沈孝陵 張?bào)泺P
胰腺癌是一類高度惡性的腫瘤,目前只有約7%的胰腺癌能被早期診斷,由于難以早期診斷及頻繁發(fā)生的局部或者遠(yuǎn)處轉(zhuǎn)移,只有15%~20%的患者最終可以接受根治術(shù)。盡管近年來對胰腺癌的研究在基礎(chǔ)和臨床方面均取得進(jìn)展,但是胰腺癌的預(yù)后仍然嚴(yán)峻,總體5年生存率不到5%。研究表明[1-3],胰腺癌有很高的神經(jīng)浸潤(perineural invasion,PNI)發(fā)生率,甚至可高達(dá)100%[5]。這可能是胰腺癌轉(zhuǎn)移的一種方式,也是胰腺癌復(fù)發(fā)的一個(gè)重要原因。PNI陽性患者總是與不良預(yù)后和低存活率相關(guān)[4-5]。
PNI為癌細(xì)胞侵犯神經(jīng)外膜、神經(jīng)束膜,甚至到達(dá)神經(jīng)內(nèi)膜和與之緊密聯(lián)系的施旺細(xì)胞和神經(jīng)元[6]。目前存在的“perineural invasion”和“neural invasion”概念的含義是相同的[7]。胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)是PNI發(fā)生率最高的腫瘤類型[2],但是腫瘤大小與PNI的發(fā)生無必然聯(lián)系,即使是只有顯微鏡下才可見到的癌仍然可發(fā)生PNI[8]。PNI的發(fā)生與胰腺癌細(xì)胞的親神經(jīng)性和胰腺與神經(jīng)叢的解剖位置極為貼近有關(guān)。神經(jīng)叢的分布使癌細(xì)胞和神經(jīng)之間形成良好的接觸,癌細(xì)胞可以直接侵犯神經(jīng),也可以通過神經(jīng)上的穿通管道(如血管和網(wǎng)狀纖維的穿透部位)侵入神經(jīng)內(nèi)部[9]。因?yàn)樯窠?jīng)外膜層內(nèi)有淋巴管存在,多年來一直認(rèn)為PNI是淋巴轉(zhuǎn)移的延伸。近年來發(fā)現(xiàn)淋巴管未穿透神經(jīng)外膜,故而排除了PNI與淋巴轉(zhuǎn)移的關(guān)系。
1.神經(jīng)營養(yǎng)因子及其受體:胰腺癌的PNI可以發(fā)生于疾病早期,所以推測可能存在某些神經(jīng)分泌的因子在此過程中發(fā)揮作用,神經(jīng)營養(yǎng)因子家族最初被認(rèn)為是這些因子中的一類。神經(jīng)營養(yǎng)因子指的是作用于神經(jīng)系統(tǒng),影響神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞生長、分化、存活及其細(xì)胞周期的分子。它能增強(qiáng)細(xì)胞分化,誘導(dǎo)增殖,影響突觸功能,防止神經(jīng)細(xì)胞凋亡,具有細(xì)胞因子的多功能性、協(xié)同性和相互依賴性、相互制約性、自分泌和旁分泌性等特點(diǎn)。神經(jīng)營養(yǎng)因子可以分為5大類:①神經(jīng)營養(yǎng)因子(neurotrophins)家族,包括神經(jīng)生長因子(nerve growth factor,NGF )、腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)、神經(jīng)營養(yǎng)素(neurotrophin,NT)-3、NT-4等。②膠質(zhì)細(xì)胞源性神經(jīng)營養(yǎng)因子(glial cell line-derived neurotrophic flactor,GDNF)家族,包括GDNF、NTN (neurturin)、PSP(persephin)、ART/RNV(artemin/renovin)。③細(xì)胞因子(cytokines)家族,包括睫狀神經(jīng)營養(yǎng)因子(ciliary neurotrophic factor, CNTF)、白介素-6(IL-6)、白血病抑制因子(leukemia inhibitory factor,LIF)及心肌營養(yǎng)素-1(cardiotrophin-1,CT-1)。④成纖維細(xì)胞生長因子(fibroblast growth factor,F(xiàn)GF)家族:aFGF, bFGF。⑤其他類:包括胰島素樣生長因子(insulin-like growth factors,IGF)、表皮生長因子(epidermal growth factor,EGF)、血小板源性生長因子(platelet derived growth factor,PDGF)等。
神經(jīng)營養(yǎng)因子受體分為兩種,一種是高親和力的酪氨酸激酶受體(tyrosine kinase receptors,Trk),包括TrkA、TrkB和TrkC;一種是低親和力的受體p75NTR。3種Trk均為跨膜分子,以不同的親和力與NGF、BDNF、NT-3、NT-4相結(jié)合。NGF優(yōu)先與TrkA結(jié)合,而BDNF、NT-4優(yōu)先與TrkB結(jié)合[10-11],NT-3優(yōu)先與TrkC結(jié)合[12],三者均能誘導(dǎo)促生存信號。p75NTR是跨膜糖蛋白,隸屬于腫瘤壞死因子超家族,無論TrkA、B、C存在與否,均能促進(jìn)細(xì)胞生存或誘導(dǎo)細(xì)胞凋亡[13]。
1999年Zhu等[14]第一次證明NGF及其受體TrkA在胰腺癌PNI中起作用,之后陸續(xù)有報(bào)道胰腺癌細(xì)胞及其周圍神經(jīng)中神經(jīng)營養(yǎng)因子家族和其受體TRKA、p75NTR表達(dá)水平升高[15-16]。Schneider等[16]報(bào)道,TrkA在導(dǎo)管、胰島和癌細(xì)胞中均表達(dá),TrkB僅在胰島的α-細(xì)胞中表達(dá),TrkC的著色程度及分布與TrkA相似;p75NTR在神經(jīng)組織中表達(dá),在正常組織中僅散在存在。導(dǎo)管和腺泡細(xì)胞以及神經(jīng)組織和癌細(xì)胞中均有不同程度的NGF表達(dá)。NT-3在毛細(xì)血管內(nèi)皮和紅細(xì)胞中表達(dá),NT-4特異性地在導(dǎo)管細(xì)胞中表達(dá)。該結(jié)果提示胰腺癌細(xì)胞自分泌NGF增強(qiáng),通過激活MAPK途徑發(fā)揮有絲分裂效應(yīng)[17],并通過旁分泌作用促進(jìn)PNI發(fā)生。Ma等[18]證實(shí)胰腺癌中NGF和TrkA過表達(dá)能促進(jìn)神經(jīng)的病理性增長,聯(lián)合抑制NGF和TrkA或許能起到抑制腫瘤的目的。Wang等[19]證實(shí)報(bào)道,p75NTR的表達(dá)水平和胰腺癌PNI之間存在正相關(guān)。將p75NTR轉(zhuǎn)染胰腺癌細(xì)胞后細(xì)胞對化學(xué)趨化性的反應(yīng)性遷移顯著增強(qiáng),表明p75NTR在胰腺癌細(xì)胞的遷移中起作用,也可能在PNI中起作用。
Ketterer等[24]報(bào)道,胰腺癌中BDNF、NT-3和NT-4表達(dá)均升高,將T3M4期胰腺癌細(xì)胞與背根神經(jīng)細(xì)胞共培養(yǎng)后癌細(xì)胞強(qiáng)表達(dá)TrkB和p75NTR,細(xì)胞增殖明顯增強(qiáng)。但Schneider等[16]報(bào)道胰腺癌中BDNF、NT-3和NT-4表達(dá)均不升高。
GDNF被認(rèn)為是胰腺癌細(xì)胞的化學(xué)引誘物,在腫瘤的進(jìn)展、遷移、侵襲的過程中發(fā)揮重要作用[21]。有PNI的胰腺癌GDNF陽性率顯著高于無PNI的胰腺癌[22]。胰腺癌細(xì)胞系SW1990、CAPAN-2、MiaPaCa-2、BxPC3與GDNF共培養(yǎng)后,細(xì)胞對細(xì)胞外基質(zhì)蛋白如Ⅰ型膠原、層黏連蛋白、纖連蛋白等的趨向性增強(qiáng),整合素的表達(dá)增加;使用整合素抑制劑后可以抑制細(xì)胞對細(xì)胞外基質(zhì)的粘附能力,提示GDNF引起的整合素表達(dá)改變在胰腺癌的侵襲和轉(zhuǎn)移行為中發(fā)揮重要作用[23-24]。另外,GDNF還可以激活基質(zhì)金屬蛋白酶(MMP),引起細(xì)胞惡性程度增加。
2.趨化因子:趨化因子是腫瘤炎性環(huán)境的重要組成部分[25]。趨化因子及其受體已經(jīng)被證明在腫瘤細(xì)胞局部侵犯和遠(yuǎn)處轉(zhuǎn)移中起重要作用。趨化因子也能提供增殖信號使得腫瘤細(xì)胞能在遠(yuǎn)處器官中生存。Marchee等[26]報(bào)道,PDAC強(qiáng)表達(dá)趨化因子受體CX3CR1,而正常胰腺上皮細(xì)胞不表達(dá)。CX3CR1高表達(dá)與PNI呈相關(guān),且與術(shù)后早期復(fù)發(fā)相關(guān)。CX3CR1專一性地結(jié)合跨膜趨化因子CX3CL1。神經(jīng)細(xì)胞大量表達(dá)CX3CL1,其主要是介導(dǎo)內(nèi)皮細(xì)胞與神經(jīng)細(xì)胞的粘附。CX3CR1陽性表達(dá)的PDAC細(xì)胞通過激活Gi蛋白和黏附分子(β1-整合素和黏著斑激酶)向CX3CL1配體遷移,特別是神經(jīng)細(xì)胞[26]。因此,CX3CL1-CX3CR1信號通路可能是將來減少PNI發(fā)生的一個(gè)有前景的靶點(diǎn)[27]。
另外,軸突引導(dǎo)分子腦信號蛋白3A(SEMA3A)及其受體神經(jīng)叢狀蛋白A1(PLXNA1)和神經(jīng)纖毛素1(NRP1)在胰腺癌組織中高表達(dá),且與患者生存期縮短和腫瘤侵襲性、轉(zhuǎn)移潛力增強(qiáng)相關(guān)。盡管92%的患者表現(xiàn)出PNI,但SEMA3A表達(dá)與PNI狀態(tài)之間未發(fā)現(xiàn)有明顯的關(guān)聯(lián)[28]。
3.基質(zhì)金屬蛋白酶(MMPs):MMPs幾乎能降解ECM中的各種蛋白成分,破壞腫瘤細(xì)胞侵襲的組織學(xué)屏障,在腫瘤侵襲轉(zhuǎn)移中起關(guān)鍵性作用,Kilian等[29]報(bào)道,應(yīng)用MMP抑制劑Ro 28-2653可以有效抑制MMP-2和MMP-9表達(dá),顯著降低胰腺導(dǎo)管腺癌肝轉(zhuǎn)移的發(fā)生。胰腺星狀細(xì)胞是MMP-2的重要來源,可以促進(jìn)胰腺癌細(xì)胞的侵襲性[30],也與胰腺癌的PNI有密切關(guān)系[31]。自主神經(jīng)遞質(zhì)去甲腎上腺素也可以通過上調(diào)MMP-2的表達(dá)來增強(qiáng)胰腺癌細(xì)胞的侵襲性,啟動神經(jīng)侵犯,激活癌細(xì)胞促生存信號通路[31]。在GDNF和NGF刺激下亦會增強(qiáng)胰腺癌細(xì)胞MMP-2和MMP-9的表達(dá),有助于胰腺癌PNI的發(fā)生[32-33]。
4.有助于PNI的差異化表達(dá)基因:通過胰腺癌微陣列分析,比較高頻率PNI和低頻率PNI的胰腺癌細(xì)胞系裸鼠皮下移植瘤組織的差異表達(dá)蛋白,發(fā)現(xiàn)高頻率PNI的胰腺癌細(xì)胞系的CD74表達(dá)上調(diào),而低頻率PNI的細(xì)胞系中表達(dá)下調(diào),說明HLA Ⅱ類分子的穩(wěn)定鏈(CD74)可能在PNI過程中起作用[34]。Nagata等[35]報(bào)道,PDAC患者的CD74表達(dá)水平與PNI相關(guān),CD74是一個(gè)獨(dú)立的預(yù)后因素。
其他表達(dá)上調(diào)的分子包括絲氨酸蛋白酶組織纖溶酶原激活物和γ-同型核蛋白(γ-synuclein),后者對維持中樞神經(jīng)系統(tǒng)的功能和發(fā)育有重要作用。它在腫瘤細(xì)胞中異常表達(dá),是患者不良預(yù)后和無病生存期降低的強(qiáng)烈指標(biāo)。應(yīng)用shRNA沉默γ-synuclein的表達(dá)可以降低PNI和肝轉(zhuǎn)移的程度。由于在胰腺癌患者的血樣和尿樣中能檢測到,故認(rèn)為γ-synuclein很有可能成為疾病早期診斷標(biāo)志物,當(dāng)然也可能成為疾病治療的靶點(diǎn)。
在神經(jīng)細(xì)胞和腫瘤細(xì)胞共培養(yǎng)的PNI體外模型中觀察到胰腺癌細(xì)胞定向向神經(jīng)元遷移,神經(jīng)元也向胰腺癌細(xì)胞的方向生長出突觸。進(jìn)一步通過與神經(jīng)元突出相接觸的胰腺癌細(xì)胞的基因表達(dá)譜的分析[48],發(fā)現(xiàn)了一些促生存基因表達(dá)上調(diào),如黏膜相關(guān)淋巴組織淋巴瘤易位基因1(mucosa-associated lymphoid tissue lymphoma translocation gene 1,MALT1)和腫瘤壞死因子受體相關(guān)因子(tumor-necrosis-factor-receptor-associated factor,TRAF)[36],同時(shí)癌細(xì)胞增殖增加,凋亡減少,這些基因可能有助于癌細(xì)胞的神經(jīng)侵犯。
Abiatari等[37]檢測了PNI體外共培養(yǎng)體系中的癌細(xì)胞的轉(zhuǎn)錄組表達(dá)譜。他們發(fā)現(xiàn)驅(qū)動蛋白家族成員14(kinesin family member 14,KIF14))表達(dá)顯著下調(diào),RHO-GDP 解離抑制劑-β(RHO-GDP dissociation inhibitor-β,ARHGDIbeta)表達(dá)上調(diào),KIF14與PNI呈負(fù)相關(guān),下調(diào)KIF14的表達(dá)會增強(qiáng)細(xì)胞的PNI能力。KIF是一種細(xì)胞分裂驅(qū)動蛋白,在分裂的細(xì)胞中增多,敲除后會導(dǎo)致細(xì)胞多核化和凋亡,在很多惡性疾病中表達(dá)上調(diào),且與不良預(yù)后相關(guān),這觀點(diǎn)與該實(shí)驗(yàn)結(jié)果不同。猜測可能存在某種負(fù)反饋機(jī)制使得KIF14在其他一些惡性疾病中高表達(dá)。Abiatari等[37]又發(fā)現(xiàn)敲除ARHGDIβ的癌細(xì)胞的侵襲轉(zhuǎn)移和生存能力未見明顯降低,只是PNI能力明顯降低,認(rèn)為ARHGDIβ在胰腺癌中可以促進(jìn)PNI。他們還發(fā)現(xiàn)微管相關(guān)蛋白質(zhì)RP/EB家族成員2(microtubule-associated protein RP/EB family member 2,MAPRE2)也在表現(xiàn)出PNI的胰腺癌細(xì)胞克隆中過表達(dá),并且與患者的低生存率有關(guān)[35]。
5.其他一些重要的大分子:文獻(xiàn)報(bào)道,在胰腺癌活檢標(biāo)本中發(fā)現(xiàn)了高水平的造血集落刺激因子G-CSF和GM-CSF,且對應(yīng)地在胰腺神經(jīng)中發(fā)現(xiàn)了它們的受體表達(dá)(G-CSFR和GM-CSFRα),說明這些細(xì)胞因子可能在腫瘤與神經(jīng)相互作用的過程中起作用[39]。Swanson等[40]的研究發(fā)現(xiàn),胰腺癌細(xì)胞中的黏蛋白1(MUC1)和雪旺細(xì)胞中的髓磷脂相關(guān)糖蛋白(MAG)相互作用增強(qiáng)與PNI有關(guān)。除了作為MAG的優(yōu)先配體外,胰腺癌細(xì)胞中MUC1的胞質(zhì)尾區(qū)的差異化的磷酸化導(dǎo)致了細(xì)胞增殖和轉(zhuǎn)移信號通路的激活[57]。因此,MUC1-MAG信號通路不僅導(dǎo)致胰腺癌細(xì)胞侵襲和增殖增強(qiáng),也通過輔助胰腺癌細(xì)胞和雪旺細(xì)胞之間產(chǎn)生聯(lián)系從而在PNI中起作用。此外,還有報(bào)道一些黏附分子如神經(jīng)細(xì)胞黏附分子(NCAM)和L1細(xì)胞黏附分子(L1CAM)也在胰腺癌的PNI中發(fā)現(xiàn),但至今仍缺乏相關(guān)實(shí)驗(yàn)。
胰腺癌PNI的分子機(jī)制及其復(fù)雜,目前已知的仍然很少,而且大多數(shù)實(shí)驗(yàn)關(guān)注的是神經(jīng)與腫瘤細(xì)胞之間的相互作用,很少有人關(guān)注腫瘤基質(zhì)和微環(huán)境的變化。今后還需要更加精確的動物模型來模擬體內(nèi)胰腺癌PNI的生物學(xué)過程,最終將研究成果轉(zhuǎn)化到早期診斷和靶向藥物的開發(fā)上。
參 考 文 獻(xiàn)
[1] Nakao A, Harada A, Nonami T, et al. Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer[J]. Pancreas, 1996,12(4):357-361.
[2] Pour PM, Bell RH, Batra SK. Neural invasion in the staging of pancreatic cancer[J]. Pancreas, 2003,26(4):322-325.
[3] Liu B, Lu KY. Neural invasion in pancreatic carcinoma[J]. Hepatobiliary Pancreat Dis Int, 2002,1(3):469-476.
[4] Marchesi F, Piemonti L, Mantovani A, et al. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis[J]. Cytokine Growth Factor Rev,2010,21(1):77-82.
[5] Huh JW, Kim HR, Kim YJ. Prognostic value of perineural invasion in patients with stage II colorectal cancer[J]. Ann Surg Oncol,2010,17(8):2066-2072.
[6] Liebig C, Ayala G, Wilks JA, et al. Perineural invasion in cancer: a review of the literature[J]. Cancer, 2009,115(15):3379-3391.
[7] Demir IE, Ceyhan GO, Liebl F, et al. Neural invasion in pancreatic cancer: the past, present and future[J].Cancers, 2010, 2(3):1513-1527.
[8] Kimura W, Morikane K, Esaki Y, et al. Histologic and biologic patterns of microscopic pancreatic ductal adenocarcinomas detected incidentally at autopsy[J]. Cancer, 1998,82(10):1839-1849.
[9] Kayahara M, Nakagawara H, Kitagawa H, et al. The nature of neural invasion by pancreatic cancer[J]. Pancreas, 2007,35(3):218-223.
[10] Friedman WJ, Greene LA. Neurotrophin signaling via Trks and p75[J]. Exp Cell Res, 1999,253(1):131-142.
[11] Yuan S, Rosenberg L, Paraskevas S, et al. Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture[J]. Differentiation, 1996,61(1):67-75.
[12] Lamballe F, Klein R, Barbacid M. TrkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3[J]. Cell, 1991, 66(5):967-979.
[13] Rabizadeh S, Oh J, Zhong LT, et al. Induction of apoptosis by the low-affinity NGF receptor[J]. Science,1993,261(5119):345-348.
[14] Zhu Z, Friess H, diMola FF, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer[J]. J Clin Oncol,1999,17(8):2419-2428.
[15] Miknyoczki SJ, Lang D, Huang L, et al. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior[J]. Int J Cancer, 1999,81(3):417-427.
[16] Schneider MB, Standop J, Ulrich A, et al. Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer[J]. J Histochem Cytochem,2001,49(10):1205-1210.
[17] Dang C, Zhang Y, Ma Q, et al. Expression of nerve growth factor receptors is correlated with progression and prognosis of human pancreatic cancer[J]. J Gastroenterol Hepatol,2006,21(5): 850-858.
[18] Ma J, Jiang Y, Jiang Y, et al. Expression of nerve growth factor and tyrosine kinase receptor A and correlation with perineural invasion in pancreatic cancer[J]. J Gastroenterol Hepatol, 2008,23(12):1852-1859.
[19] Wang W, Zhao H, Zhang S, et al. Patterns of expression and function of the p75(NGFR) protein in pancreatic cancer cells and tumours[J]. Eur J Surg Oncol, 2009,35(8):826-832.
[20] Ketterer K, Rao S, Friess H, et al.Reverse transcription-PCR analysis of laser-captured cells points to potential paracrine and autocrine actions of neurotrophins in pancreatic cancer[J].Clin Cancer Res,2003,9(14):5127-5136.
[21] Veit C, Genze F, Menke A, et al. Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells[J]. Cancer Res, 2004,64(15):5291-5300.
[22] Zeng Q, Cheng Y, Zhu Q, et al. The relationship between overexpression of glial cell-derived neurotrophic factor and its RET receptor with progression and prognosis of human pancreatic cancer[J]. J Int Med Res, 2008,36(4):656-664.
[23] Funahashi H, Takeyama H, Sawai H, et al. Alteration of integrin expression by glial cell line-derived neurotrophic factor (GDNF) in human pancreatic cancer cells[J]. Pancreas, 2003,27(2):190-196.
[24] Funahashi H, Okada Y, Sawai H, et al. The role of glial cell line-derived neurotrophic factor (GDNF) and integrins for invasion and metastasis in human pancreatic cancer cells[J]. J Surg Oncol, 2005,91(1):77-83.
[25] Mantovani A, Savino B, Locati M, et al. The chemokine system in cancer biology and therapy[J].Cytokine Growth Factor Rev, 2010,21(1):27-39.
[26] Marchesi F, Piemonti L, Fedele G, et al. The chemokine receptor CX3CR1 is involved in the neural tropism and malignant behavior of pancreatic ductal adenocarcinoma[J]. Cancer Res,2008,68(21):9060-9069.
[27] Marchesi F, Locatelli M, Solinas G, et al. Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer[J]. J Neuroimmunol ,2010,224(1-2):39-44.
[28] Müller MW, Giese NA, Swiercz JM, et al. Association of axon guidance factor semaphorin 3A with poor outcome in pancreatic cancer[J]. Int J Cancer, 2007,121(11):2421-2433.
[29] Kilian M, Gregor JI, Heukamp I, et al. Matrix metalloproteinase inhibitor RO 28-2653 decreases liver metastasis by reduction of MMP-2 and MMP-9 concentration in BOP-induced ductal pancreatic cancer in Syrian Hamsters: inhibition of matrix metalloproteinases in pancreatic cancer[J].Prostaglandins Leukot Essent Fatty Acids,2006,75(6):429-434.
[30] Schneiderhan W, Diaz F, Fundel M, et al. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay[J]. J Cell, 2007,120(3):512-519.
[31] Ihsan Ekin Demir, Helmut Friess,Güralp O. Ceyhan, et al. Nerve-cancer interactions in the stromal biology of pancreatic cancer[J]. Front Physiol,2012,3:97.
[32] Okada Y, Eibl G, Duffy JP, et al. Glial cell-derived neurotrophic factor upregulates the expression and activation of matrix metalloproteinase-9 in human pancreatic cancer[J]. Surgery, 2003,134(2):293-299.
[33] Okada Y, Eibl G, Guha S, et al. Nerve growth factor stimulates MMP-2 expression and activity and increases invasion by human pancreatic cancer cells[J]. Clin Exp Metastasis, 2004,21(4):285-292.
[34] Koide N, Yamada T, Shibata R, et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer[J]. Clin Cancer Res, 2006,12(8):2419-2426.
[35] Nagata S, Jin YF, Yoshizato K, et al. CD74 is a novel prognostic factor for patients with pancreatic cancer receiving multimodal therapy[J]. Ann Surg Oncol,2009, 16(9):2531-2538.
[36] Dai H, Li R, Wheeler T, et al. Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach[J]. Hum Pathol,2007,38(2):299-307.
[37] Abiatari I, Deoliveira T, Kerkadze V, et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma[J]. Mol Cancer Ther, 2009,8(6):1494-1504.
[38] Abiatari I, Gillen S, DeOliveira T, et al. The microtubule-associated protein MAPRE2 is involved in perineural invasion of pancreatic cancer cells[J]. Int J Oncol,2009,35(5):1111-1116.
[39] Schweizerhof M, Stosser S, Kurejova M, et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain[J]. Nat Med,2009,15(7):802-807.
[55] Swanson BJ, McDermott KM, Singh PK, et al. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion[J]. Cancer Res,2007,67(21):10222-10229.
[40] Swanson BJ, McDermott KM, Singh PK, et al. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec_4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion[J]. Cancer Res,2007,67(21):10222-10229.