張嬋娟,溫紅梅
運(yùn)動功能與腦缺血后錐體束重塑的關(guān)系①
張嬋娟,溫紅梅
運(yùn)動功能障礙是腦梗死后主要的問題之一。皮質(zhì)梗死部位和梗死體積對運(yùn)動功能的影響不大,而白質(zhì)通路,特別是錐體束損傷對運(yùn)動功能有重要影響。運(yùn)動功能恢復(fù)與梗死灶對側(cè)皮質(zhì)神經(jīng)通路的重塑密切相關(guān);健側(cè)錐體束軸突出芽并生長至對側(cè)白質(zhì)可促進(jìn)腦缺血后運(yùn)動功能恢復(fù)。運(yùn)動訓(xùn)練及其他康復(fù)因子可對腦缺血后錐體束神經(jīng)纖維重塑發(fā)揮作用。
腦缺血;錐體束;運(yùn)動功能;康復(fù);綜述
[本文著錄格式]張嬋娟,溫紅梅.運(yùn)動功能與腦缺血后錐體束重塑的關(guān)系[J].中國康復(fù)理論與實(shí)踐,2014,20(1):49-52.
腦白質(zhì)幾乎占成人腦體積的一半,連接皮質(zhì)、皮質(zhì)下結(jié)構(gòu)和相關(guān)功能腦區(qū),構(gòu)成完整的神經(jīng)網(wǎng)絡(luò)。其中錐體束起于大腦皮質(zhì)錐體細(xì)胞,在離開大腦皮質(zhì)之后,行經(jīng)內(nèi)囊后部、大腦腳中部、腦橋基底部至延髓錐體;在其后部大部分纖維進(jìn)行交叉,稱為皮質(zhì)脊髓外側(cè)束,在脊髓白質(zhì)外側(cè)索下行,可達(dá)脊髓末端;部分纖維不交叉,稱為皮質(zhì)脊髓腹側(cè)束,在同側(cè)脊髓白質(zhì)腹側(cè)索下行,僅達(dá)脊髓頸部和上胸部。錐體束主要傳導(dǎo)、啟動與控制隨意運(yùn)動,尤其是精細(xì)運(yùn)動的神經(jīng)沖動,管理軀干和四肢骨骼肌的隨意運(yùn)動,特別是四肢遠(yuǎn)端的精細(xì)活動。
腦缺血后,腦白質(zhì)神經(jīng)纖維密度下降,髓鞘脫失,出現(xiàn)軸突損傷甚至變性、死亡,星形膠質(zhì)細(xì)胞增生、腫脹、突起瓦解,小膠質(zhì)細(xì)胞激活。錐體束軸突和髓鞘病變影響其信號傳導(dǎo)功能,導(dǎo)致各功能區(qū)聯(lián)絡(luò)中斷,產(chǎn)生神經(jīng)功能障礙。腦梗死后錐體束損傷有兩種:病灶內(nèi)直接的軸突破壞和病灶周圍乃至遠(yuǎn)隔區(qū)域繼發(fā)性沃勒變性(近端軸突或細(xì)胞體損傷后,遠(yuǎn)端軸突及髓鞘層的退行性改變)[1-2]。
腦缺血慢性期皮質(zhì)梗死體積對運(yùn)動功能影響并不大,隨著時(shí)間的推移,這種影響更加微弱[3]。腦缺血后神經(jīng)功能的缺失常常是因?yàn)檩S突聯(lián)系的阻斷,而不是細(xì)胞的凋亡[4]。大量髓鞘缺失,以及內(nèi)源性軸突生長抑制因子導(dǎo)致軸突生長受限,均是腦缺血后神經(jīng)功能缺失持續(xù)存在的重要因素。腦梗死急性期及慢性期的運(yùn)動功能障礙均伴有下行錐體束的沃勒變性,錐體束沃勒變性范圍越大,運(yùn)動的力量、靈活度、活動范圍越差[2,5]。腦梗死后運(yùn)動功能障礙與白質(zhì)通路損傷而非皮質(zhì)梗死灶關(guān)系更加密切:單側(cè)大腦梗死后下行錐體束結(jié)構(gòu)完整性越差,梗死灶對側(cè)肢體運(yùn)動越差。皮質(zhì)下的纖維束結(jié)構(gòu)和功能完整性的破壞是腦卒中后肢體功能障礙的主要原因之一。
正常成年人的白質(zhì)結(jié)構(gòu)并非一成不變。在學(xué)習(xí)復(fù)雜或新的技能,如彈鋼琴、閱讀后,相應(yīng)功能區(qū)的腦白質(zhì)結(jié)構(gòu)出現(xiàn)明顯的變化,表現(xiàn)為體積、組織結(jié)構(gòu)、功能連接等增加,可稱之為腦白質(zhì)重塑[6]。
既往大量研究顯示[7-9],促進(jìn)軸突結(jié)構(gòu)重塑的方法有助于神經(jīng)受損后運(yùn)動功能的恢復(fù)。促紅細(xì)胞生成素等藥物干預(yù)促進(jìn)腦梗死后功能恢復(fù),依賴錐體束的結(jié)構(gòu)可塑性[9];強(qiáng)制性運(yùn)動訓(xùn)練可通過抑制內(nèi)源性抑制因子,促進(jìn)軸突再生及突觸可塑性,改善腦缺血后受損的運(yùn)動功能[7];上肢技巧性運(yùn)動功能的恢復(fù)與健側(cè)運(yùn)動皮質(zhì)生長至梗死側(cè)皮質(zhì)下運(yùn)動區(qū)域的新生軸突數(shù)目密切相關(guān)[10]。由此可見,皮質(zhì)脊髓束的結(jié)構(gòu)完整是運(yùn)動功能恢復(fù)的決定性因素,促進(jìn)錐體束結(jié)構(gòu)可塑性的治療方案可以提高康復(fù)潛能。同樣,通過測量錐體纖維束結(jié)構(gòu)完整性也可預(yù)測腦梗死后功能恢復(fù)情況[11]。
腦缺血后的錐體軸突反應(yīng)可表現(xiàn)為以下幾種形式[4]。最簡單的生長方式是從已離斷的軸突延伸;此外,受損軸突可從近端發(fā)出側(cè)支,或在與離斷通路臨近或伴行神經(jīng)纖維系統(tǒng)軸突生長。在沒有干預(yù)因素的情況下,哺乳動物中樞神經(jīng)系統(tǒng)的軸突生長很少超過1 mm;當(dāng)治療性干預(yù)介入后,軸突可以形成新的通路。
在腦缺血后,中樞神經(jīng)系統(tǒng)具有較強(qiáng)的可塑性。單側(cè)大腦半球腦梗死后,梗死周圍的皮質(zhì)結(jié)構(gòu)發(fā)生改變,與梗死側(cè)皮質(zhì)下結(jié)構(gòu)的聯(lián)系減少;梗死側(cè)大腦皮質(zhì)所對應(yīng)的鏡像區(qū)域,即健側(cè)大腦皮質(zhì)與梗死灶側(cè)功能相似區(qū)域也發(fā)生結(jié)構(gòu)改變:健側(cè)大腦皮質(zhì)下行錐體束發(fā)出軸突至梗死側(cè)皮質(zhì)下結(jié)構(gòu),既可形成新的短距離神經(jīng)通路,也可發(fā)出長軸突至患側(cè)紅核以及患側(cè)頸髓平面,形成長距離的神經(jīng)通路[12-15]。
相比患側(cè),健側(cè)皮質(zhì)錐體束結(jié)構(gòu)重塑可能更有促進(jìn)腦缺血后神經(jīng)功能恢復(fù)的潛能。健側(cè)錐體束的結(jié)構(gòu)完整與腦缺血后功能恢復(fù)相關(guān),并可能是預(yù)測腦卒中慢性期功能恢復(fù)水平的重要指標(biāo)[16]。此外,海馬在腦缺血后同樣具有結(jié)構(gòu)可塑性。腦缺血后相對短的時(shí)間內(nèi),對側(cè)海馬的軸突出芽形成新的通路,以替代腦缺血后退化的軸突。在1個月內(nèi),對側(cè)海馬發(fā)出軸突終末分支,并在局部形成新的突觸,代替已經(jīng)消亡的突觸。在海馬內(nèi),樹突可以接受病灶側(cè)皮質(zhì)和健側(cè)海馬的神經(jīng)沖動[14]。
腦梗死患者自發(fā)性功能恢復(fù)至少部分歸因于錐體束系統(tǒng)的結(jié)構(gòu)重塑[17]。Brown的研究指出,在大腦皮質(zhì)梗死后,缺血病灶周圍可出現(xiàn)明顯的樹突棘長度增加[18]。這種自發(fā)性軸突再生只存在于小面積梗死灶周圍。錐體束受損后自發(fā)性的功能恢復(fù)取決于受累部位,錐體束的背側(cè)、腹側(cè)束受損后自發(fā)性功能恢復(fù)受限,可產(chǎn)生嚴(yán)重而持久的運(yùn)動功能缺失[19]。腦缺血后常常導(dǎo)致進(jìn)展性、不可逆的功能缺失,表明成年哺乳動物中樞神經(jīng)系統(tǒng)受損后再生能力及解剖結(jié)構(gòu)重塑能力非常有限。自發(fā)性功能恢復(fù)最有可能是由備用神經(jīng)通路的出芽或者代償產(chǎn)生,這種自發(fā)性的功能恢復(fù)可被治療性干預(yù)進(jìn)一步加強(qiáng)[20]。
3.1 運(yùn)動訓(xùn)練
中樞神經(jīng)系統(tǒng)的突觸聯(lián)系在發(fā)育中形成,并在活動中被改變,軸突再生也可被運(yùn)動誘導(dǎo)[4,20]。研究顯示,運(yùn)動訓(xùn)練可以促進(jìn)神經(jīng)可塑性并提高運(yùn)動功能[21-22]。運(yùn)動訓(xùn)練可以促進(jìn)缺血損傷后健側(cè)皮質(zhì)自發(fā)性產(chǎn)生的少量樹突狀結(jié)構(gòu)進(jìn)一步增多。在運(yùn)動學(xué)習(xí)中,運(yùn)動皮質(zhì)可出現(xiàn)新的突觸發(fā)生[23]。目前在動物實(shí)驗(yàn)中采用的訓(xùn)練方式主要有三類,跑步訓(xùn)練、豐富環(huán)境、前肢技巧性運(yùn)動訓(xùn)練。這三種運(yùn)動訓(xùn)練對于腦缺血后錐體束生長的影響不盡相同。
跑步訓(xùn)練可以增強(qiáng)腦缺血后突觸可塑性,提高運(yùn)動學(xué)習(xí)能力,可能與跑步訓(xùn)練后健側(cè)大腦半球腦源神經(jīng)營養(yǎng)因子(BDNF)、突觸蛋白Ⅰ水平上升有關(guān)[23]。BDNF可影響中樞神經(jīng)軸突可塑性和出芽[24],但具體機(jī)制尚不明確。有學(xué)者認(rèn)為,BDNF可通過調(diào)節(jié)海馬區(qū)域的突觸蛋白Ⅰ的表達(dá),間接影響海馬的突觸可塑性[25]。此外,跑步訓(xùn)練可促進(jìn)脊髓損傷后功能更快恢復(fù),其機(jī)制可能是跑步訓(xùn)練促進(jìn)了皮質(zhì)脊髓束的可塑性改變,通過促進(jìn)軸突出芽或者突觸的可塑性,強(qiáng)化下行通路聯(lián)系[26]。Ying的實(shí)驗(yàn)指出,跑步訓(xùn)練可提高脊髓損傷大鼠頸膨大BDNF、突觸蛋白Ⅰ水平,從而促進(jìn)頸膨大突觸可塑性及運(yùn)動功能的恢復(fù)[27]。
既往實(shí)驗(yàn)研究顯示,處于豐富環(huán)境中的正常成年動物神經(jīng)元樹突分支、樹突棘及突觸數(shù)目較單獨(dú)飼養(yǎng)或普通飼養(yǎng)的動物增加,豐富環(huán)境可增加缺血后皮質(zhì)樹突棘突數(shù)目,改變棘突形態(tài)[28];并可促進(jìn)健側(cè)皮質(zhì)發(fā)出長軸突到脊髓,提高患側(cè)前肢的技巧性運(yùn)動功能[29]??赡苁且?yàn)樨S富環(huán)境強(qiáng)化了學(xué)習(xí)誘導(dǎo)的結(jié)構(gòu)可塑性,但是具體機(jī)制尚不十分明確。豐富環(huán)境可產(chǎn)生神經(jīng)生長因子的內(nèi)在改變,如神經(jīng)生長因子(NGF)、腦源性神經(jīng)生長因子,影響神經(jīng)可塑性。研究證明,NGF可促進(jìn)運(yùn)動功能及認(rèn)知功能恢復(fù),減輕健存錐體細(xì)胞樹突萎縮[30-31]。豐富環(huán)境可能是通過促進(jìn)NGF的表達(dá),影響軸突再生從而促進(jìn)運(yùn)動功能及認(rèn)知功能的提高[31]。
前肢技巧性運(yùn)動訓(xùn)練可誘發(fā)運(yùn)動學(xué)習(xí)相關(guān)的樹突和突觸改變。患側(cè)前肢的運(yùn)動訓(xùn)練可使梗死灶周圍產(chǎn)生新的樹突生長,促進(jìn)神經(jīng)可塑性,進(jìn)而影響運(yùn)動皮質(zhì)神經(jīng)通路功能聯(lián)系。集中于損傷前肢的運(yùn)動訓(xùn)練除了可促進(jìn)梗死部位附近區(qū)域的結(jié)構(gòu)可塑性,還可直接增加健側(cè)運(yùn)動皮質(zhì)新生樹枝狀分支數(shù)目;而這種樹突的改變可形成新的突觸聯(lián)系或者激發(fā)潛在通路,并且增多的樹突可能是促進(jìn)突觸生長的前提[22]。大鼠在學(xué)習(xí)技巧性取食的后期,皮質(zhì)中突觸數(shù)目增多[32]?;紓?cè)前肢強(qiáng)制性使用訓(xùn)練可以促進(jìn)脊髓灰質(zhì)跨中線神經(jīng)纖維的生長,還可以促進(jìn)突觸的形成[7];當(dāng)禁用患側(cè)前肢時(shí),錐體束終末端軸突的形態(tài)受到影響,運(yùn)動功能也隨之減退[33]。
3.2 運(yùn)動訓(xùn)練結(jié)合藥物干預(yù)
運(yùn)動訓(xùn)練可以增強(qiáng)某些藥物干預(yù)的作用[34]。例如,苯異丙胺可促進(jìn)腦缺血后大鼠軸突再生及運(yùn)動功能恢復(fù),運(yùn)動訓(xùn)練可增強(qiáng)苯異丙胺這一作用。運(yùn)動訓(xùn)練結(jié)合黃體酮治療較單一治療更能促進(jìn)腦缺血動物功能的恢復(fù)[35]。但是,并非所有藥物干預(yù)結(jié)合運(yùn)動訓(xùn)練都可以提高治療效果,運(yùn)動訓(xùn)練和某些藥物干預(yù)治療既有聯(lián)系又存在著區(qū)別[36]。Po在Nogo-A及Nogo-A受體(NgR1)對中樞神經(jīng)長距離軸突生長影響的實(shí)驗(yàn)中發(fā)現(xiàn),纖維生長與受損前肢的精細(xì)技巧性運(yùn)動功能的恢復(fù)相關(guān);抑制Nogo-A或NgR1表達(dá),可出現(xiàn)跨脊髓中線生長的錐體束出芽[37]。運(yùn)動訓(xùn)練也可使受損前肢的精細(xì)技巧性運(yùn)動功能的恢復(fù)。由此推測,運(yùn)動訓(xùn)練至少部分是通過抑制Nogo-A通路及其他神經(jīng)抑制因子,促進(jìn)腦缺血后錐體束結(jié)構(gòu)重塑[7]。但既往研究提示,對脊髓損傷大鼠單獨(dú)予以Nogo-A拮抗劑干預(yù)或運(yùn)動訓(xùn)練均可促進(jìn)運(yùn)動功能的恢復(fù),但是聯(lián)合運(yùn)用這兩種干預(yù)方式并沒有增強(qiáng)療效[36],可能是因?yàn)檫\(yùn)動訓(xùn)練和Nogo-A拮抗劑對于促進(jìn)脊髓損傷后功能恢復(fù)所發(fā)揮作用的機(jī)制不同,也可能與運(yùn)動訓(xùn)練的強(qiáng)度有關(guān)。如何綜合運(yùn)用藥物和運(yùn)動訓(xùn)練,更好地促進(jìn)缺血后錐體束生長,需要更多的實(shí)驗(yàn)研究進(jìn)一步揭示。
3.3 其他干預(yù)方法
對腦梗死模型大鼠予肌酐聯(lián)合應(yīng)用NEP1-40(Nogo受體拮抗劑)或者豐富環(huán)境訓(xùn)練綜合治療,可使從健側(cè)出芽至患側(cè)皮質(zhì)脊髓束軸突分支數(shù)量顯著增加,同時(shí)大鼠技巧性運(yùn)動功能水平明顯提高[38]。動物實(shí)驗(yàn)中,單克隆抗體IN-1或其他Nogo-A拮抗劑均可以促進(jìn)腦梗死后神經(jīng)可塑性或者神經(jīng)生長至對側(cè)的去神經(jīng)支配區(qū)域,并伴功能恢復(fù)[39]。腦缺血后,經(jīng)尾靜脈注射骨髓間充質(zhì)細(xì)胞[40],經(jīng)皮質(zhì)注射神經(jīng)干細(xì)胞[12]、血管內(nèi)皮生長因子[13],均可以促進(jìn)健側(cè)皮質(zhì)發(fā)出長軸突至頸髓平面,尤其是支配上肢運(yùn)動的C4~C6平面[40]。
運(yùn)動訓(xùn)練可以促進(jìn)梗死周圍的樹突結(jié)構(gòu)可塑性,也可促進(jìn)健側(cè)運(yùn)動皮質(zhì)運(yùn)動神經(jīng)元產(chǎn)生新的樹枝狀分支,發(fā)出長軸突到達(dá)頸髓平面。不同的運(yùn)動訓(xùn)練對功能恢復(fù)的神經(jīng)生理機(jī)制不盡相同,是否對腦缺血后錐體束結(jié)構(gòu)重塑影響也存在差異?如何制定最佳運(yùn)動方案以最大程度地促進(jìn)腦缺血后錐體束結(jié)構(gòu)重塑?這些都需要進(jìn)一步研究揭示。
[1]Wang F,Liang Z,Hou Q,et al.Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction[J].Neurosci Lett,2007,417(3): 255-260.
[2]Lindberg PG,Skej? PH,Rounis E,et al.Wallerian degeneration of the corticofugal tracts in chronic stroke:a pilot study relating diffusion tensor imaging,transcranial magnetic stimulation,and hand function[J].Neurorehabil Neural Repair,2007, 21(6):551-560.
[3]Mark VW,Taub E,Perkins C,et al.MRI infarction load and CI therapy outcomes for chronic post-stroke hemiparesis[J].Restor Neurol Neurosci,2008,26(1):13-33.
[4]Cafferty WB,McGee AW,Strittmatter SM,et al.Axonal growth therapeutics:regeneration or sprouting or plasticity?[J].Trends Neurosci,2008,31(5):215-220.
[5]Domi T,de Veber G,Shroff M,et al.Corticospinal tract pre-Wallerian degeneration:a novel outcome predictor for pediatric stroke on acute MRI[J].Stroke,2009,40(3):780-787.
[6]Fields RD.Change in the brain's white matter[J].Science, 2010,768(330):9.
[7]Zhao S,Zhao M,Xiao T,et al.Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats[J].Stroke,2013,44(6):1698-1705.
[8]Benowitz LI,Carmichael ST.Promoting axonal rewiring to improve outcome after stroke[J].Neurobiol Dis,2010,37(2): 259-266.
[9]Reitmeir R,Kilic E,Kilic U,et al.Post-acute delivery of eryth
ropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity[J].Brain,2011,134(1):84-99.
[10]Seymour AB,Andrews EM,Tsai SY,et al.Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats[J].J Cereb Blood Flow Metab,2005,25(10):1366-1375.
[11]Sterr A,Shen S,Szameitat AJ,et al.The role of corticospinal tract damage in chronic motor recovery and neurorehabilitation:a pilot study[J].Neurorehabil Neural Repair,2010,24(5): 413-419.
[12]Andres RH,Horie N,Slikker W,et al.Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain[J].Brain,2011,134(6):1777-1789.
[13]Reitmeir R,Kilic E,Reinboth B S,et al.Vascular endothelial growth factor induces contralesional corticobulbar plasticity and functional neurological recovery in the ischemic brain[J]. Acta Neuropathol,2012,2(123):273-284.
[14]Benowitz LI,Carmichael ST.Promoting axonal rewiring to improve outcome after stroke[J].Neurobiol Dis,2010,37(2): 259-266.
[15]Staudt M,Grodd W,Gerloff C,et al.Two types of ipsilateral reorganization in congenital hemiparesis:a TMS and fMRI study[J].Brain,2002,125(10):2222-2237.
[16]Borich MR,Mang C,Boyd LA.Both projection and commissural pathways are disrupted in individuals with chronic stroke: investigating microstructural white matter correlates of motor recovery[J].BMC Neurosci,2012,13:107.
[17]Carmichael ST,Wei L,Rovainen CM,et al.New patterns of intracortical projections after focal cortical stroke[J].Neurobiol Dis,2001,8(5):910-922.
[18]Brown CE,Wong C,Murphy TH,et al.Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke[J].Stroke,2008,39(4):1286-1291.
[19]Weidner N,Ner A,Salimi N,et al.Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury[J].Proc Natl Acad Sci USA,2001,98(6): 3513-3518.
[20]Murphy TH,Corbett D.Plasticity during stroke recovery: from synapse to behaviour[J].Nat Rev Neurosci,2009,10 (12):861-872.
[21]Kim MW,Bang MS,Han TR,et al.Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain[J].Brain Res,2005,1052(1):16-21.
[22]Biernaskie J,Corbett D.Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendrit-ic growth after focal ischemic injury[J].J Neurosci,2001,21 (14):5272-5280.
[23]Ploughman M,Granter-Button S,Chernenko G,et al.Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor,synapsin-I and insulin-like growth factor I after focal ischemia[J].Neuroscience,2005,136(4): 991-1001.
[24]Vavrek R,Girgis J,Tetzlaff W,et al.BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats[J].Brain,2006,129(6): 1534-1545.
[25]Vaynman S,Ying Z,Gomez-Pinilla F.Exercise induces BDNF and synapsin I to specific hippocampal subfields[J].J Neurosci Res,2004,76(3):356-362.
[26]Multon S,Franzen R,Poirrier AL,et al.The effect of treadmill training on motor recovery after a partial spinal cord compression-injury in the adult rat[J].J Neurotrauma,2003,20(8): 699-706.
[27]Ying Z,Roy RR,Edgerton,VR,et al.Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury[J].Exp Neurol,2005,193(2):411-419.
[28]Johansson BB,Belichenko PV.Neuronal plasticity and dendritic spines:effect of environmental enrichment on intact and postischemic rat brain[J].J Cereb Blood Flow Metab,2002,22 (1):89-96.
[29]Zai L,Ferrari C,Dice C,et al.Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke[J].J Neurosci,2011,31 (16):5977-5988.
[30]Birch AM,McGarry NB,Kelly AM.Short-term environmental enrichment,in the absence of exercise,improves memory, and increases NGF concentration,early neuronal survival,and synaptogenesis in the dentate gyrus in a time-dependent manner[J].Hippocampus,2013,23(6):437-450.
[31]Johansson BB.Brain plasticity and stroke rehabilitation:The Willis lecture[J].Stroke,2000,31(1):223-230.
[32]Kleim JA,Hogg TM,VandenBerg PM,et al.Cortical synaptogenesis and motor map reorganization occur during late,but not early,phase of motor skill learning[J].J Neurosci,2004,24 (3):628-633.
[33]Maier IC,Baumann K,Thallmair M,et al.Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury[J].J Neurosci,2008,28(38):9386-9403.
[34]Ramic M,Emerick AJ,Bollnow MR,et al.Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat[J].Brain Res,2006,1111(1):176-186.
[35]Wang J,Feng X,Du Y,et al.Combination treatment with progesterone and rehabilitation training further promotes behavioral recovery after acute ischemic stroke in mice[J].Restor Neurol Neurosci,2013,31(4):487-499.
[36]Maier IC,Ichiyama RM,Courtine G,et al.Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury[J].Brain,2009,132 (6):1426-1440.
[37]Po C,Kalthoff D,Kim YB,et al.White matter reorganization and functional response after focal cerebral ischemia in the rat[J].PLoS One,2012,7(9):e45629.
[38]Zai L,Ferrari C,Dice C,et al.Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke[J].J Neurosci,2011,31 (16):5977-5988.
[39]Zai L,Ferrari C,Subbaiah S,et al.Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb[J].J Neurosci,2009,29(25):8187-8197.
[40]Liu Z,Li Y,Zhang X,et al.Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment[J].Stroke,2008,39(9): 2571-2577.
Motor Rehabilitation and Pyramidal Tract Remodeling after Cerebral Infarction(review)
ZHANG Chan-juan,WEN Hong-mei.Department of Rehabilitation Medicine,The Third Affiliated Hospital of Sun Yat-Sen University,Guangzhou 510630,Guangdong,China
Motor dysfunction is one of the leading problems after stroke.The evidence existed that motor performance is largely affected by the location and volume of white matter especially the pyramidal tract,but not the cortex.The remodeling of contralesional primary motor output tract highly correlated with motor improvement.The unaffected pyramidal tract axons regenerate and cross into the affected side after ischemia can promte motor recovery after ischemia.Exercise and other rehabilitation may play a role on remodeling of pyramidal tract subsequent after cerebral infarction.
cerebral ischemia;pyramidal tract;motor;rehabilitation;review
R743.3
A
1006-9771(2014)01-0049-04
2013-06-10
2013-08-29)
國家自然科學(xué)基金青年基金(No.81101461)。
中山大學(xué)附屬第三醫(yī)院康復(fù)科,廣東廣州市510630。作者簡介:張嬋娟(1987-),女,四川遂寧市人,碩士研究生,主要研究方向:運(yùn)動訓(xùn)練對腦缺血白質(zhì)改變的影響。通訊作者:溫紅梅,女,博士,副主任醫(yī)師。
10.3969/j.issn.1006-9771.2014.01.013