔明.植食性昆蟲的寄主選擇機(jī)理及行為調(diào)控策略[J].生態(tài)學(xué)報(bào),2008,28 (10):5113-5122]
Lu YJ,Zhang XX.Effect of infochemicals on insect behavior [J].Entomological Knowledge,2001,38 (4):262-266.[魯玉杰,張孝羲.信息化合物對昆蟲行為的影響[J].昆蟲知識,2001,38 (4):262-266]
Machial LA,Lindgren BS,Aukema BH.The role of vision in the host orientation behaviour of Hylobius warreni [J].Agricultural and Forest Entomology,2012,14 (3):286-294.
Mahroof RM,Phillips TW.Orientation of the cigarette beetle,Lasioderma serricorne (F)(Coleoptera:Anobiidae)to plant-derived volatiles [J].Journal of Insect Behavior,2007,20 (1):99-115.
Markwick NP,Poulton J,Espley RV,et al.Red-foliaged apples affect the establishment,growth,and development of the light brown apple moth,Epiphyas postvittana [J].Entomologia Experimentalis et Applicata,2013,146 (2):261-275.
Matthews RW,Matthews JR.Foraging and feeding.In:http://images.springer.com/covers/978-90-481-2388-9.tif Insect Behavior (2nd Edition)[M].Published by Springer Netherlands,2010,131-184.
McIntosh RL,Katinic PJ,Allison JD,et al.Comparative efficacy of five types of trap for woodborers in the Cerambycidae,Buprestidae and Siricidae[J].Agricultural and Forest Entomology,2001,3 (2):113-120.
Merivee E,Must A,Tooming E,et al.Sensitivity of antennal gustatory receptor neurones to aphid honeydew sugars in the carabid Anchomenus dorsalis [J].Physiological Entomology,2012,37(4):369-378.
Mitchell ER,Tingle FC,Heath RR.Ovipostional responses of three Heliothis species (Lepidoptera:Noctuidae)to allelochemicals from cultivated and wild host plants[J].Journal of Chemical Ecology,1990,16 (6):1817-1827.
Miyamoto T,Slone J,Song XY,et al.A fructose receptor functions as a nutrient sensor in the Drosophila brain[J].Cell,2012,151 (5):1113-1125.
Morewood WD,Hein KE,Katinic PJ,et al.An improved trap for large wood-boring insects,with special reference to Monochamus scutellatus (Coleoptera:Cerambycidae)[J].Canadian Journal of Forest Research,2002,32 (3):519-525.
N?ssel DR,Homberg U.Neuropeptides in interneurons of the insect brain[J].Cell and Tissue Research,2006,326 (1):1-24.
N?ssel DR,Wegener C.A comparative review of short and long neuropeptide F signaling in invertebrates:any similarities to vertebrate neuropeptide Y signaling[J]?Peptides,2011,32 (6):1335-1355 .
Nguyen AD,Herzog H,SainsburyA.Neuropeptide Y and peptide YY:important regulators of energy metabolism[J].Current Opinion in Endocrinology,Diabetes & Obesity,2011,18 (1):56-60.
Phillips JB,Jorge PE,Muheim R.Light-dependent magnetic compass orientation in amphibians and insects:candidate receptors and candidate molecular mechanisms[J].Journal of the Royal Society Interface,2010,7 (s2):S241-S256.
Poulet JFA,Hedwig B.Auditory orientation in crickets:pattern recognition controls reactive steering [J].PNAS,2005,102(43):15665-15669.
Radziute S,Buda V.Host feeding experience affects host plant odour preference of the polyphagous leafminer Liriomyza bryoniae [J].Entomologia Experimentalis et Applicata,2013,146 (2):286-292.
Reeves JL.Vision should not be overlooked as an important sensory modality for finding host plants[J].Environmental Entomology,2011,40 (4),855-863.
Renwikc JA,Chew FS.Oviposition behavior in Lepidoptera [J].Annual Review of Entomology,1994,39:337-400.
Santos MN,Teixeira MLF,Pereira MB,et al.Environmental factors influencing the foraging and feeding behavior of two termite species(Isoptera:Rhinotermitidae)in natural habitats[J].Sociobiology,2010,55 (3):763-778.
Scheirs J,De Bruyn L.Integrating optimal foraging and optimal oviposition theory in plant– insect research[J].OIKOS,2002,96 (1):187-191.
Shang ZZ,Xu JH,Su SZ.Studies on antifeeding mechanism and electrophysiological method as bioassay model with larval of Ostrinia furnacalis Guenee[J].Chinese Journal of Pesticide Science,1999,1 (2):25-30.[尚稚珍,徐建華,蘇勝忠.害蟲拒食行為調(diào)控物質(zhì)的篩選模型研究[J].農(nóng)藥學(xué)學(xué)報(bào),1999,1 (2):25-30]
Shen P,Cai HN.Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food[J].Journal of Neurobiology,2000,47 (1):16-25.
Soares SF,Louly CCB,Neves CA,et al.Detection of phytoecdysteroids by gustatory sensilla on chelicerae of the brown dog tick Rhipicephalus sanguineus[J].Physiological Entomology,2012,37(3):241-249.
Steinbrecht RA.Are odorant-binding proteins involved in odorant discrimination[J]?Chemical Senses,1998,21 (6):719-727.
Sun JG,HuangLQ,Wang CZ.Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera:Noctuidae) to tobacco volatiles [J].Arthropod-Plant Interactions,2012,6(3):375-384.
Tilden PE,Bedard WD,Lindahl KQ,et al.Trapping Dendroctonus brevicomis:Changes in attractant release rate,dispersion of attractant,and silhouette[J].Journal of Chemical Ecology,1983,9 (3):311-321.
Tobin TR.Pheromone orientation:role of internal control mechanism[J].Science,1981,214 (4525):1147-1149.
Vogt RG,Riddifor LM.Pheromone binding and inactivation by moth antennae[J].Nature,1981,293:161-163.
Vuts J,Kaydan MB,Yarimbatman A,et al.Field catches of Oxythyrea cinctella using visual and olfactory cues [J].Physiological Entomology,2012,37 (1):92-96.
Wang GR,Guo YY,Wu KM.Progress in the studies of antenna odorant binding proteins of insects[J].Acta Entomologica Sinica,2002,45 (1):131-137.[王桂榮,郭予元,吳孔明.昆蟲觸角氣味結(jié)合蛋白的研究進(jìn)展[J].昆蟲學(xué)報(bào),2002,45 (1):131-137]
Wang GR,Guo YY,Xu G,et al.Cloning and sequencing of a gene encoding GOBP2 in the antenna of spodoptera exigua[J].Scientia Agricultura Sinica,2001,34 (6):619-625.[王桂榮,郭予元,徐廣,等.甜菜夜蛾GOBP2 基因的克隆及序列測定[J].中國農(nóng)業(yè)科學(xué),2001,34 (6):619-625]
Wang MF,Chen JL,Yuan GH,et al.Effects of plant epicuticular waxes on phytophagous insects behaviour [J].Ecology and Environmental Sciences,2009,18 (3):1155-1160.[王美芳,陳巨蓮,原國輝,等.植物表面蠟質(zhì)對植食性昆蟲的影響研究進(jìn)展[J].生態(tài)環(huán)境學(xué)報(bào),2009,18 (3):1155-1160]
Wang XW,Ji LZ,Wang GQ,et al.Potential effects of elevated carbon dioxide on forest leaf-feeding insects [J].Chinese Journal of Applied Ecology,2006,17 (4):720-726.[王曉偉,姬蘭柱,王桂清,等.大氣CO2濃度升高對森林食葉昆蟲的潛在影響[J].應(yīng)用生態(tài)學(xué)報(bào),2006,17 (4):720-726]
Wang ZY,Li XT,Lu YJ,et al.Principles of host-selection evolution in insects[J].Chinese Journal of Applied Entomology,2011,48(1):174-177.[王爭艷,李心田,魯玉杰,等.昆蟲寄主選擇行為的進(jìn)化機(jī)制[J].應(yīng)用昆蟲學(xué)報(bào),2011,48 (1):174-177]
Webster B.The role of olfaction in aphid host location [J].Physiological Entomology,2012,37 (1):10-18.
Weinandt ML,Meyer M,Strand M,et al.Cues used by the black fly,Simulium annulus,for attraction to the common loon (Gavia immer)[J].Journal of Vector Ecology,2012,37 (2):359-364.
West SA,Cunningham JP.A general model for host plant selection in phytophagous insects[J].Journal of Theoretical Biology,2002,214 (3):499-513.
Wielendaele PV,Dillen S,Zels S,et al.Regulation of feeding by Neuropeptide F in the desert locust,Schistocerca gregaria [J].Insect Biochemistry and Molecular Biology,2013,43 (1):102-114.
Wilf P,Labandeira CC.Response of plant-insect associations to Paleocene-eocene warming [J].Science,1999,284 (5423):2153-2156.
Wolf A,Kozlov MV,Callaghan TV.Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate[J].Climatic Change,2008,87 (1/2):91-106.
Wu Q,Zhang Y,Xu J,et al.Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila [J].PNAS,2005,102 (37):13289-13294.
Wyatt TD,Vastiau K,Birch M.Orientation of flying male Anobium punctatum (Coleoptera:Anobiidae)to sex pheromone:separating effects of visual stimuli and physical barriers to wind [J].Physiological Entomology,1997,22 (2):191-196.
Xu J,Li M,Shen P.A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory response to multiple stressful stimuli in Drosophila[J].The Journal of Neuroscience,2010,30 (7):2504-2512.
Yang H,Yan SC,Peng L.Chemosensilla and chemical sensory mechanisms in Lepidoptera[J].Acta Entomologica Sinica,2008,51 (2):204-215.[楊慧,嚴(yán)善春,彭璐.鱗翅目昆蟲化學(xué)感受器及其感受機(jī)理新進(jìn)展[J].昆蟲學(xué)報(bào),2008,51 (2):204-215]
Zhang YB,Dong XL,Liu JX,et al.Molecular cloning,expression and molecular modeling of chemosensory protein from Spodoptera litura and its binding properties with Rhodojaponin III[J].PLoS ONE,2012,7 (10):e47611.
Zheng WW,Zhu CP,Peng T,et al.Odorant receptor coreceptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera:Tephritidae)[J].Journal of Insect Physiology,2012,58 (8):1122-1127.
Zhou TM,Chen JQ,Zhang PF,et al.The influence of four kinds of plant aqueous extracts on the feeding behaviors of Aphids gossypii[J].Journal of Plant Protection,2004,31 (3):252-258.[周天牧,陳建群,張鵬飛,等.4種抗蟲性植物水提物對棉蚜取食行為的影響[J].植物保護(hù)學(xué)報(bào),2004,31 (3):252-258]