国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Notch通路及維甲酸與腎纖維化研究進(jìn)展

2014-02-12 08:55涂衛(wèi)平
天津醫(yī)藥 2014年9期
關(guān)鍵詞:維甲酸腎小管纖維化

杜 軒 涂衛(wèi)平

Notch通路及維甲酸與腎纖維化研究進(jìn)展

杜 軒 涂衛(wèi)平△

維甲酸(RA)對(duì)腎間質(zhì)纖維化(RIF)存在著重要的影響,Notch信號(hào)途徑在腎纖維化中發(fā)揮了關(guān)鍵作用,本文就維甲酸對(duì)腎纖維化與Notch通路的影響進(jìn)行綜述,探索維甲酸干預(yù)Notch途徑能否成為新的抗腎纖維化策略。

維甲酸;Notch信號(hào);腎間質(zhì)纖維化

目前,維甲酸(retinoic acid,RA)被廣泛用于血液科及皮膚科臨床,隨著對(duì)其更深入的研究,發(fā)現(xiàn)其可能具有非傳統(tǒng)的抗纖維化作用,初步推測(cè)是通過干預(yù)上皮間質(zhì)轉(zhuǎn)化(Epithelial-Mesenchymal Transition,EMT)而實(shí)現(xiàn),但具體是借助哪些機(jī)制通路尚不明確。在諸多信號(hào)途徑中,Notch通路與腎纖維化關(guān)系極為密切。國(guó)內(nèi)外針對(duì)腫瘤、發(fā)育領(lǐng)域及腎臟以外很多器官研究均提示RA夠干預(yù)Notch通路,同時(shí),人體腎臟表達(dá)著許多亞型的RA受體類別,故筆者推測(cè)RA對(duì)腎纖維化的影響可能與Notch及其相關(guān)蛋白有聯(lián)系。但Notch信號(hào)在腎纖維化發(fā)生發(fā)展中究竟發(fā)揮何種作用?RA又能干預(yù)Notch體系的哪些環(huán)節(jié)層面?RA能否成為抗腎硬化的前景藥物?上述問題均值得深入探討。

1 Notch信號(hào)轉(zhuǎn)導(dǎo)通路

Notch轉(zhuǎn)導(dǎo)途徑普遍存在于物種演進(jìn)過程當(dāng)中,作為一個(gè)高度保守的介導(dǎo)細(xì)胞-細(xì)胞相互之間通信的通道,廣泛調(diào)節(jié)細(xì)胞的增生、分化、凋亡及自噬,尤其在胚胎發(fā)育及腫瘤等領(lǐng)域中發(fā)揮關(guān)鍵作用,最初Notch于1917年從果蠅中發(fā)現(xiàn),根據(jù)該基因喪失某些功能突變?cè)诠壍某岚蛑芫壴斐伞叭笨獭保∟otche)而得名[1]。迄今已從果蠅、線蟲、Zebrefish、雞、鼠和及人細(xì)胞中分離到Notch同源型,4種Notch同源型分別為Notch-1、3、2及Notch-4(int-3),前3種能夠表達(dá)于諸多部位器官,特別是表達(dá)于腎、中樞神經(jīng)組織、胰、造血系統(tǒng)和牙組織等[2],Notch-4主要局限在巨噬系統(tǒng)及上皮細(xì)胞。

Notch信號(hào)成員包括有Notch Recepter、相應(yīng)配體、轉(zhuǎn)錄因子即胞內(nèi)效應(yīng)分子CSL[CBF1-Su(H)Lagl]、相關(guān)效應(yīng)物、其他的調(diào)控組分等,Notch受體蛋白為約300 ku的單鏈跨膜結(jié)構(gòu):涵蓋細(xì)胞外域(Extracellular Notch,ECN)、跨細(xì)胞膜域(Notch transmembrane,NTM)、細(xì)胞內(nèi)域(intracellular domain of Notch,ICN)[1]。與受體相對(duì)應(yīng)的Notch相關(guān)配合物存在多種類型[3],亦為單次跨膜蛋白,脊椎動(dòng)物里有兩種:Delta及Serrate;線蟲里為L(zhǎng)ag-2。Delta/Serrate/Lag2三者首字母連寫為DSL(故notch配體亦名DSL蛋白)。哺乳類存在多類Notch配體,迄今已明確人的5種Notch配體,分別為Jagged-l、2及Deltal 1、3、4。Notch信號(hào)通路的激活首先需要在ECN區(qū)S1位點(diǎn)裂解,Notch結(jié)合毗鄰細(xì)胞表面配體,隨即在S2位點(diǎn)又分解成兩個(gè)節(jié)段[4];其中的C末端裂解物又在跨膜NTM區(qū)S3處裂解,由此釋出活化狀態(tài)的Notch蛋白即NICD (Notch Intracellular Domain),最終由NICD入細(xì)胞核內(nèi)進(jìn)行信號(hào)轉(zhuǎn)導(dǎo),引發(fā)核CBF1、RBP-Jκ轉(zhuǎn)錄抑制子的“去抑制化”,以此來活化下游靶目標(biāo),例如堿性螺旋-環(huán)-螺旋類轉(zhuǎn)錄因子bHLH、HES(Hairy-Enhancer of Split)、果蠅E/Spl、XHeyl等[5]??傮w上,Notch受體途徑通過旁側(cè)抑制型(Homotypic-cellcell-Interactio)、誘導(dǎo)信號(hào)型(Heterotypic-cell-cell-Interaction)和信號(hào)自主型(Cell-Autonomous)三類形式發(fā)揮作用[3]。Notch轉(zhuǎn)導(dǎo)途徑特異性極為精確,無需借助“第二信使/蛋白激酶”系統(tǒng),針對(duì)毗鄰細(xì)胞的信號(hào)Notch采用“直接快速獲取”的方式快速轉(zhuǎn)導(dǎo)胞核,點(diǎn)對(duì)點(diǎn)地活化相應(yīng)轉(zhuǎn)錄因子[1],盡管其信號(hào)級(jí)聯(lián)擴(kuò)大的比率不高,但能很好地避免無關(guān)信號(hào)干擾,再加上Notch諸多配體同時(shí)并存,活化Notch信號(hào)后能夠激發(fā)配體相關(guān)許多類型轉(zhuǎn)導(dǎo)通路,網(wǎng)絡(luò)化的調(diào)控因子沿循各自機(jī)制制約Notch通路。

2 Notch通路與腎小管-間質(zhì)纖維化

2.1 Notch通路與經(jīng)典的促纖信號(hào)轉(zhuǎn)化生長(zhǎng)因子(TGF)-β 以往對(duì)Notch的研究集中在調(diào)控細(xì)胞生長(zhǎng)分化、增殖和凋亡以及神經(jīng)組織發(fā)育領(lǐng)域,近年Notch信號(hào)在腎內(nèi)學(xué)科的探索涉及腎小管-間質(zhì)纖維化、腎臟胚期發(fā)育、腎良惡性腫瘤、膜性腎?。╩embranous nephropathy)、系統(tǒng)性紅斑狼瘡(SLE)腎病、急進(jìn)性腎炎、人類免疫缺陷病毒(HIV)-相關(guān)腎損害、急性腎損傷修復(fù)等[6]。TGF-β1能活化Smad之外的通路,主要有迅速/遲發(fā)兩類作用型,Notch途徑屬于TGF-β1遲發(fā)活化的“non-Smad通道”。Aoyagi-Ikeda等[7]研究證實(shí)纖維化病理過程中,Notch轉(zhuǎn)導(dǎo)途徑是TGF-β介導(dǎo)α-平滑肌肌動(dòng)蛋白(α-SMA)、細(xì)胞外基質(zhì)(ECM)生成所必備的,Notch通路成員Jagged-l高表達(dá)可導(dǎo)致大鼠RLE-6TN上皮細(xì)胞高表達(dá)α-SMA。Bielesz等[8]通過大量體內(nèi)體外研究認(rèn)為Notch可以加速TGF-β1/Smad3蛋白質(zhì)的磷酸化修飾,同時(shí)提升α-SMA含量,不僅如此,還使肌動(dòng)蛋白的積聚加強(qiáng)、改塑細(xì)胞微管微絲骨架系統(tǒng),進(jìn)而引起小管基底膜(GBM)受損,最終使得肌成纖維細(xì)胞浸襲加強(qiáng)并轉(zhuǎn)至間質(zhì),隨之產(chǎn)生過量基質(zhì)并聚積。Matsuno等[9]實(shí)驗(yàn)證實(shí),Notch途徑是借助其成員Snail-1來調(diào)控TGF-β介導(dǎo)的促纖過程,TGF-β1和血管緊張素(Ang)-Ⅱ聯(lián)合誘導(dǎo)腎間質(zhì)纖維過程中證實(shí)Snail是Notch途徑的下游調(diào)節(jié)性的靶基因[10]。腎小管上皮細(xì)胞缺血-再灌注/過氧化損傷可以誘發(fā)Notch信號(hào)途徑激活,這可能與核因子(NF)-κB及TGF-β有關(guān)[11]。輸尿管梗阻大鼠UUO模型其腎小管上皮細(xì)胞Jagged-1、Jagged-2、Notch-l、Notch-3及Notch-4的表達(dá)顯著升高,TGF-β1能夠使人的腎小管上皮細(xì)胞Jagged-1過表達(dá),而激活的Notch-1則可以結(jié)合α-SMA基因啟動(dòng)子,誘導(dǎo)且加劇α-SMA相關(guān)的轉(zhuǎn)錄,進(jìn)而引起胞內(nèi)α-SMA表達(dá)急劇增高。Blokzijl等[12]利用多項(xiàng)體外、體內(nèi)研究證實(shí)Notch和TGF-β兩通路之間存在有大量“Crosstalk串話”,TGF-β活化升高DNA結(jié)合蛋白HES-1,但此效應(yīng)能被CSL阻滯(CSL正是Notch途徑中結(jié)合DNA的部分),經(jīng)歷Notch途徑的NCID胞內(nèi)結(jié)合部分及信號(hào)轉(zhuǎn)導(dǎo)蛋白Smda3發(fā)生效應(yīng)后,TGF-β介導(dǎo)CSL與信號(hào)轉(zhuǎn)導(dǎo)蛋白Smda3生成多聚物,調(diào)控HES-1,當(dāng)Notch信號(hào)在核內(nèi)活化的轉(zhuǎn)錄因子CSL (CBF-1,Suppressor of hairless,Lag的合稱)與NCID多聚物共存時(shí),信號(hào)轉(zhuǎn)導(dǎo)蛋白Smad3同CSL發(fā)生效應(yīng)進(jìn)而取代DNA上的CSL/NCID靶位,充分證明Notch途徑與TGF-β1通路借助胞內(nèi)“蛋白-蛋白”轉(zhuǎn)導(dǎo)的反應(yīng)元件相互作用。

隨著研究的深入,2013年Liu等[13]研究鼠系膜細(xì)胞也觀察到了Notch轉(zhuǎn)導(dǎo)途徑是依賴TGF-β1從而起效的,并且這一過程和糖尿病腎損害中的纖維化緊密相關(guān)。Nyhan等[14]相繼證實(shí)了Notch和TGF-β1信號(hào)在腎間質(zhì)纖維化(RIF)過程中存在著諸多相互交叉的片段,Notch通道特異性阻滯物“γ-分泌酶阻斷劑”能夠消除TGF-β1介導(dǎo)的近端腎小管上皮產(chǎn)生轉(zhuǎn)分化過程,TGF-β1及轉(zhuǎn)分化有關(guān)基因亦被γ-分泌酶阻斷劑所阻滯,值得注意的是TGF-β1介導(dǎo)α-SMA生成的功能亦被消除(同時(shí)TGF-β1其他靶基因并未產(chǎn)生改變);相反,如果給予腎小管上皮細(xì)胞TGF-β1,24 h發(fā)現(xiàn)胞內(nèi)E-cadherin蛋白及mRNA低表達(dá),與此同時(shí)α-SMA、Notch-1的蛋白質(zhì)和其mRNA含量隨之升高,而整個(gè)過程N(yùn)otch-1含量的升高會(huì)呈時(shí)間依賴性[15]。2011年,Sj?lund等[16]研究腎腫瘤時(shí)發(fā)現(xiàn),阻遏Notch途徑后,TGF-β的傳導(dǎo)也受到阻遏;用siRNA沉默Notch的方法或是用Notch信號(hào)阻滯劑,都可以阻遏TGF-β1誘導(dǎo)的腎間質(zhì)纖維化。Mendelson等[17]在食管也觀察到TGF-β通路異常的同時(shí)往往Notch轉(zhuǎn)導(dǎo)也會(huì)異常激活,Notch通路并非一直為線性化的,并非均單純是因某條通道級(jí)聯(lián)轉(zhuǎn)導(dǎo)完成,從分子層面上來說,Notch及其他通道互相存在Crosstalk對(duì)話,甚至為網(wǎng)絡(luò)形式。除了TGF-β信號(hào),Notch通路還可能與腎纖維化相關(guān)的Shh(Sonic HedgeHog)、Wnt/β-catenin、Ras、EGFR、VEGF等信號(hào)通路共同調(diào)節(jié)發(fā)揮作用[18]。

2.2 Notch信號(hào)與腎小管EMT 腎小管上皮-肌成纖維細(xì)胞轉(zhuǎn)分化是腎纖維化重要的機(jī)制環(huán)節(jié),Russell等[19]提取了原代的肌成纖維細(xì)胞,觀察到Notch信號(hào)成員蛋白Jagged-l顯著增多。Sassoli等[20]發(fā)現(xiàn)Notch途徑活化所引起細(xì)胞的變化與發(fā)生間充質(zhì)-轉(zhuǎn)分化細(xì)胞的變化極為一致,類似諸多實(shí)驗(yàn)亦提示Notch信號(hào)和腎纖維化關(guān)系極為密切:Notch-Jagged1與TGF-β1-Smad3聯(lián)合誘導(dǎo)其下游轉(zhuǎn)錄抑制因子Hey-l,激活的Notch-1節(jié)段NICD能夠引發(fā)“轉(zhuǎn)錄遏制體Snail”顯著升高表達(dá),進(jìn)而Snail結(jié)合E-cadherin促進(jìn)因子從而阻遏其活性,最終降低E-cadherin表達(dá)并減少“細(xì)胞間接觸抑制”,通過上述環(huán)節(jié)而促進(jìn)EMT過程的發(fā)生發(fā)展,高表達(dá)Notch-1鼠很快發(fā)生大量的蛋白尿、腎臟硬化、終末期ESRD腎衰竭最終導(dǎo)致死亡。Saad等[21]阻滯Notch轉(zhuǎn)導(dǎo)后發(fā)現(xiàn)下調(diào)了小管上皮Snail蛋白,在加速E-cadherin生成的同時(shí)下調(diào)α-SMA,由此遏制小管上皮EMT分化為肌成纖維細(xì)胞。2011年,國(guó)內(nèi)劉琳豐等[22]通過類似研究認(rèn)為,Notch-1蛋白及mRNA水平同E-cadherin為負(fù)性相關(guān)性,但同α-SMA為正性相關(guān)性。Bielesz等[8]借助基因敲除等多種手段發(fā)現(xiàn),激活Notch途徑能夠使腎臟小管間質(zhì)發(fā)生纖維化,但敲除Notch的鼠或阻遏Notch通路,則腎小管不會(huì)纖維化。Huang等[23]利用缺血再灌注損傷動(dòng)物模型(即IRI模型)研究發(fā)現(xiàn)Notch途徑活化能夠誘發(fā)白細(xì)胞介素-6、單核細(xì)胞趨化蛋白-1(MCP-1)、腫瘤壞死因子-α、NF-κB等多種炎癥因子高表達(dá);除此之外,以Notch-1和相應(yīng)配合物Jagged-1為媒介,TGF-β1還能夠加劇Slug(另外一種轉(zhuǎn)錄抑制體)表達(dá),從而降低胞內(nèi)E-cadherin蛋白的含量,從另一方面惡化了EMT的進(jìn)展。除了小管EMT過程,足細(xì)胞中Notch通路與足細(xì)胞的凋亡、產(chǎn)生蛋白尿也緊密相連,提示Notch信號(hào)可能還參與了腎小球硬化。針對(duì)腎科腹膜透析患者,Zhu等[24]發(fā)現(xiàn)Notch通路參與腹膜纖維化的發(fā)生與發(fā)展,Jagged-l、Notch-l、HES-1顯著增高,給予γ-分泌酶阻斷劑阻遏Notch轉(zhuǎn)導(dǎo)途徑會(huì)明顯緩解腹膜纖維化。Lin等[25]發(fā)現(xiàn)糖尿病鼠的腎損害過程中伴隨Notch信號(hào)過表達(dá),進(jìn)一步研究認(rèn)為這種Notch活化的原因可能與血管內(nèi)皮生長(zhǎng)因子(VEGF)、高糖及局部血液流變學(xué)有關(guān)。

除腎臟的EMT以外,在全身諸多部位同樣發(fā)現(xiàn)類似的Notch通路加劇EMT。Aoyagi-Ikeda等[7]在研究肺的“內(nèi)皮-肌成纖維細(xì)胞轉(zhuǎn)化”過程中證實(shí)Notch是經(jīng)過激活TGF-β/ Smad3信號(hào)來完成的。2010年Kavian等[26]為探索Notch轉(zhuǎn)導(dǎo)途徑與EMT-纖維化的聯(lián)系,研究了硬皮病患者皮膚并構(gòu)建小鼠次氯酸致硬皮病模型,從中明顯觀察到了Notch轉(zhuǎn)導(dǎo)激活,且用γ-分泌酶阻斷劑可以緩解皮膚及肺纖維化。此外,已知能延緩心腎纖維化的AngⅡ受體阻滯劑能夠阻遏Notch信號(hào)并降低Jagged-1、Notch-1、Hey-1和HES-1的 含量[27]。

3 RA及Notch通路與腎纖維化

3.1 全反式維甲酸(atRA)緩解腎纖維化 atRA是維生素(VitA)的代謝衍生物,作為急性-早幼粒細(xì)胞性血液腫瘤的治療藥物已廣泛用于血液科臨床[28]。隨著學(xué)科交叉的發(fā)展,近年來RA在腎臟病中的前景越來越受到研究者們的關(guān)注,發(fā)現(xiàn)其對(duì)多種腎病動(dòng)物模型都有保護(hù)作用[29],特別是針對(duì)腎小管上皮細(xì)胞間充質(zhì)轉(zhuǎn)分化[30]。2011年,Kishimoto等[31]構(gòu)建單側(cè)輸尿管梗阻UUO小鼠腎纖維化模型,共分為3組:?jiǎn)渭僓UO組、預(yù)先給予RA 3 d的UUO組和UUO建模后給予3 d RA組,最終觀察到給予了RA的2組腎小管-間質(zhì)區(qū)炎癥細(xì)胞浸潤(rùn)均明顯緩解,α-SMA、Col-I、TGF-β1、MCP-1等標(biāo)志物均下調(diào),RA顯示出良好的抗纖作用。同年,Liu等[32]將atRA給予大鼠腎5/6切除模型,短期內(nèi)便緩解了模型鼠的腎硬化,而且使鼠過高的血壓降低,顯著提高了腎功能,尤其是PAI-1和α-SMA這兩項(xiàng)指標(biāo)得到逆轉(zhuǎn)。Hu等[33]研究發(fā)現(xiàn)atRA還可以使基質(zhì)金屬蛋白酶(MMP)-2、MMP-9等活性增強(qiáng),使金屬蛋白酶組織抑制因子(TIMP)-1下調(diào),使腎小管周圍炎細(xì)胞數(shù)目降低,緩解了小管壞死,減輕小管擴(kuò)張程度,Masson病理染片后發(fā)現(xiàn)視野纖維化面積變小,免疫組化結(jié)果也反映出纖維化指標(biāo)下降。2011年,Zhou等[34]證實(shí)atRA能通過使載脂蛋白(apo)E減少進(jìn)而減少ECM,加快降解ECM,大大緩解大鼠腎間質(zhì)纖維化和球硬化;2012年他們進(jìn)一步發(fā)現(xiàn)atRA通過上調(diào)腎抗增殖蛋白Prohibitin,使TGF-β1、 ROS、α-SMA、Col-IV、fibronectin、cleaved caspase-3等指標(biāo)下調(diào)[29]。Woo等[35]針對(duì)41例由病理確診為Ig-A腎病患者進(jìn)行了一項(xiàng)隨機(jī)對(duì)照研究(RCT),干預(yù)組給以血管緊張素轉(zhuǎn)化酶抑制劑(ACEI)+atRA治療,嚴(yán)密追蹤3個(gè)月,結(jié)果顯示,RA+ ACEI能有效緩解蛋白尿,延緩腎功惡化,后續(xù)的實(shí)驗(yàn)進(jìn)一步顯示單用RA就能改善終末期腎臟病(ESRD)。國(guó)內(nèi)崔英春等[36]已嘗試使用atRA來治療2型糖尿病腎損害,通過改善腎濾過系統(tǒng)緩解蛋白尿,逆轉(zhuǎn)間質(zhì)基質(zhì)堆積,減慢ESRD惡化進(jìn)展。

3.2 RA與Notch信號(hào)通路 在腫瘤、發(fā)育及腎臟以外許多器官研究均觀察到RA可以干預(yù)Notch通路,再加上腎自身表達(dá)相當(dāng)多種Notch及RA受體亞型,筆者推測(cè)RA對(duì)RIF的干預(yù)與Notch有聯(lián)系,目前研究主要還是圍繞維甲酸核受體與Notch進(jìn)行的[37],包括維甲酸受體(RAR)、視黃醇XRecepter(RXR)兩種[38]。Thélu等[39]研究認(rèn)為 RA能促進(jìn)Notch信號(hào)通路中Fringe基的轉(zhuǎn)錄,而Fringe基因編碼的產(chǎn)物作用恰恰是抑制Notch的活化,可見RA是借助影響這些基因的表達(dá)進(jìn)而調(diào)控Notch轉(zhuǎn)導(dǎo)。2010年,國(guó)內(nèi)鐘德君等[40]在鼠神經(jīng)干細(xì)胞向神經(jīng)誘導(dǎo)分化研究中添加5×10-7mol/L的RA,隨即Notch-1蛋白呈現(xiàn)遞減曲線,Notch-1的時(shí)間與空間改變和分化進(jìn)程顯著相關(guān),提示RA能多層面多角度干預(yù)Notch信號(hào)通路,負(fù)性調(diào)控Notch,使其低表達(dá),借此激活下游靶標(biāo),促進(jìn)神經(jīng)干細(xì)胞向神經(jīng)轉(zhuǎn)化;在腎纖維化中,RA能減少巨噬細(xì)胞所釋放的前炎癥介質(zhì)及致纖因子:如血小板衍生因子(PDGF)-β及其受體、趨化因子、白介素-1、胰島素樣生長(zhǎng)因子(IGF)和表皮生長(zhǎng)因子受體(EGFR)等。Zhou等[41]在體外培養(yǎng)的胸腺細(xì)胞中發(fā)現(xiàn),RA受體的活化能阻遏Notch-1相關(guān)mRNA的表達(dá),使Notch信號(hào)活性下調(diào),但上述這種抑制作用不能完全被RAR-α受體特異性拮抗劑所拮抗,說明RA對(duì)Notch-l mRNA表達(dá)的干預(yù)并不完全是通過RAR-α受體途徑,可能通過其他RA受體途徑[42],但目前尚無可靠證據(jù)證實(shí)Notch-1基因的相關(guān)啟動(dòng)子附近包含“RA作用元件RARE”,故RA調(diào)節(jié)Notch-l的mRNA表達(dá)尚不能肯定是直接作用,RAR很可能借助干預(yù)Notch-1下游基因或與Notch-1相關(guān)的其他一些分子蛋白,進(jìn)而間接影響Notch通道。值得一提的是,還有部分與上述相反的結(jié)論,顯示RA與Notch途徑存在相互反饋?zhàn)饔?。Murata-Ohsawa等[43]就報(bào)道了Notch信號(hào)活化可“正反雙向”影響RA誘導(dǎo)細(xì)胞的生物學(xué)行為。Ono等[44]針對(duì)肌成纖維細(xì)胞也證實(shí)Notch-2能夠負(fù)向控制TGF-β介導(dǎo)的促纖過程。RA干預(yù)Notch信號(hào)還受諸多因素的影響,例如不同部位RAR/RXA或者RXR/RXR受體分布的比例、黏附因子水平及活性不同、Notch信號(hào)成員分子亞型不同,因?yàn)槟I臟本身表達(dá)的RA受體亞型有多種,且RAR和RXR還受到輔激活因子與輔抑制因子調(diào)控,再加上RA同其他核受體一樣還受到諸多生長(zhǎng)因子及激素調(diào)節(jié),故RA干預(yù)Notch通路的具體機(jī)制還有待于進(jìn)一步研究[45]。

4 結(jié)語及展望

除腎纖維化以外,Notch信號(hào)同肝、皮膚、肺等諸多器官纖維化/硬化均緊密相關(guān)??傮w來看,當(dāng)腎臟處于急性或慢性病損時(shí),往往啟動(dòng)Notch通路的過表達(dá)與激活,而這種高表達(dá)或許和腎小管的自我修復(fù)機(jī)制有聯(lián)系,有弊亦有利,Sirin等[46]的研究也支持這一觀點(diǎn)。目前,RA干預(yù)Notch的實(shí)驗(yàn)包括機(jī)制方面的推測(cè)大都引申自除腎臟以外的其他器官(且體外研究居多),專門針對(duì)腎小管上皮細(xì)胞Notch的RA實(shí)驗(yàn)?zāi)壳皣?guó)內(nèi)外均較少,不同部位器官、時(shí)相各異的組織、細(xì)胞行為的共性及受體分布上難免存在差異。Notch轉(zhuǎn)導(dǎo)途徑還和腎小球硬化(包括FSGS)、PAN腎病、足細(xì)胞損害等諸多腎病密切相關(guān)[5]。對(duì)Notch信號(hào)調(diào)控機(jī)制的深入研究,將有助于進(jìn)一步揭示腎纖維化的發(fā)病機(jī)制,嘗試為臨床延緩或阻止終末期腎病提供可能的新靶位。

[1]Wang HY,Huang YX,Qi YF,et al.Mathematical models for the notch and wnt signaling pathways and the crosstalk between them during somitogenesis[J].Theor Biol Med Model,2013,10(1):27. doi:10.1186/1742-4682-10-27.

[2]Grieselhuber NR,Klco JM,Verdoni AM,et al.Notch signaling in acute promyelocytic leukemia[J].Leukemia,2013,27(7):1548-1557.doi:10.1038/leu.2013.68.

[3]Sanchez-Ni?o MD,Ortiz A.Notch3 and kidney injury:never two without three[J].J Pathol,2012,228(3):266-273.doi:10.1002/ path.4101.

[4]Main H,Radenkovic J,Jin SB,et al.Notch signaling maintains neural rosette polarity.[J].PLoS One,2013,8(5):62959.doi:10.1371/ journal.pone.0062959.

[5]Sharma S,Sirin Y,Susztak K.The story of notch and chronic kidney disease[J].Curr Opin Nephrol Hypertens,2011,20(1):56.doi: 10.1097/MNH.0b013e3283414c88.

[6]Murea M,Park JK,Sharma S,et al.Expression of notch pathway proteins correlates with albuminuria,glomerulosclerosis,and renal function[J].Kidney Int,2010,78(5):514-522.doi:10.1038/ ki.2010.172.

[7]Aoyagi-Ikeda K,Maeno T,Matsui H,et al.Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factorβ-Smad3 pathway[J].Am J Respir Cell Mol Biol,2011, 45(1):136-144.doi:10.1165/rcmb.2010-0140OC.

[8]Bielesz B,Sirin Y,Si H,et al.Epithelial notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans [J].J Clin Invest,2010,120(11):4040-4054.doi:10.1172/ JCI43025.

[9]Matsuno Y,Coelho AL,Jarai G,et al.Notch signaling mediates tgfβ1-induced epithelial-mesenchymal transition through the induction of snai1[J].Int J Biochem Cell Biol,2012,44(5):776-789.doi: 10.1016/j.biocel.

[10]Wang Y,Shi J,Chai K,et al.The role of snail in emt and tumorigenesis[J].Curr Cancer Drug Targets,2013,10:29.

[11]Zeng Q,Song R,Ao L,et al.Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of erk1/2 and nuclear factor-κB activation[J].Arterioscler Thromb Vasc Biol,2013,33(7):1580-1590.doi:10.1161/ATVBAHA. 112.300912.

[12]Blokzijl A,Dahlqvist C,Reissmann E,et al.Cross-talk between the notch and tgf-beta signaling pathways mediated by interaction of the notch intracellular domain with Smad3[J].J Cell Biol,2003,163 (4):723-728.

[13]Liu L,Gao C,Chen G,et al.Notch signaling molecules activate tgfβ in rat mesangial cells under high glucose conditions[J].J Diabetes Res,2013,2013:979702.doi:10.1155/2013/979702.

[14]Nyhan KC,Faherty N,Murray G,et al.Jagged-notch signalling is required for a subset of tgfβ 1 responses in human kidney epithelial cells[J].Biochim Biophys Acta,2010,1803(12):1386-1395.doi: 10.1016/j.bbamcr.2010.09.001.

[15]Ohashi S,Natsuizaka M,Naganuma S,et al.A notch3-mediated squamous cell differentiation program limits expansion of emt-competent cells that express the zeb transcription factors[J].Cancer Res,2011,71(21):6836-6847.doi:10.1158/0008-5472.CAN-11-0846.

[16]Sj?lund J,Bostr?m AK,Lindgren D,et al.The notch and tgfβ signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma[J].PloS One,2011,6(8):23057.doi:10.1371/journal. pone.0023057.

[17]Mendelson J,Song S,Li Y,et al.Dysfunctional transforming growth factor-β signaling with constitutively active notch signaling in barrett's esophageal adenocarcinoma[J].Cancer,2011,117(16):3691-3702.doi:10.1002/cncr.25861.

[18]Funahashi Y,Shawber CJ,Sharma A,et al.Notch modulates vegf action in endothelial cells by inducing matrix metalloprotease activity[J]. Vascular cell,2011,3(1):1-13.doi:10.1186/2045-824X-3-2.

[19]Russell SB,Russell JD,Trupin KM,et al.Epigenetically altered wound healing in keloid fibroblasts[J].J Invest Dermatol,2010,130 (10):2489-2496.doi:10.1038/jid.2010.162.

[20]Sassoli C,Chellini F,Pini A,et al.Relaxin prevents cardiac fibroblast-myofibroblast transition via notch1-mediated inhibition of tgf-β-smad3 signaling[J].PloS One,2013,8(5):63896.doi: 10.1371/journal.pone.0063896.

[21]Saad S,Stanners SR,Yong R,et al.Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the snail transcription factor[J].Int J Biochem Cell Biol, 2010,42(7):1115-1122.doi:10.1016/j.biocel.2010.03.016.

[22]Liu LF,Chen M,JIN LX,et al.The expression and significance of Notch1 in the human kidney tubular cell transdifferentiation induced by TGF-β1[J].Chinese Journal of Cellular and Molecular Immunology,2011,27(10):1068-1071.[劉琳豐,陳明,金立新,等. Notch1在TGF-β誘導(dǎo)的人腎小管上皮細(xì)胞轉(zhuǎn)分化中的表達(dá)和意義[J].細(xì)胞與分子免疫學(xué)雜志,2011,27(10):1068-1071.]

[23]Huang R,Zhou Q,Veeraragoo P,et al.Notch2/hes1 pathway plays an important role in renal ischemia and reperfusion injury-associated inflammation and apoptosis and the γ-secretase inhibitor dapt has a nephroprotective effect[J].Ren Fail,2011,33(2):207-216. doi:10.3109/0886022X.2011.553979.

[24]Zhu F,Li T,Qiu F,et al.Preventive effect of notch signaling inhibition by a γ-secretase inhibitor on peritoneal dialysis fluid induced peritoneal fibrosis in rats[J].Am J Pathol,2010,176(2):650-659.doi:10.2353/ajpath.2010.090447.

[25]Lin CL,Wang FS,Hsu YC,et al.Modulation of notch1 signaling alleviates vascular endothelial growth factor mediated diabetic nephropathy[J].Diabetes,2010,59(8):1915-1925.doi:10.2337/ db09-0663.

[26]Kavian N,Servettaz A,Mongaret C,et al.Targeting adam-17/notch signaling abrogates the development of systemic sclerosis in a murine model[J].Arthritis Rheum,2010,62(11):3477-3487.doi: 10.1002/art.27626.

[27]You J,Wu J,Jiang G,et al.Olmesartan attenuates cardiac remodeling through DLL4/Notch1 pathway activation in pressure overload mice[J].J Cardiovasc Pharmacol,2013,61(2):142-151.doi: 10.1097/FJC.0b013e31827a0278.

[28]Zhang L,Zhou TB,Qin YH.Effect of all-trans retinoic acid on unilateral ureteral obstruction model[J].Nephrology(Carlton),2012,17 (5):521.doi:10.1111/j.1440-1797.2011.01556.x.

[29]Zhou TB,Qin YH,Li ZY,et al.All-trans retinoic Acid treatment is associated with prohibitin expression in renal interstitial fibrosis rats [J].Int J Mol Sci,2012,13(3):2769-2782.

[30]Li ZY,Zhou TB,Qin YH,et al.All-trans retinoic acid attenuates the renal interstitial fibrosis lesion in rats but not by transforming growth factor-β1/smad3 signaling pathway[J].Ren Fail,2013,35 (2):262-267.doi:10.3109/0886022X.2012.745120.

[31]Kishimoto K,Kinoshita K,Hino S,et al.Therapeutic effect of retinoic acid on unilateral ureteral obstruction model[J].Nephron Exp Nephrol,2011,118(3):69-78.doi:10.1159/000322409.

[32]Liu X,Lü L,Tao BB,et al.Amelioration of glomerulosclerosis with all-trans retinoic acid is linked to decreased plasminogen activator inhibitor1 and α-smooth muscle actin[J].Acta Pharmacol Sin, 2011,32(1):70-78.doi:10.1038/aps.2010.200.

[33]Hu P,Qin YH,Pei J,et al.Amelioration of glomerulosclerosis inoic acid on glomerulosclerosis rats via the down regulation of the expression of α-smooth muscle actin:A comparative study between atra and benazepril[J].Exp Mol Pathol,2010,89(1):51-57.doi: 10.1016/j.yexmp.2010.05.003.

[34]Zhou TB,Qin YH,Lei FY,et al.All-trans retinoic acid regulates the expression of apolipoprotein E in rats with glomerulosclerosis induced by Adriamycin[J].Exp Mol Pathol,2011,90(3):287-294. doi:10.1016/j.yexmp.2011.03.001.

[35]Woo KT,Lau YK,Wong KS,et al.ACEI/ATRA therapy decreases proteinuria by improving glomerular permselectivity in IgA nephritis [J].Kidney Int,2000,58(6):2485-2491.

[36]Cui YC,Xu F,Zhou WH,et al.The influence from all trans retinoic acid to MCP-1 in type 2 diabetic patients with nephropathy urine [J].Chinese Journal of Gerontology,2010,30(2):165-167.[崔英春,徐鋒,周文華,等.全反式維甲酸對(duì)2型糖尿病腎病患者尿蛋白和單核細(xì)胞趨化蛋白-1的影響[J].中國(guó)老年學(xué)雜志,2010, 30(2):165-167.]

[37]Beijer MR,Molenaar R,Goverse G,et al.A crucial role for retinoic acid in the development of Notch dependent murine splenic CD8-CD4-and CD4+dendritic cells[J].Eur J Immunol,2013,43(6): 1608-1616.doi:10.1002/eji.201343325.

[38]Long YB,Qin YH,Zhou TB,et al.Association of retinoic acid receptors with extracellular matrix accumulation in rats with renal interstitial fibrosis disease[J].Int J Mol Sci,2012,13(11):14073-14085.doi:10.3390/ijms131114073.

[39]Thélu J,Viallet JP,Dhouailly D.Differential expression pattern of the three fringe genes is associated with epidermal differentiation [J].J Invest Dermatol,1998,111(5):903-906.

[40]Zhong DJ,Kang M,Wang Q,et al.Expression and effect of notch1 during the rat embryonic neural stem cells differentiating into neurons induced by all-trans-retinoic acid in vitro[J].Shandong Medical Journal,2010,50(20):12-13.[鐘德君,康敏,王清,等.ATRA誘導(dǎo)鼠胚神經(jīng)干細(xì)胞向神經(jīng)元分化過程中Notch1的表達(dá)變化及意義[J].山東醫(yī)藥,2010,50(20):12-13.]

[41]Zhou X,Wang W,Yang Y.The expression of retinoic acid receptors in thymus of young children and the effect of all-trans retinoic acid on the development of T cells in thymus[J].J Clin Immunol,2008, 28(1):85-91.

[42]Zhou TB,Drummen GP,Jiang ZP,et al.Association of peroxisome proliferators activated receptors/retinoic acid receptors with renal diseases[J].J Recept Signal Transduct Res,2013,9(19):1-4.doi: 10.3109/10799893.2013.838786.

[43]Murata-Ohsawa M,Tohda S,Kogoshi H,et al.The Notch ligand, delta-1,alters retinoic acid induced neutrophilic differentiation into monocytic and reduces RA-induced apoptosis in NB4 cells[J]. Leuk Res,2005,29(2):197-203.

[44]Ono Y,Sensui H,Okutsu S,et al.Notch-2 negatively regulates myofibroblastic differentiation of myoblasts[J].J Cell Physiol,2007,210 (2):358-369.

[45]Rankin AC,Hendry BM,Corcoran JP,et al.An in vitro model for the profibrotic effects of retinoids:mechanisms of action[J].Br J Pharmacol,2013,170(6):1177-1189.doi:10.1111/bph.12348.

[46]Sirin Y,Susztak K.Notch in the kidney:development and disease [J].J Pathol,2012,226(2):394-403.doi:10.1002/path.2967.

(2013-11-19收稿 2014-05-23修回)

(本文編輯 陳麗潔)

Notch Signaling in Renal Interstitial Fibrosis and Retinoic Acid

DU Xuan,TU Weiping△
Department of Nephrology,the Second Affiliated Hospital of Medical College of Nanchang University, Nanchang 330006,China

E-mail:tuweiping6102@sina.com

The effect of retinoic acid(RA)on renal interstitial fibrosis(RIF)is important.Notch signaling is known to play an important role in the pathological injury of RIF.This study summarized recent research progress of the effect of RA on RIF and Notch signaling.Interruption of Notch signaling by RA might be a potential anti-fibrotic strategy in RIF.

retinoic acid;Notch signaling;renal interstitial fibrosis

R692

A

10.3969/j.issn.0253-9896.2014.09.031

南昌大學(xué)第二附屬醫(yī)院腎內(nèi)科(郵編330006)△審校者及通訊作者 E-mail:tuweiping6102@sina.com

猜你喜歡
維甲酸腎小管纖維化
肝纖維化無創(chuàng)診斷研究進(jìn)展
血管緊張素Ⅱ誘導(dǎo)腎小管上皮細(xì)胞Toll樣受體4和炎癥因子表達(dá)
新纖維化相關(guān)因子SFTPA2在梗阻性腎組織中表達(dá)及與腎纖維化之間關(guān)系的研究
依帕司他對(duì)早期糖尿病腎病腎小管功能的影響初探
腎纖維化的研究進(jìn)展
IgA腎病患者血清胱抑素C對(duì)早期腎小管間質(zhì)損害的預(yù)測(cè)作用
細(xì)胞因子在慢性腎缺血與腎小管-間質(zhì)纖維化過程中的作用
維甲酸與亞砷酸雙誘導(dǎo)結(jié)合化療治療急性早幼粒細(xì)胞白血病的臨床效果
服用維甲酸的年輕人要避孕
中西醫(yī)結(jié)合治療慢性乙型肝炎肝纖維化66例