吳 鑫 馮京海 張敏紅
(中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100193)
隨著人們生活水平的提高和保健意識(shí)的增強(qiáng),對(duì)豬肉品質(zhì)的要求越來(lái)越高。消費(fèi)者喜歡瘦肉率高、脂肪和膽固醇含量低的豬肉,同時(shí)又要求它的色澤好、嫩度高、多汁、風(fēng)味鮮美。“杜×長(zhǎng)×大”作為我國(guó)最為常用的商品雜交豬,其瘦肉率高、生長(zhǎng)速度快,但肌內(nèi)脂肪含量低,肉質(zhì)欠佳。豬肉的風(fēng)味和品質(zhì)主要由肌內(nèi)脂肪含量決定[1],當(dāng)肌內(nèi)脂肪含量低于2.0%時(shí),肉的質(zhì)地和口感都很差,而高于3.0%時(shí),則肉的風(fēng)味不再提高;同時(shí),脂肪含量太高時(shí)不易被消費(fèi)者接受,最佳的肌內(nèi)脂肪含量為2.0% ~3.0%[2-3]。但肌內(nèi)脂肪含量的提高與皮下、內(nèi)臟脂肪含量的提高不盡一致[4],如何在不增加皮下、內(nèi)臟脂肪沉積的基礎(chǔ)上,提高肌內(nèi)脂肪的含量成為當(dāng)前的研究熱點(diǎn)和難點(diǎn)。豬的脂肪代謝主要受遺傳、營(yíng)養(yǎng)以及環(huán)境應(yīng)激等因素的影響。南方諸省是我國(guó)生豬養(yǎng)殖的重要產(chǎn)區(qū),這里夏季高溫高濕天氣持續(xù)時(shí)間較長(zhǎng),加之飼養(yǎng)密度的增大和全球變暖的加劇,熱應(yīng)激越來(lái)越成為制約養(yǎng)豬業(yè)發(fā)展的重要因素之一[5]。本文主要針對(duì)環(huán)境高溫對(duì)豬不同脂肪組織脂肪代謝的影響及可能的機(jī)理進(jìn)行綜述,為今后在營(yíng)養(yǎng)與環(huán)境方面對(duì)脂肪代謝進(jìn)行調(diào)控提供一定的參考。
豬胴體脂肪主要沉積在4個(gè)位置:皮下、內(nèi)臟周圍、骨骼肌組織間、骨骼肌組織內(nèi)[6],其中沉積在骨骼肌組織內(nèi)的脂肪稱為肌內(nèi)脂肪,由位于肌束間隙縱向排列的脂肪細(xì)胞、肌外膜、肌束膜和肌內(nèi)膜上的膜脂以及肌漿中的甘油三酯(TG)液滴構(gòu)成[7]。在豬生長(zhǎng)過(guò)程中,不同部位脂肪組織的發(fā)育和代謝并不一致,其中皮下脂肪的快速生長(zhǎng)期最早,然后是內(nèi)臟脂肪和肌間脂肪,肌內(nèi)脂肪發(fā)育最晚[8]。在同一時(shí)間,不同部位脂肪的沉積能力并不相同[9]。Mourot等[10]發(fā)現(xiàn),即使均為皮下脂肪組織,但部位不同,脂肪合成相關(guān)酶的活性也存在較大的差異。不同部位脂肪中的脂肪酸組成及脂質(zhì)的脂質(zhì)含量也存在較大差別,Monziols等[11]發(fā)現(xiàn),豬肌間脂肪含量最低,皮下脂肪含量略高,腎周脂肪含量最高。不同部位脂肪組織中不飽和脂肪酸的比例呈規(guī)律性變化,從皮下脂肪的外層到內(nèi)層,然后是肌間脂肪,最后是腎周脂肪,脂肪中不飽和脂肪酸/飽和脂肪酸逐漸降低,單不飽和脂肪酸的含量也是同樣趨勢(shì)??傊?,不同部位的脂肪發(fā)育順序、脂肪合成能力、脂質(zhì)含量以及脂肪酸組成都存在較大差異。
環(huán)境高溫對(duì)不同部位脂肪沉積的影響存在較大差異。Christon[12]研究發(fā)現(xiàn),高溫不影響肥育豬背脂相對(duì)重,使腎周脂肪相對(duì)重升高26.7%(P<0.05);Katsumata等[13]研究發(fā)現(xiàn),30 ℃ 持續(xù)高溫使肩部皮下脂肪厚降低22.4%(P<0.05),腰部皮下脂肪厚降低21.9%(P<0.05),背脂厚降低18.9%(P<0.05),而內(nèi)臟脂肪重有增加趨勢(shì)(P<0.10)。上述試驗(yàn)結(jié)果表明,高溫降低豬皮下脂肪的沉積,同時(shí)增強(qiáng)內(nèi)臟脂肪的沉積,這也與其他人的結(jié)論[14-15]一致。上述研究均在自由采食的條件下進(jìn)行,環(huán)境高溫顯著降低豬的采食量,因此上述研究得出的結(jié)論可能受到采食量不同的影響。為了研究環(huán)境高溫對(duì)豬脂肪代謝的直接影響,Kouba等[16-17]增設(shè)了采食量配對(duì)組,研究發(fā)現(xiàn),在采食量相同的條件下,高溫組背脂相對(duì)重提高5.4%(P<0.05),腎周脂肪相對(duì)重提高127.0%(P<0.05),腎周脂肪/(背脂 +腎周脂肪)的比例提高125.0%(P<0.05)。這表明在采食量相同的情況下,高溫同時(shí)增加內(nèi)臟脂肪和皮下脂肪的沉積,內(nèi)臟脂肪增加的幅度更大。Le Dividich等[18]認(rèn)為,長(zhǎng)期熱應(yīng)激導(dǎo)致豬的脂肪沉積增強(qiáng),并且呈現(xiàn)出外層脂肪向內(nèi)層脂肪轉(zhuǎn)移的趨勢(shì),以降低外層脂肪的隔熱性,從而適應(yīng)高溫環(huán)境。高溫對(duì)肌間脂肪和肌內(nèi)脂肪影響的報(bào)道較為少見(jiàn),Witte等[19]發(fā)現(xiàn),和適溫對(duì)照組相比,高溫對(duì)豬背最長(zhǎng)肌肌內(nèi)脂肪含量無(wú)顯著影響(P>0.05),這與Sugahaea等[20]的研究結(jié)果一致。高溫對(duì)豬肌間脂肪和肌內(nèi)脂肪沉積的影響還需進(jìn)一步研究。
脂肪的沉積是合成和分解代謝動(dòng)態(tài)變化的結(jié)果。豬脂肪組織合成TG所需的脂肪酸有2個(gè)來(lái)源,一是脂肪組織從頭合成脂肪酸,另外一個(gè)是通過(guò)脂蛋白酯酶(LPL)從血漿中富含TG的脂蛋白[包括乳糜微粒和極低密度脂蛋白(VLDL)]中分解獲得脂肪酸[21]。家禽脂肪組織中脂肪酸主要來(lái)源于肝臟合成分泌的VLDL[22],而豬脂肪組織中脂肪酸主要靠從頭合成,從肝臟中獲得的脂肪酸比例較?。?1]。
脂肪酸從頭合成的關(guān)鍵酶包括乙酰輔酶A羧化酶(ACC)、蘋果酸酶(ME)、葡萄糖-6-磷酸脫氫酶(G6PDH)、脂肪酸合成酶(FAS)等。Kouba等[16]研究發(fā)現(xiàn),和采食量配對(duì)組相比,高溫使豬背脂中ACC活性降低35.1%(P<0.01),腎周脂肪中ACC活性降低49.3%(P<0.01),肝臟中ACC活性降低25.2%(P<0.01),而肌肉中ACC活性增加38.6%(P <0.01)。Rinaldo等[23]發(fā)現(xiàn),在31.5℃高溫下,豬背脂、腎周脂肪和肝臟中ME和G6PDH的活性均顯著下降(P<0.05)。上述結(jié)果表明,高溫抑制豬背脂、腎周脂肪和肝臟中脂肪酸的從頭合成。如前文所述,相同采食情況下,高溫提高了腎周脂肪和背脂的沉積[17],這顯然無(wú)法從脂肪酸的從頭合成得到解釋。Kouba等[17]研究發(fā)現(xiàn),31℃高溫下,背脂和腎周脂肪的LPL活性分別升高了144.6%和90.5%(P<0.01),Christon[12]和 Rinaldo 等[23]也有類似的發(fā)現(xiàn)。LPL可以分解血漿中乳糜微粒和VLDL攜帶的TG,釋放出的脂肪酸,供脂肪組織合成TG貯存,是脂肪組織利用血漿中脂蛋白的關(guān)鍵控制因素[24]。上述結(jié)果表明,高溫增強(qiáng)了脂肪組織對(duì)血漿脂蛋白的攝取和利用,從而促進(jìn)豬脂肪的沉積。另外,Kouba等[17]還發(fā)現(xiàn),高溫導(dǎo)致血漿中游離脂肪酸(FFA)的濃度增加了1.6倍(P<0.01),血漿TG的濃度增加了2.6倍(P<0.01),推測(cè)環(huán)境高溫可能抑制了骨骼肌脂肪酸氧化供能,導(dǎo)致血漿中FFA濃度升高,更多的FFA在肝臟中重新合成為TG,以VLDL的形式運(yùn)送到脂肪組織,在LPL的作用下被脂肪組織攝取,環(huán)境高溫是否影響骨骼肌脂肪酸的氧化還需進(jìn)一步研究證實(shí)。
多種激素參與調(diào)節(jié)豬的脂肪代謝,如甲狀腺激素、胰島素和生長(zhǎng)激素等。前人研究報(bào)道,高溫顯著降低豬血清中甲狀腺激素的濃度[17,23,25](P <0.05)。甲狀腺激素能夠增加脂肪組織對(duì)兒茶酚胺和胰高血糖素的敏感性,增加脂肪組織中腺苷酸環(huán)化酶的活性,使三磷酸腺苷(ATP)轉(zhuǎn)化為環(huán)單磷酸腺苷(cAMP),cAMP作為第二信使激活cAMP-依賴性蛋白激酶,使無(wú)活性的激素敏感脂酶(HSL)轉(zhuǎn)變?yōu)橛谢钚缘腍SL,促進(jìn)脂肪組織的分解,從而提高血液FFA濃度[26]。高溫降低甲狀腺激素的濃度,緩解甲狀腺激素對(duì)脂肪的促分解作用,促進(jìn)脂肪的儲(chǔ)存。
Rinaldo等[23]報(bào)道,31.5 ℃ 高溫極顯著降低豬血清胰島素的濃度(P <0.01),Chayoth等[27]在大鼠上也得到相似結(jié)果。胰島素可以上調(diào)FAS基因在轉(zhuǎn)錄水平的表達(dá)[28-29],促進(jìn)脂肪的合成。環(huán)境高溫可能通過(guò)降低胰島素的濃度,抑制脂肪的合成。
Marple等[30]報(bào)道,暴露在高溫環(huán)境中,豬血漿中生長(zhǎng)激素的水平顯著降低(P<0.05),這與Parkhie等[31]在大鼠上的試驗(yàn)結(jié)果一致。生長(zhǎng)激素可促進(jìn)脂肪組織的分解代謝,使血漿中FFA濃度增加,脂肪沉積減少[32]。高溫可能通過(guò)降低生長(zhǎng)激素的水平,促進(jìn)脂肪的沉積。
脂肪組織能分泌多種細(xì)胞因子,如瘦素(leptin)、腫瘤壞死因子-α(TNF-α)等,這些因子統(tǒng)稱為脂肪細(xì)胞因子,它們?cè)谥敬x和能量平衡中發(fā)揮著重要的作用[33]。其中l(wèi)eptin主要在脂肪組織中表達(dá)[34],血漿中l(wèi)eptin的含量與體內(nèi)白色脂肪組織的含量緊密相關(guān)[35]。leptin通過(guò)與下丘腦的特定受體結(jié)合,抑制攝食,增加能量消耗,在脂肪儲(chǔ)存、體重調(diào)節(jié)中起著重要作用[36]。leptin還可以通過(guò)自分泌或旁分泌途徑作用于脂肪細(xì)胞,促進(jìn)脂肪組織內(nèi)TG的分解,抑制脂肪合成[37]。Collin等[25]研究表明,33℃高溫下,斷奶仔豬血清leptin的濃度顯著降低(P<0.05),緩解了leptin的促脂肪分解和抑制脂肪合成的作用,促進(jìn)了脂肪的沉積。
Warne[38]報(bào)道,TNF-α 可以促進(jìn)脂肪的分解。有研究報(bào)道,TNF-α可以極顯著下調(diào)HSL基因的表達(dá)(P <0.01)[39-40],TNF-α 還可以極顯著下調(diào)脂肪組織甘油三酯酯酶(ATGL)和甘油三酯水解酶(TGH-2)的 基 因 表 達(dá) (P < 0.01)[41-42]。但Green等[43]用TNF-α處理大鼠原代脂肪細(xì)胞后發(fā)現(xiàn),HSL含量并未發(fā)生變化。由此推測(cè),TNF-α可能不是通過(guò)直接調(diào)控上述脂解相關(guān)酶的表達(dá)來(lái)影響脂肪分解,而是通過(guò)增加其活性或其他途徑來(lái)促進(jìn)脂解。脂滴包被蛋白A(perilipin A)是定位于脂肪細(xì)胞脂滴表面的磷酸化蛋白質(zhì),作為屏障覆蓋在脂滴的表面保護(hù)TG免受水解[44]。大量研究報(bào)道,TNF-α通過(guò)下調(diào)perilipin A的基因表達(dá),使得脂滴失去屏障,促進(jìn)了脂肪細(xì)胞的脂解[45-48]。除此之外,TNF-α還可以抑制脂肪的合成[49],Stephens 等[50]用 TNF-α 處理小鼠的 3T3-L1脂肪細(xì)胞24 h后,發(fā)現(xiàn)LPL基因表達(dá)量降低70%(P <0.01);Kern[51]測(cè)定絕食情況下 LPL 活性發(fā)現(xiàn),TNF-α基因的表達(dá)量與LPL活性呈負(fù)相關(guān),而且體重減輕后,脂肪組織中TNF-α的濃度極顯著下降(P<0.01),LPL活性增加了41%(P<0.01)。Hauner等[52]也發(fā)現(xiàn),TNF-α 極顯著下調(diào)LPL的合成(P<0.01)。Memon等[53]研究發(fā)現(xiàn),TNF-α還抑制脂肪組織中FFA轉(zhuǎn)運(yùn)蛋白的基因表達(dá),從而阻斷FFA進(jìn)入脂肪細(xì)胞,另外還發(fā)現(xiàn),在脂質(zhì)形成過(guò)程中,TNF-α可以抑制脂肪合成相關(guān)酶(如ACC)基因的表達(dá)。黃丹文等[54]研究發(fā)現(xiàn),熱應(yīng)激極顯著降低大鼠血漿中TNF-α濃度(P<0.01),表明高溫可能通過(guò)抑制TNF-α的分泌,緩解其促進(jìn)分解和抑制合成的作用,并最終促進(jìn)脂肪的沉積。
在發(fā)育時(shí)間、脂肪合成能力和脂肪酸組成等方面,豬不同部位的脂肪存在差異。在采食量相同的情況下,環(huán)境高溫促進(jìn)皮下和內(nèi)臟脂肪的沉積,且內(nèi)臟脂肪增加幅度更大。環(huán)境高溫抑制脂肪和肝臟組織從頭合成脂肪酸的能力,但血漿中FFA和VLDL的濃度升高,脂肪組織LPL活性升高,推測(cè)環(huán)境高溫可能抑制了骨骼肌脂肪酸的氧化,導(dǎo)致更多的FFA在肝臟中重新合成為TG,以VLDL的形式運(yùn)送到脂肪組織,在LPL的作用下被脂肪組織攝取,最終促進(jìn)了脂肪的沉積。環(huán)境高溫可能通過(guò)降低豬血清中甲狀腺激素、生長(zhǎng)激素、胰島素、leptin和TNF-α等的濃度,調(diào)控脂肪代謝。但是環(huán)境高溫是否影響不同部位脂肪中相關(guān)激素和細(xì)胞因子受體的基因表達(dá),導(dǎo)致不同部位脂肪沉積的差異化還需進(jìn)一步研究。
[1]WOOD J D,ENSER M,MONCRIEFF C B,et al.Effects of carcass fatness and sex on the composition and quality of pig meat[C]//34th international con-gress of meat science and technology.Brisbane:[s.n.],1988:562-564.
[2]廉紅霞.豬肌內(nèi)脂肪代謝信息傳導(dǎo)途徑相關(guān)因子研究[D].博士學(xué)位論文.呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2007.
[3]FERNANDEZ X,MONIN G,TALMANT A,et al.Influence of intramuscular fat content on the quality of pig meat-1.Composition of the lipid fraction and sensory characteristics of m.longissimus lumborum[J].Meat Science,1999,53(1):59-65.
[4]HOVENIER R,KANIS E,VAN ASSELDONK T,et al.Genetic parameters of pig meat quality traits in a halothane negative population[J].Livestock Production Science,1992,32(4):309-321.
[5]徐漢進(jìn).熱應(yīng)激對(duì)巴馬香豬PBMC TLRs mRNA及TLRs介導(dǎo)的炎癥因子表達(dá)的影響[D].碩士學(xué)位論文.湛江:廣東海洋大學(xué),2010.
[6]MONZIOLS M,COLLEWET G,BONNEAU M,et al.Quantification of muscle,subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging[J].Meat Science,2006,72(1):146-154.
[7]劉作華,楊飛云,孔路軍,等.日糧能量水平對(duì)生長(zhǎng)育肥豬肌內(nèi)脂肪含量以及脂肪酸合成酶和激素敏感脂酶 mRNA表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2007,38(9):934-941.
[8]LEE Y B,KAUFFMAN R G.Cellular and enzymatic changes with animal growth in porcine intramuscular adipose tissue[J].Journal of Animal Science,1974,38(3):532-537.
[9]ANDERSON D B,KAUFFMAN R G.Cellular and enzymatic changes in porcine adipose tissue during growth[J].Journal of Lipid Research,1973,14(2):160-168.
[10]MOUROT J,KOUBA M,PEINIAU P.Comparative study of in vitro lipogenesis in various adipose tissues in the growing domestic pig(Sus domesticus)[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1995,111(3):379-384.
[11]MONZIOLS M,BONNEAU M,DAVENEL A,et al.Comparison of the lipid content and fatty acid composition of intermuscular and subcutaneous adipose tissues in pig carcasses[J].Meat Science,2007,76(1):54-60.
[12]CHRISTON R.The effect of tropical ambient temperature on growth and metabolism in pigs[J].Journal of Animal Science,1988,66(12):3112-3123.
[13]KATSUMATA M,KAJI Y,SAITOH M.Growth and carcass fatness responses of finishing pigs to dietary fat supplementation at high ambient temperature[J].Animal Science,1996,62(3):591-598.
[14]FITAS DA CRUZ V.Effect of season on the performance of growing-finishing pigs in relation to the number of pigs per pen and the dietary energy density[D].Ph.D.Thesis.Portugal:University of Evora,1997.
[15]LE DIVIDICH J,NOBLET J,BIKAWA T.Effect of environmental temperature and dietary energy concentration on the performance and carcass characteristics of growing-finishing pigs fed to equal rate of gain[J].Livestock Production Science,1987,17:235-246.
[16]KOUBA M,HERMIER D,LE DIVIDICH J.Influence of a high ambient temperature on stearoyl-CoA-desaturase activity in the growing pig[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1999,124(1):7-13.
[17]KOUBA M,HERMIER D,LE DIVIDICH J.Influence of a high ambient temperature on lipid metabolism in the growing pig[J].Journal of Animal Science,2001,79(1):81-87.
[18]LE DIVIDICH J,NOBLET J,HERPIN P,et al.Thermoregulation[M]//WISEMAN J,VARLEY M A,CHADWICK J P.Progress in pig science.Nottingham:Notingham University Press,1998:229-263.
[19]WITTE D P,ELLIS M,MCKEITH F K,et al.Effect of dietary lysine level and environmental temperature during the finishing phase on the intramuscular fat content of pork[J].Journal of Animal Science,2000,78(5):1272-1276.
[20]SUGAHAEA M,BAKER D H,HARMON B G,et al.Effect of ambient temperature on performance and carcass development in young swine[J].Journal of Animal Science,1970,31(1):59-62.
[21]O’HEA E K,LEVEILLE G A.Significance of adipose tissue and liver as sites of fatty acid synthesis in the pig and the efficiency of utilization of various substrates for lipogenesis[J].The Journal of Nutrition,1969,99(3):338-344.
[22]O'HEA E K,LEVEILLE G A.Lipid biosynthesis and transport in the domestic chick(Gallus domesticus)[J].Comparative Biochemistry and Physiology,1969,30(1):149-159.
[23]RINALDO D,LE DIVIDICH J.Effects of warm exposure on adipose tissue and muscle metabolism in growing pigs[J].Comparative Biochemistry and Physiology Part A:Physiology,1991,100(4):995-1002.
[24]GOUDRIAAN J R,SANTO S M S E,VOSHOL P J,et al.The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis[J].Journal of Lipid Research,2004,45(8):1475-1481.
[25]COLLIN A,VAZ M J,DIVIDICH J L.Effects of high temperature on body temperature and hormonal adjustments in piglets[J].Reproduction Nutrition Development,2002,42(1):45-54.
[26]CARMEN G Y,VíCTOR S M.Signalling mechanisms regulating biolysis[J].Cellular Signalling,2006,18(4):401-408.
[27]CHAYOTH R,KLEINMAN D,KAPLANSKI J,et al.Renal clearance of urea,inulin,and p-aminohippurate in heat-acclimated rats[J].Journal of Applied Physiology,1984,57(3):731-732.
[28]PAULAUSKIS J D,SUL H S.Hormonal regulation of mouse fatty acid synthase gene transcription in liver[J].Journal of Biological Chemistry,1989,264(1):574-577.
[29]YIN D,CLARKE S,PETERS J,et al.Somatotropindependent decrease in fatty acid synthase mRNA abundance in 3T3-F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability[J].Journal of Biological Chemistry,1998,331:815-820.
[30]MARPLE D N,ABERLE E D,F(xiàn)ORREST J C,et al.Effects of humidity and temperature on porcine plasma adrenal corticoids,ACTH and growth hormone levels[J].Journal of Animal Science,1972,34(5):809-812.
[31]PARKHIE M R,JOHNSON H D.Growth hormone releasing activity in the hypothalamus of rats subjected to prolonged heat stress[C]//Proceedings of the society for experimental biology and medicine.society for experimental biology and medicine.New York:Royal Society of Medicine,1969,130(3):843-847.
[32]YAMAGUCHI T,SAIKI A,ENDO K,et al.Effect of exercise performed at anaerobic threshold on serum growth hormone and body fat distribution in obese patients with type 2 diabetes[J].Obesity Research &Clinical Practice,2011,5(1):e9-e16.
[33]AHIMA R S.Adipose tissue as an endocrine organ[J].Obesity,2006,14:242S-249S.
[34]FRIEDMAN J M,HALAAS J L.Leptin and the regulation of body weight in mammals[J].Nature,1998,395:763-770.
[35]DRAZNIN B,LEWIS D,HOULDER N,et al.Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes[J].Endocrinology,1989,125(5):2341-2349.
[36]BARB C R.The brain-pituitary-adipocyte axis:role of leptin in modulating neuroendocrine function[J].Journal of Animal Science,1999,77(5):1249-1257.
[37]COLLINS S,KUHN C M,PETRO A E,et al.Role of leptin in fat regulation[J].Nature,1996,380:677.
[38]WARNE J P.Tumour necrosis factor α:a key regulator of adipose tissue mass[J].Journal of Endocrinology,2003,177(3):351-355.
[39]SUMIDA M,SEKIYA K,OKUDA H,et al.Inhibitory effect of tumor necrosis factor on gene expression of hormone sensitive lipase in 3T3-L1 adipocytes[J].Journal of Biochemistry,1990,107(1):1-2.
[40]鄭雪莉,李玉成,鞠大鵬,等.TNF-α對(duì)豬脂肪細(xì)胞脂肪分解及其相關(guān)基因轉(zhuǎn)錄表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2009,40(9):1290-1296.
[41]KRALISCH S,KLEIN J,LOSSNER U,et al.Isoproterenol,TNFα,and insulin downregulate adipose triglyceride lipase in 3T3-L1 adipocytes[J].Molecular and Cellular Endocrinology,2005,240(1):43-49.
[42]KIM J Y,TILLISON K,LEE J H,et al.The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-α in 3T3-L1 adipocytes and is a target for transactivation by PPARγ[J].American Journal of Physiology:Endocrinology and Metabolism,2006,291(1):E115-E127.
[43]GREEN A,DOBIAS S B,WALTERS D J,et al.Tumor necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase[J].Endocrinology,1994,134(6):2581-2588.
[44]TANSEY J,SZTALRYD C,HLAVIN E,et al.The central role of perilipin a in lipid metabolism and adipocyte lipolysis[J].IUBMB Life,2004,56(7):379-385.
[45]SOUZA S C,DE VARGAS L M,YAMAMOTO M T,et al.Overexpression of perilipin A and B blocks the ability of tumor necrosis factor α to increase lipol-ysis in 3T3-L1 adipocytes[J].Journal of Biological Chemistry,1998,273(38):24665-24669.
[46]RYDéN M,DICKER A,VAN HARMELEN V,et al.Mapping of early signaling events in tumor necrosis factor-α-mediated lipolysis in human fat cells[J].Journal of Biological Chemistry,2002,277(2):1085-1091.
[47]ZHANG H H,HALBLEIB M,AHMAD F,et al.Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP[J].Diabetes,2002,51(10):2929-2935.
[48]RYDéN M,ARVIDSSON E,BLOMQVIST L,et al.Targets for TNF-α-induced lipolysis in human adipocytes[J].Biochemical and Biophysical Research Communications,2004,318(1):168-175.
[49]LANGIN D,ARNER P.Importance of TNFα and neutral lipases in human adipose tissue lipolysis[J].Trends in Endocrinology&Metabolism,2006,17(8):314-320.
[50]STEPHENS J M,LEE J,PILCH P F.Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction[J].Journal of Biological Chemistry,1997,272(2):971-976.
[51]KERN P A.Potential role of TNF-α and lipoprotein lipase as candidate genes for obesity[J].The Journal of Nutrition,1997,127(9):1917S-1922S.
[52]HAUNER H,PETRUSCHKE T H,RUSS M,et al.Effects of tumour necrosis factor alpha(TNFα)on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture[J].Diabetologia,1995,38(7):764-771.
[53]MEMON R A,F(xiàn)EINGOLD K R,MOSER A H,et al.Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines[J].American Journal of Physiology:Endocrinology and Metabolism,1998,274(2):E210-E217.
[54]黃丹文,朱冬芳,任光圓.熱應(yīng)激誘導(dǎo)肝硬化大鼠細(xì)胞內(nèi)外HSP72表達(dá)及其對(duì)TNF-α分泌的影響[J].中國(guó)急救醫(yī)學(xué),2010,30(5):431-434.
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2014年3期