閆永勝,逯 洋,2,韓 娟,王 赟
(1.江蘇大學(xué) 化學(xué)與化工學(xué)院,江蘇 鎮(zhèn)江 212013;2.吉林師范大學(xué) 計(jì)算機(jī)學(xué)院,吉林 四平 136000)
聚合物-鹽雙水相技術(shù)及研究進(jìn)展
閆永勝1,逯 洋1,2,韓 娟1,王 赟1
(1.江蘇大學(xué) 化學(xué)與化工學(xué)院,江蘇 鎮(zhèn)江 212013;2.吉林師范大學(xué) 計(jì)算機(jī)學(xué)院,吉林 四平 136000)
雙水相萃取技術(shù)作為一種新型的綠色分離/富集技術(shù),具有簡(jiǎn)單、省時(shí)、高效和綠色無(wú)污染等優(yōu)點(diǎn),已被應(yīng)用于金屬離子的定量分離萃取、生物活性物質(zhì)的分離純化以及天然產(chǎn)物的提取等領(lǐng)域.目前的雙水相體系主要包括聚合物-聚合物雙水相體系、聚合物-鹽雙水相體系、離子液體-鹽雙水相體系和小分子有機(jī)溶劑-鹽雙水相體系,但由于有機(jī)溶劑易揮發(fā)不穩(wěn)定、離子液體成本較高和兩種聚合物體系的粘度較大等問(wèn)題,影響了這三種雙水相體系在工業(yè)規(guī)?;a(chǎn)中的應(yīng)用.而聚合物-鹽雙水相體系用鹽代替聚合物-聚合物雙水相體系中的一種聚合物作為成相物質(zhì),在降低體系粘度和生產(chǎn)成本的同時(shí),保留了聚合物生物相容性好的優(yōu)勢(shì),被廣泛應(yīng)用于生物活性物質(zhì)、天然產(chǎn)物及抗生素的分離純化,具有較高的開(kāi)發(fā)價(jià)值和廣闊的應(yīng)用前景.通過(guò)分析聚合物-鹽雙水相體系的理論及應(yīng)用研究進(jìn)展,希望對(duì)進(jìn)一步的研究工作有所幫助和啟發(fā).
雙水相體系;聚合物;鹽
液-液萃取[1](Liquid-Liquid Extraction,LLE)是根據(jù)目標(biāo)物質(zhì)在互不相溶的兩種液體中的溶解度不同,從而實(shí)現(xiàn)在液體間選擇性分配的一種分離技術(shù).LLE作為一種傳統(tǒng)的分離技術(shù),由于操作容易、使用設(shè)備簡(jiǎn)單而被長(zhǎng)期應(yīng)用于化學(xué)化工領(lǐng)域的分離過(guò)程.但是,由于LLE技術(shù)存在有機(jī)溶劑消耗量大、污染環(huán)境和安全性低等缺點(diǎn),已經(jīng)不能滿足當(dāng)前國(guó)際社會(huì)對(duì)環(huán)境保護(hù)和綠色生產(chǎn)日趨重視的要求[2-4].雙水相萃取(Aqueous Two Phase Extraciton,ATPE)作為一種新型的綠色分離純化技術(shù),在一定程度上克服了LLE的缺點(diǎn),被廣泛應(yīng)用于食品化學(xué)、環(huán)境化學(xué)、醫(yī)療衛(wèi)生和生物工程等領(lǐng)域的分離純化環(huán)節(jié).
早在1896年,貝葉林克就發(fā)現(xiàn)在將瓊脂水溶液和明膠(或可溶性淀粉)水溶液以一定比例混合時(shí),會(huì)形成兩相體系,即雙水相現(xiàn)象.直到20世紀(jì)60年代,雙水相體系(Aqueous Two Phase System,ATPS)才被逐步應(yīng)用于物質(zhì)的分離操作,關(guān)于ATPS的理論研究和應(yīng)用研究才引起研究者們的關(guān)注.1956年,瑞典學(xué)者Albertsson成功地應(yīng)用ATPS實(shí)現(xiàn)了葉綠素的分離純化,開(kāi)辟了ATPS在分離純化過(guò)程的應(yīng)用先河;隨后,德國(guó)的Kula等人又利用ATPS對(duì)生物活性物質(zhì)進(jìn)行了分離純化,并取得了成功.此后,ATPE因具有工藝簡(jiǎn)單、操作條件溫和、綠色無(wú)毒等優(yōu)勢(shì),被廣泛應(yīng)用于食品工程、環(huán)境科學(xué)、醫(yī)藥衛(wèi)生和生物工程等領(lǐng)域,成功的實(shí)現(xiàn)了蛋白質(zhì)[5,6]、酶[7,8]、多肽[9]、氨基酸[10,11]、遺傳物質(zhì)[12,13]、金屬離子[14,15]、化工原料[16]、細(xì)胞[17]、細(xì)胞色素[18]以及抗生素[19-21]的分離純化.
ATPS是指將兩種可以互溶的物質(zhì)相混合,當(dāng)體系中兩種物質(zhì)的濃度達(dá)到(或超過(guò))臨界濃度以后,原來(lái)的均一相體系會(huì)分成互不相容的兩相體系.ATPE的原理與傳統(tǒng)的液-液萃取相似,都是根據(jù)物質(zhì)在兩種溶液中的溶解度不同而實(shí)現(xiàn)選擇性分配,最終達(dá)到分離的目的.ATPS中的各目標(biāo)組分,在范德華力、疏水作用、靜電作用和界面張力的作用下,選擇性富集到上相或下相,從而實(shí)現(xiàn)目標(biāo)組分與雜質(zhì)組分的選擇性分離.
早期的ATPS研究主要集中在聚合物-聚合物ATPS,隨著ATPS研究的不斷深入,一系列新型ATPS相繼出現(xiàn),并成功應(yīng)用于各種生物活性物質(zhì)的分離純化.目前,按組成物質(zhì)不同,ATPS可以分為:聚合物-聚合物ATPS、聚合物-鹽ATPS、小分子有機(jī)溶劑-鹽ATPS和離子液體-鹽ATPS,如圖1所示.各種ATPS在具有共同特性的同時(shí)還有各自的優(yōu)勢(shì)與不足,因此,在針對(duì)特定的目標(biāo)物質(zhì)選擇ATPS時(shí),應(yīng)該深入研究各種體系的特點(diǎn),綜合考慮目標(biāo)物性質(zhì)、ATPS的特性、操作條件和成本等因素.
圖1 雙水相體系的分類
ATPE是一種在溫和無(wú)污染的條件下,使用常見(jiàn)的簡(jiǎn)便設(shè)備,進(jìn)行短時(shí)簡(jiǎn)單的操作,即能以較高回收率萃取得到高純度目標(biāo)產(chǎn)物的新型分離富集技術(shù).與其它已報(bào)道的分離方法相比,ATPE具有以下特點(diǎn):
(1)萃取條件溫和,在常溫常壓下操作,且上、下兩相的含水量大(含水量高達(dá)70%~90%),不易引起生物活性物質(zhì)的失活或變性.
(2)體系所用設(shè)備簡(jiǎn)單,傳統(tǒng)液-液萃取所用的混合、離心、分離等設(shè)備可直接應(yīng)用于ATPE操作.
(3)兩相界面張力小,與普通體系的界面張力103~10-2N·m-1相比,ATPS的界面張力僅為10-6~10-4N·m-1,此外,ATPS兩相的密度差也很小,十分有利于物質(zhì)的擴(kuò)散,傳質(zhì)速度快.
(4)體系易于線性放大(理論上可放大104倍),各種參數(shù)按比例放大的同時(shí),目標(biāo)物的回收率并不降低,有利于其在工業(yè)生產(chǎn)中的應(yīng)用.
(5)兩種成相物質(zhì)的種類和濃度、體系的溫度和pH值等多種因素對(duì)目標(biāo)產(chǎn)物在兩相的分配比率都呈顯著性影響,因此,可以通過(guò)調(diào)整各種實(shí)驗(yàn)參數(shù)達(dá)到最佳萃取效果.
(6)綠色無(wú)毒無(wú)污染.
雙水相體系的成相能力和目標(biāo)物質(zhì)在其中的分配行為受諸多因素的影響,目前的研究主要集中在討論成相聚合物(離子液體、小分子有機(jī)溶劑)的類型和濃度、成相鹽的類型和濃度、體系的pH值以及溫度等因素對(duì)體系成相能力和目標(biāo)物質(zhì)的分配行為的影響.在對(duì)某一種具體目標(biāo)物質(zhì)進(jìn)行分離、富集時(shí),需要根據(jù)目標(biāo)物的性質(zhì)選用合適的ATPS,并對(duì)影響分配系數(shù)和萃取效率的各因素進(jìn)行優(yōu)化實(shí)驗(yàn),才能確定理想的萃取條件.
(1)成相物質(zhì)的影響
同一種目標(biāo)物在不同類型的ATPS中具有不同的分配行為.對(duì)于聚合物ATPS,成相聚合物的相對(duì)分子量和其在體系中的濃度是影響物質(zhì)在兩相間分配的重要因素.同一種聚合物的疏水性隨其相對(duì)分子量的增大而增強(qiáng),物質(zhì)的分配系數(shù)也會(huì)隨之發(fā)生變化.對(duì)于離子液體ATPS,離子液體的陽(yáng)離子烷基鏈的增長(zhǎng)會(huì)導(dǎo)致其疏水性增強(qiáng),物質(zhì)的分配系數(shù)也會(huì)隨之變化.
(2)鹽的影響
成相鹽的類型和濃度都會(huì)對(duì)ATPS的相平衡條件和物質(zhì)在兩相間的分配產(chǎn)生影響.具有相同陰(或陽(yáng))離子的鹽,其成相能力與陽(yáng)(或陰)離子的化合價(jià)、吉布斯自由能和有效排除體積均有關(guān).鹽的類型對(duì)被萃物質(zhì)的分配系數(shù)具有重要影響,即使是對(duì)于結(jié)構(gòu)相近的目標(biāo)物,鹽的影響效果也不盡相同.
(3)pH值的影響
對(duì)于相同的ATPS,pH值的變化會(huì)引起體系中目標(biāo)組分和雜質(zhì)組分的電性改變,亦會(huì)導(dǎo)致被萃物質(zhì)的電荷發(fā)生變化,進(jìn)而影響各組分在兩相體系中的分配行為.
(4)溫度的影響
溫度對(duì)ATPS相平衡和物質(zhì)分配系數(shù)的影響取決于ATPS的類型,目前的研究顯示,溫度對(duì)聚合物-聚合物ATPS、聚合物-鹽ATPS、離子液體-鹽ATPS的影響較為明顯,而對(duì)小分子有機(jī)溶劑-鹽ATPS的影響很微弱,這可能與聚合物、離子液體和小分子有機(jī)溶劑的疏水性隨溫度的變化強(qiáng)弱有關(guān).
ATPS早期的研究主要集中在聚合物-聚合物ATPS,但由于使用兩種聚合物不但成本較高而且體系粘度較大,限制了該技術(shù)在工業(yè)上的應(yīng)用.為了解決這一問(wèn)題,研究者們考慮用鹽代替一種聚合物作為成相物質(zhì),提出了較為廉價(jià)且高效的聚合物-鹽ATPS.與聚合物-聚合物ATPS相比,聚合物-鹽ATPS成本較低,體系粘度小,已被廣泛應(yīng)用于物質(zhì)的萃取分離過(guò)程.
自聚合物-鹽ATPS問(wèn)世以來(lái),許多研究者致力于尋找新型的聚合物-鹽ATPS和完善目前已知體系的雙節(jié)線數(shù)據(jù)和系線數(shù)據(jù);探索ATPS的液-液相平衡性質(zhì),研究相平衡理論;建立經(jīng)驗(yàn)或半經(jīng)驗(yàn)擬合方程,構(gòu)建ATPS分相過(guò)程的熱力學(xué)模型,為聚合物-鹽ATPS的深入發(fā)展提供基礎(chǔ)數(shù)據(jù)支撐和理論依據(jù).測(cè)定ATPS的基礎(chǔ)實(shí)驗(yàn)數(shù)據(jù),建立系統(tǒng)、準(zhǔn)確、完整的相圖數(shù)據(jù)庫(kù)是關(guān)聯(lián)實(shí)驗(yàn)數(shù)據(jù)、建立經(jīng)驗(yàn)?zāi)P?、研究分相機(jī)理、構(gòu)建熱力學(xué)模型、設(shè)計(jì)萃取體系的基礎(chǔ)和前提.ATPS的雙節(jié)線數(shù)據(jù)一般是通過(guò)濁點(diǎn)滴定法測(cè)得;系線數(shù)據(jù)可以通過(guò)實(shí)驗(yàn)測(cè)得,也可以利用“杠桿原則”結(jié)合雙節(jié)線最優(yōu)擬合公式計(jì)算得到.目前,聚合物含量的測(cè)定一般使用折光率法或紫外可見(jiàn)分光光度法;鹽的含量的測(cè)定方法則有很多,常用的有原子吸收法、電導(dǎo)率法、滴定法和密度法等.迄今為止,文獻(xiàn)報(bào)道的聚合物-鹽ATPS的相圖數(shù)據(jù)研究列于表1.從表中可以看出,幾乎所有的PEG-鹽ATPS都有文獻(xiàn)報(bào)道,已形成一個(gè)完整的理論數(shù)據(jù)體系;而對(duì)于其他聚合物,ATPS的基礎(chǔ)數(shù)據(jù)還不夠完整.因此,完善目前已知體系的相圖數(shù)據(jù)和構(gòu)建新的聚合物-鹽ATPS對(duì)于ATPS的發(fā)展具有一定的實(shí)際意義.
表1 聚合物-鹽雙水相體系的相圖研究
表1(續(xù))
表1(續(xù))
2.2.1 金屬離子的分離
1984年,Zvarova等[75]基于PEG-鹽ATPS,成功地實(shí)現(xiàn)了Fe(Ⅲ)和Cu(Ⅱ)等金屬離子的分離富集,自此ATPS被逐步應(yīng)用于金屬離子的分離過(guò)程.近年來(lái),國(guó)內(nèi)外關(guān)于利用聚合物-鹽ATPS分離金屬離子的研究報(bào)道見(jiàn)表2所示.研究主要是以不同的顯色劑為萃取劑與目標(biāo)金屬離子形成絡(luò)合物或離子締合物,該絡(luò)合物或離子締合物因不溶于水而富集在ATPS的聚合物上相,從而實(shí)現(xiàn)了金屬離子的分離富集.聚合物-鹽ATPS在金屬離子分離過(guò)程的應(yīng)用為金屬離子的分離回收開(kāi)辟了新的思路.
表2 聚合物-鹽雙水相萃取技術(shù)在金屬離子分離中的應(yīng)用
2.2.2 生物分子的分離
1956年,瑞典學(xué)者Albertson首次將ATPE技術(shù)應(yīng)用于生物分子的分離純化,為分離蛋白質(zhì)等生物活性物質(zhì)提供了新的技術(shù)手段.由于聚合物-鹽ATPE技術(shù)操作簡(jiǎn)單、條件溫和、富集倍數(shù)高、可控因素多,已被廣泛應(yīng)用于蛋白質(zhì)、核酸、生物酶等物質(zhì)的分離純化(表3),并取得了顯著成效.
表3 聚合物-鹽雙水相萃取技術(shù)在生物物質(zhì)分離中的應(yīng)用
表3(續(xù))
2.2.3 天然產(chǎn)物和中草藥有效成分的提取
近年來(lái),ATPE技術(shù)作為一種新型的分離技術(shù)已經(jīng)成功的應(yīng)用于甘草甜素、罌栗堿、培他蘭、花青素、植物血凝素和黃酮等多種天然產(chǎn)物的分離提取(表1.6).我國(guó)是中草藥的發(fā)源地,中草藥亦是我國(guó)的國(guó)藥,是我國(guó)醫(yī)藥學(xué)的一個(gè)重要而獨(dú)特的組成部分.但是,由于中草藥成分復(fù)雜,甚至含有有毒成分,因此必須定向提取、濃縮藥材中的某一種或多種有效成分,以提升中成藥質(zhì)量和臨床療效.近幾年,國(guó)內(nèi)涌現(xiàn)出大量關(guān)于ATPE技術(shù)分離純化中草藥的研究和報(bào)道,為中草藥的提取純化提供了新的技術(shù)方法(表4).
表4 聚合物-鹽雙水相萃取技術(shù)在天然產(chǎn)物和中草藥分離中的應(yīng)用
2.2.4 抗生素的分離提取
抗生素主要是通過(guò)生物合成手段得到的,目標(biāo)產(chǎn)物在轉(zhuǎn)化液中的含量較低,對(duì)酸、堿、有機(jī)溶劑和溫度變化較為敏感,而且容易失活或降解,因此缺乏一種合適的分離與純化技術(shù)已經(jīng)成為制約抗生素高效、快速生產(chǎn)的“瓶頸”.近年來(lái),研究者們已成功地利用ATPS提取了包括青霉素、頭孢菌素、紅霉素、四環(huán)素等在內(nèi)的多種抗生素(見(jiàn)表5).ATPE技術(shù)能夠直接從發(fā)酵液中提取抗生素,實(shí)現(xiàn)了反應(yīng)和提取的同步進(jìn)行,簡(jiǎn)化了工藝流程,加快了生產(chǎn)過(guò)程,提高了生產(chǎn)效率;整個(gè)操作過(guò)程在常溫常壓下完成,操作條件溫和,能夠保持抗生素的分子活性;萃取體系安全、無(wú)毒、無(wú)有機(jī)溶劑殘留,不會(huì)危害工作人員健康和對(duì)環(huán)境造成二次污染.
表5 聚合物-鹽雙水相萃取技術(shù)在抗生素分離中的應(yīng)用
a cholinium-based salt:cholinium chloride,[Ch]Cl; cholinium bicarbonate,[Ch]Bic; cholinium dihydrogencitrate,[Ch]DHcit; cholinium acetate,[Ch]Ac and cholinium dihydrogenphosphate,[Ch]DHph.
ATPS作為一種新型的綠色萃取分離技術(shù),在具有高效、簡(jiǎn)單等優(yōu)勢(shì)的同時(shí),也存在著一定的不足.未來(lái),ATPS的理論和應(yīng)用研究工作主要集中在以下幾個(gè)方面:
(1)完善基礎(chǔ)數(shù)據(jù),對(duì)現(xiàn)有的ATPS,系統(tǒng)的補(bǔ)充實(shí)驗(yàn)數(shù)據(jù),為ATPS的應(yīng)用提供數(shù)據(jù)支持.
(2)擴(kuò)展ATPS,對(duì)可能的成相物質(zhì)進(jìn)行特性分析,尋找新的成相物質(zhì),擴(kuò)展體系范圍,為ATPS的應(yīng)用提供新的體系選擇.
(3)深化理論研究,建立熱力學(xué)、動(dòng)力學(xué)模型,為ATPS的應(yīng)用發(fā)展提供理論支撐.
(4)引入智能成相物質(zhì)(溫敏、光敏或pH敏材料),在循環(huán)利用成相物質(zhì)的同時(shí),易于實(shí)現(xiàn)目標(biāo)物與成相物質(zhì)間的后續(xù)分離.
(4)與生物轉(zhuǎn)化結(jié)合,利用ATPS及時(shí)移走產(chǎn)物,以促進(jìn)生化反應(yīng)和增加產(chǎn)率,實(shí)現(xiàn)生化反應(yīng)與轉(zhuǎn)移、分離、純化同步完成.
(5)與其他技術(shù)的集成,彌補(bǔ)單一技術(shù)的不足,實(shí)現(xiàn)不同技術(shù)之間的相互滲透、相互融合和優(yōu)勢(shì)互補(bǔ),為ATPS技術(shù)注入新的活力.
[1]C.M.S.S. Neves,S.P.M. Ventura,M.G.Freire,et al.Evaluation of Cation Influence on the Formation and Extraction Capability of Ionic-Liquid-Based Aqueous Biphasic Systems[J].J.Phys.Chem.B,2009,113(15):5194~5199.
[2]J.Pawliszyn.New directions in sample preparation for analysis of organic compounds[J].Trends Anal.Chem.,1995,14(3):113~122.
[3]F.Hernandez,I.Morell,J.Beltran,et al.Multiresidue procedure for the analysis of pesticides in groundwater-application to samples from the comunidad-valenciana,spain[J].Chromatographia,1993,37(5-6):303~312.
[4]A.Balinova.Strategies for chromatographic analysis of pesticide residues in water[J].J.Chromatogr.A,1996,754(1-2):125~135.
[5]J.C. Salgado,B.A.Andrews,M.F.Ortuzar,et al.Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition[J].J.Chromatogr.A,2008,1178(1-2):134~144.
[6]H.O.Johansson,F.M.Magaldi,E.Feitosa,et al.Protein partitioning in poly(ethylene glycol)/sodium polyacrylate aqueous two-phase systems[J].J.Chromatogr.A,2008,1178(1-2):145~153.
[7]W.B.Zhi,J.N.Song,F.Ouyang,et al.Application of response surface methodology to the modeling of [alpha]-amylase purification by aqueous two-phase systems[J].J.Biotechnol.,2005,118(2):157~165.
[8]G.Bassani,B.Farruggia,B.Nerli,et al.Porcine pancreatic lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems[J].J.Chromatogr.B,2007,859(2):222~228.
[9]C.A.S. Da Silva,J.S.R Coimbra,E.E.G.Rojas,et al.Partitioning of caseinomacropeptide in aqueous two-phase systems[J].J.Chromatogr.B,2007,858(1-2):205~210.
[10]A.Salabat,M.H.Abnosi,A.R.Bahar.Amino acids partitioning in aqueous two-phase system of polypropylene glycol and magnesium sulfate[J].J.Chromatogr.B,2007,858(1-2):234~238.
[11]A.Salabat,R.Sadeghi,S.T.Moghadam,et al.Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts[J].J.Chem.Thermodyn.,2011,43(10):1525~1529.
[12]I.P.Trindade,M.M.Diogo,D.M.F.Prazeres,et al.Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography[J].J.Chromatogr.A,2005,1082(2):176~184.
[13]H.S.Barbosa,A.V.Hine,S.Brocchini,et al.Dual affinity method for plasmid DNA purification in aqueous two-phase systems[J].J.Chromatogr.A,2010,1217(9):1429~1436.
[14]M.R.Helfrich,M.El-Kouedi,M.R.Etherton,et al.Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems[J].Langmuir,2005,21(18):8478~8486.
[15]L.Bulgariu,D.Bulgariu.Extraction of gold(Ⅲ) from chloride media in aqueous polyethylene glycol-based two-phase system[J].Sep.Purif.Technol.,2011,80(3):620~625.
[16]Z.G.Li,H.Teng,Z.L.Xiu.Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system[J].Process Biochem.,2011,46(2):586~591.
[17]M.Kamihira,A.Kumar.Development of separation technique for stem cells[J].Adv.Biochem.Eng.Biotechnol.,2007,106:173~193.
[18]Y.M.Lu,W.J.Lu,W.Wang,et al.Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system[J].Talanta,2011,85(3):1621~1626.
[19]B.Mokhtarani,R.Karimzadeh,M.H.Amini,et al.Partitioning of ciprofloxacin in aqueous two-phase system of poly(ethylene glycol) and sodium sulphate[J].Biochem.Eng.J.,2008,38(2):241~247.
[20]Y.Y.Jiang,H.S.Xia,J.Yu,et al.Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system[J].Chem.Eng.J.,2009,147(1):22~26.
[21]H.Li,X.J.Cao.Bioconversion of cephalosporin-G to 7-ADCA in a pH-thermo sensitive recycling aqueous two-phase systems[J].Process Biochem.,2011,46(9):1753~1758.
[22]E.C.De Souza,R.S.Diniz,J.S.Dos Reis Coimbra,et al.Measurements and Modeling of Liquid-Liquid Equilibrium of Polyethylene Glycol 400,Sodium Phosphate,or Sodium Citrate Aqueous Two-Phase Systems at (298.2,308.2,and 318.2) K[J].J.Chem.Eng.Data,2013,58(7):2008~2017.
[23]L.P.Malpiedi,C.Fernández,G.Picó,et al.Liquid-liquid equilibrium phase diagrams of polyethyleneglycol + sodium tartrate + water two-phase systems[J].J.Chem.Eng.Data,2008,53:1175~1178.
[24]J.G.Huddleston,H.D.Willauer,R.D.Rogers.Phase diagram data for several PEG + salt aqueous biphasic systems at 25℃[J].J.Chem.Eng.Data,2003,48:1230~1236.
[25]P.Gonzalez-Tello,F.Camacho,G.Blazquez,et al.Liquid-liquid equilibrium in the system poly(ethylene glycol) + MgSO4+ H2O at 298 K[J].J.Chem.Eng.Data,1996,41(6):1333~1336.
[26]W.L.Zhang,Y.T.Hu,Y.Wang,et al.Liquid-liquid equilibrium of aqueous two-phase systems containing poly(ethylene glycol) of different molecular weights and several ammonium salts at 298.15K[J].Thermochim.Acta,2013,560:47~54.
[27]R.S.Diniz,E.C.Souza,J.S.R.Coimbra,et al.Liquid-liquid equilibria of aqueous two-phase systems containing sodium hydroxide plus poly(ethylene glycol) of (1450,4000,or 10 000) g.mol(-1) at (288.2,298.2,and 308.2) K[J].J.Chem.Eng.Data,2012,57(2):280~283.
[28]B.G.Alvarenga,L.S.Virtuoso,N.H.T.Lemes,et al.Measurement and correlation of the phase equilibrium of aqueous two-phase systems composed of polyethylene(glycol) 1500 or 4000 + sodium sulfite + water at different temperatures[J].J.Chem.Eng.Data,2014,59(2):382~390.
[29]T.A.Graber,H.Medina,H.R.Galleguillos,et al.Phase equilibrium and partition of iodide in an aqueous biphasic system formed by (NH4)2SO4+ PEG + H2O at 25℃[J].J.Chem.Eng.Data,2007,52:1262~1267.
[30]R.Govindarajan,M.Perumalsamy.Phase equilibrium of PEG 2000 + triammonium citrate + water system relating PEG molecular weight,cation,anion with effective excluded volume,gibbs free energy of hydration,size of cation,and type of anion at (298.15,308.15,and 318.15) K[J].J.Chem.Eng.Data,2013,58(11):2952~2958.
[31]T.Murugesan,M.Perumalsamy.Liquid-liquid equilibria of poly(ethylene glycol) 2000 + sodium citrate + water at (25,30,35,40,and 45) ℃[J].J.Chem.Eng.Data,2005,50(4):1392~1395.
[32]R.M.De Oliveira,J.S.d.R.Coimbra,K.R.Francisco,et al.Liquid-liquid equilibrium of aqueous two-phase systems containing poly(ethylene) glycol 4000 and zinc sulfate at different temperatures[J].J.Chem.Eng.Data,2008,53(4):919~922.
[33]M.E.Taboada,O.A.Rocha,T.A.Graber,et al.Liquid-liquid and solid-liquid equilibria of the poly(ethylene glycol)+sodium sulfate+water system at 298.15 K[J].J.Chem.Eng.Data,2001,46(2):308~311.
[34]S.P.Amaresh,S.Murugesan,I.Regupathi,et al.Liquid-liquid equilibrium of poly(ethylene glycol) 4000 + diammonium hydrogen phosphate + water at different temperatures[J].J.Chem.Eng.Data,2008,53(7):1574~1578.
[35]T.A.Graber,M.E.Galvez,H.R.Galleguillos.Liquid-liquid equilibrium of the aqueous two-phase system water + PEG 4000 + lithium sulfate at different temperatures:experimental determination and correlation[J].J.Chem.Eng.Data,2004,49(6):1661~1664.
[36]Y.Liu,Y.Q.Feng,Y.J.Zhao.Liquid-liquid equilibrium of various aqueous two-phase systems:experiment and correlation[J].J.Chem.Eng.Data,2013,58(10):2775~2784.
[37]Y.P.Jimenez,H.R.Galleguillos.(Liquid+liquid) equilibrium of (NaNO3+PEG 4000+H2O) ternary system at different temperatures[J].J.Chem.Thermodyn.,2011,43(11):1573~1578.
[38]M.T.Zafarani-Moattar,S.Tolouei.Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol 4000 and dipotassium tartrate,potassium sodium tartrate,or di-potassium oxalate:Experiment and correlation[J].CALPHAD,2008,32(4):655~660.
[39]M.T.Zafarani-Moattar,R.Sadeghi.Phase behavior of aqueous two-phase PEG+NaOH system at different temperatures[J].J.Chem.Eng.Data,2004,49(2):297~300.
[40]M.T.Zafarani-Moattar,A.A.Hamidi.Liquid-liquid equilibria of aqueous two-phase poly(ethylene glycol)-potassium citrate system[J].J.Chem.Eng.Data,2003,48(2):262~265.
[41]M.T.Zafarani-Moattar,S.Hamzehzadeh.Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium succinate or sodium formate[J].CALPHAD,2005,29(1):1~6.
[42]R.Sadeghi,R.Golabiazar.Thermodynamics of phase equilibria of aqueous poly(ethylene glycol) + sodium tungstate two-phase systems[J].J.Chem.Eng.Data,2010,55(1):74~79.
[43]E.V.C.Cunha,M.n.Aznar.Liquid-liquid equilibrium in aqueous two-phase (water + PEG 8000 + salt):experimental determination and thermodynamic modeling[J].J.Chem.Eng.Data,2009,54(12):3242~3246.
[44]M.T.Zafarani-Moattar,R.Sadeghi.Phase diagram data for several PPG + salt aqueous biphasic systems at 25℃[J].J.Chem.Eng.Data,2005,48(5):947~950.
[45]X.H.Zhao,X.Q.Xie,Y.S.Yan.Liquid-liquid equilibrium of aqueous two-phase systems containing poly(propylene glycol) and salt ((NH4)2SO4,MgSO4,KCl,and KAc):experiment and correlation[J].Thermochim.Acta,2011,516(1-2):46~51.
[46]M.T.Zafarani-Moattar,S.Emamian,S.Hamzehzadeh.Effect of temperature on the phase equilibrium of the aqueous two-phase poly(propylene glycol) + tripotassium citrate system[J].J.Chem.Eng.Data,2008,53(2):456~461.
[47]R.Sadeghi,B.Jamehbozorg.The salting-out effect and phase separation in aqueous solutions of sodium phosphate salts and poly(propylene glycol)[J].Fluid Phase Equilib.,2009,280(1):68~75.
[48]R.Sadeghi,B.Jamehbozorg.Effect of temperature on the salting-out effect and phase separation in aqueous solutions of sodium di-hydrogen phosphate and poly(propylene glycol)[J].Fluid Phase Equilib.,2008,271(1-2):13~18.
[49]A.Salabat,H.Dashti.Phase compositions,viscosities and densities of systems PPG425+Na2SO4+H2O and PPG425+(NH4)2SO4+ H2O at 298.15 K[J].Fluid Phase Equilib.,2004,216(1):153~157.
[50]E.L.Cheluget,S.Gelinas,J.H.Vera ,et al.Liquid-liquid equilibrium of aqueous mixtures of poly(propylene glycol) with NaCl[J].J.Chem.Eng.Data,1994,39(1):127~130.
[51]A.Salabat,L.Shamshiri,J.J.Sardrodi.Liquid-liquid equilibrium data,viscosities,and densities of.aqueous mixtures of poly(propylene glycol) with trisodium citrate at 298.15 K[J].J.Chem.Eng.Data,2005,50(1):154~156.
[52]M-K.Shahbazinasab,F.Rahimpour.Liquid-liquid equilibrium data for aqueous two-phase systems containing PPG725 and salts at various pH values[J].J.Chem.Eng.Data,2012,57(7):1867~1874.
[53]N.Fedicheva,L.Ninni,G.Maurer.Aqueous two-phase systems of poly(vinyl pyrrolidone)and sodium sulfate:experimental results and correlation/prediction[J].J.Chem.Eng.Data,2007,52(5):1858~1865.
[54]M.T.Zafarani-Moattar,A.Zaferanloo.Measurement and correlation of phase equilibria in aqueous two-phase systems containing polyvinylpyrrolidone and di-potassium tartrate or di-potassium oxalate at different temperatures[J].J.Chem.Thermodyn.,2009,41(7):864~871.
[55]M.T.Zafarani-Moattar,P Seifi-Aghjekohal.Liquid-liquid equilibria of aqueous two-phase systems containing polyvinylpyrrolidone and tripotassium phosphate or dipotassium hydrogen phosphate:Experiment and correlation.[J].CALPHAD,2007,31(4):553~559.
[56]R.Sadeghi,H R.Rafieia,M.Motamedia.Phase equilibrium in aqueous two-phase systems containing poly(vinylpyrrolidone) and sodium citrate at different temperatures-experimental and modeling[J].Thermochim.Acta,2006,451(1-2):163~167.
[57]R.Sadeghi.Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate at different temperatures--Experimental results and modeling of liquid-liquid equilibrium data[J].Fluid Phase Equilib.,2006,246(1-2):89~95.
[58]M.T.Zafarani-Moattara,R.Sadeghib.Effect of temperature on the phase equilibrium of aqueous two-phase systems containing polyvinylpyrrolidone and disodium hydrogen phosphate or trisodium phosphate[J].Fluid Phase Equilib.,2005,238(1):129~135.
[59]R.Sadeghi.Measurement and correlation of phase equilibria for several PVP+salt aqueous two-phase systems at 303.15K[J].Fluid Phase Equilib.,2005,237(1-2):40~47.
[60]M.Foroutan.Liquid-Liquid equilibria of aqueous two-phase poly(vinylpyrrolidone) and K2HPO4/KH2PO4buffer:effects of pH and temperature[J].J.Chem.Eng.Data,2007,52(3):859~862.
[61]Y.Wang,Y.C.Wu,L.Ni,et al.Liquid-liquid equilibria of polyvinylpyrrolidone + several ammonium salts + water aqueous two-phase systems:experimental and correlation[J].J.Chem.Eng.Data,2012,57(11):3128~3135.
[62]J.P.Martins,A.B.Mageste,M.d.C.H.da Silva,et al.Liquid-liquid equilibria of an aqueous two-phase system formed by a triblock copolymer and sodium salts at different temperatures[J].J.Chem.Eng.Data,2009,54(10):2891~2894.
[63]J.P.Martins,M.d.C.H.da Silva,L.H.M.da Silva,et al.Liquid-liquid phase equilibrium of triblock copolymer F68,poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide),with sulfate salts[J].J.Chem.Eng.Data,2010,55(4):1618~1622.
[64]L.H.M.Da Silva,M.d.C.H.Da Silva,A.F.Mesquita,et al.Equilibrium phase behavior of triblock copolymer + salt + water two-phase systems at different temperatures and pH[J].J.Chem.Eng.Data,2005,50(4):1457~1461.
[65]M.D.H.Da Silva,L.H.M.Da Silva,J.Amim,et al.Liquid-liquid equilibrium of aqueous mixture of triblock copolymers L35 and F68 with Na2SO4,Li2SO4,or MgSO4[J].J.Chem.Eng.Data,2006,51(6):2260~2264.
[66]L.S.Virtuoso,K.A.S.F.Vello,A.A.de Oliveira,et al.Measurement and modeling of phase equilibrium in aqueous two-phase systems:L35 + sodium citrate + water,L35 sodium tartrate +water,and L35 + sodium hydrogen sulfite + water at different temperatures[J].J.Chem.Eng.Data,2012,57(2):462~468.
[67]G.D.Rodrigues,M.d.C.H.da Silva,L.H.M.da Silva,et al.Liquid-liquid phase equilibrium of triblock copolymer L64,poly(ethylene oxide-b-propylene oxide-b-ethylene oxide),with sulfate salts from (278.15 to 298.15) K[J].J.Chem.Eng.Data,2009,54(6):1894~1898.
[68]L.S.Virtuoso,L.M.d.S.Silva,B.S.Malaquias,et al.Equilibrium phase behavior of triblock copolymer + sodium or + potassium hydroxides + water two-phase systems at different temperatures[J].J.Chem.Eng.Data,2010,55(9):3847~3852.
[69]G.D.Rodrigues,L.d.S.Teixeira,G.M.D.Ferreira,et al.Phase diagrams of aqueous two-phase systems with organic salts and F68 triblock copolymer at different temperatures[J].J.Chem.Eng.Data,2010,55(3):1158~1165.
[70]R.Ghahremani,F.Rahimpour.Equilibrium phase behavior of aqueous two-phase systems containing ethylene oxide-propylene oxide of different molecular weight (2500,12000) and sodium citrate salt at various temperatures and pH[J].J.Chem.Eng.Data,2014,59(2):218~224.
[71]M.T.Zafarani-Moattar,D.Nikjoo.Liquid-liquid and liquid-liquid-solid equilibrium of the poly(ethylene glycol) dimethyl ether 2000 + sodium sulfate + water system[J].J.Chem.Eng.Data,2008,53(11):2666~2670.
[72]M.T.Zafarani-Moattar,V.Hosseinpour-Hashemi.(Liquid+liquid) equilibrium of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium citrate at different temperatures[J].J.Chem.Thermodyn.,2012,48(57):75~83.
[73]M.T.Zafarani-Moattar,V.Hosseinpour-Hashemi.Effect of temperature on the aqueous two-phase system containing poly(ethylene glycol) dimethyl ether 2000 and dipotassium oxalate[J].J.Chem.Eng.Data,2012,57(2):532~540.
[74]M.T.Zafarani-Moattar,D.Nikjoo.Phase diagrams for liquid-liquid and liquid-solid equilibrium of the ternary poly(ethylene glycol) dimethyl ether 2000 + sodium carbonate + water system[J].J.Chem.Eng.Data,2009,54(10):2918~2922.
[75]T.I.Zvarova,V.M.Shkinev,G.A.Vorob'eva,et al.Liquid-Liquid Extraction in the Absence of Usual Organic Solvents:Application of Two-Phase Aqueous Systems Based on a Water-Soluble Polymer[J].Mikrochimica Acta,1984,84(3):449~458.
[76]M.Shibukawa,N.Nakayama,T.Hayashi,et al.Extraction behaviour of metal ions in aqueous polyethylene glycol-sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions[J].Anal.Chim.Acta,2001,427:293~300.
[77]L.Bulgariu,D.Bulgariu.Selective extraction of Hg(Ⅱ),Cd(Ⅱ) and Zn(Ⅱ) ions from aqueous media by a green chemistry procedure using aqueous two-phase systems[J].Sep.Purif.Technol.,2013,118:209~216.
[78]L.Bulgariu,D.Bulgariu.Extraction of metal ions in aqueous polyethylene glycol-inorganic salt two-phase systems in the presence of inorganic extractants:correlation between extraction behaviour and stability constants of extracted species[J].J.Chromatogr.A,2008,1196-1197:117~124.
[79]黃振鐘,吳欣欣,陳莉莉等.PEG-(NH4)2SO4-8Q5SAC雙水相分光光度法測(cè)定工業(yè)廢水中的微量銅[J].江西師范大學(xué)學(xué)報(bào),2006,30(2):145~147.
[80]蔡紅,許秀麗,朱軍等.偶氮胂Ⅰ雙水相萃取分離釷、鈾、鑭、釩、鉬的研究[J].稀有金屬,2003,27(2):265~267.
[81]鄧凡政,魏迎,陳影等.雙水相體系中Cu(Ⅱ),La(Ⅲ),U(VI),Ce(IV)光譜行為及萃取分離[J].光譜學(xué)與光譜分析,2004,24(12):1637~1639.
[82]王碧,阮尚全,覃松等.聚乙二醇-硫酸銨體系雙水相萃取光度法測(cè)定鈀[J].四川大學(xué)學(xué)報(bào),2003,40(1):108~111.
[83]陳玉煥,盧雁,張秀英等.銦在聚乙二醇-硫酸銨雙水相體系中的分配[J].化學(xué)通報(bào),2003,66(1):63~66.
[84]謝治民,方正軍,李勇等.聚乙二醇-硫酸銨雙水相萃取分離測(cè)定鉻(VI)的研究[J].湖南工程學(xué)院學(xué)報(bào),2008,18(4):69~72.
[85]練萍,李 蕾,薛珺.PEG600-PVP-(NH4)2SO4-H2O雙水相體系萃取Cu2+[J].贛南師范學(xué)院學(xué)報(bào),2003,3:49~50.
[86]R.Patricio Pda,M.C.Mesquita,L.H.da Silva,et al.Application of aqueous two-phase systems for the development of a new method of cobalt(Ⅱ),iron(Ⅲ) and nickel(Ⅱ) extraction:a green chemistry approach[J].J.Hazard.Mater.,2011,193:311~318.
[87]G.D.Rodrigues,M.d.C.H.da Silva,L.H.M.da Silva,et al.Liquid-liquid extraction of metal ions without use of organic solvent[J].Sep.Purif.Technol.,2008,62(3):687~693.
[88]L.R.Lemos,I.J.Santos,G.D.Rodrigues,et al.Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system[J].J.Hazard.Mater.,2012,237-238:209~214.
[89]G.D.Rodrigues,L.R.de Lemos,L.H.da Silva,et al.Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt,nickel and cadmium[J].J.Chromatogr.A,2013,1279:13~19.
[90]S.Saravanan,J.R.Rao,T.Murugesan,et al.Partition of tannery wastewater proteins in aqueous two-phase poly (ethylene glycol)-magnesium sulfate systems:Effects of molecular weights and pH[J].Chem.Eng.Sci.,2007,62(4):969~978.
[91]T.Karka? ,S.?nal.Characteristics of invertase partitioned in poly(ethylene glycol)/magnesium sulfate aqueous two-phase system[J].Biochem.Eng.J.,2012,60:142~150.
[92]M.C.Madhusudhan,K.S.M.S.Raghavarao.Aqueous two phase extraction of invertase from baker's yeast:Effect of process parameters on partitioning[J].Process Biochem.,2011,46(10):2014~2020.
[93]P.Chaiwut,S.Rawdkuen,S.Benjakul.Extraction of protease from Calotropis procera latex by polyethylene glycol-salts biphasic system[J].Process Biochem.,2010,45(7):1148~1155.
[94]S.Rawdkuen,P.Pintathong,P.Chaiwut,et al.The partitioning of protease from Calotropis procera latex by aqueous two-phase systems and its hydrolytic pattern on muscle proteins[J].Food Bioprod.Process.,2011,89(1):73~80.
[95]S.Ketnawa,S.Rawdkuen,P.Chaiwut.Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar[J].Biochem.Eng.J.,2010,52(2-3):205~211.
[96]A.L.Ahmad,C.J.C.Derek,M.M.D.Zulkali.Optimization of thaumatin extraction by aqueous two-phase system (ATPS) using response surface methodology (RSM)[J].Sep.Purif.Technol.,2008,62(3):702~708.
[97]M.E.d.Silva,T.T.Franco.Purification of soybean peroxidase (Glycine max) by metal affinity partitioning in aqueous two-phase systems[J].J.Chromatogr.B,2000,743:287~294.
[98]B.S.Priyanka,N.K.Rastogi,K.S.M.S.Raghavarao,et al.Optimization of extraction of luciferase from fireflies (Photinus pyralis) using aqueous two-phase extraction[J].Sep.Purif.Technol.,2013,118:40~48.
[99]P.N.Herculano,T.S.Porto,M.H.C.Maciel,et al.Partitioning and purification of the cellulolytic complex produced by Aspergillus japonicus URM5620 using PEG-citrate in an aqueous two-phase system[J].Fluid Phase Equilib.,2012,335:8~13.
[100]K.Bhavsar,V.Ravi Kumar,J.M.Khire.Downstream processing of extracellular phytase from Aspergillus niger:Chromatography process vs.aqueous two phase extraction for its simultaneous partitioning and purification[J].Process Biochem.,2012,47(7):1066~1072.
[101]A.M.Azevedo,A.G.Gomes,P.A.J.Rosa,et al.Partitioning of human antibodies in polyethylene glycol-sodium citrate aqueous two-phase systems[J].Sep.Purif.Technol.,2009,65(1):14~21.
[102]L.P.Malpiedi,D.Romanini,G.A.Picó,et al.Purification of trypsinogen from bovine pancreas by combining aqueous two-phase partitioning and precipitation with charged flexible chain polymers[J].Sep.Purif.Technol.,2009,65(1):40~45.
[103]H.S.Ng,C.P.Tan,S.K.Chen,et al.Primary capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous two phase system[J].Sep.Purif.Technol.,2011,81(3):318~324.
[104]Y.M.Lu,Y.Z.Yang,X.D.Zhao,et al.Bovine serum albumin partitioning in polyethylene glycol (PEG)/potassium citrate aqueous two-phase systems[J].Food Bioprod.Process.,2010,88(1):40~46.
[105]B.R.Babu,N.K.Rastogi,K.S.M.S.Raghavarao.Liquid-liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system[J].Chem.Eng.Process.,2008,47(1):83~89.
[106]J.G.L.F.Alves,L.D.A.Chumpitaz,L.H.M.d.Silva,et al.Partitioning of whey proteins,bovine serum albumin and porcine insulin in aqueous two-phase systems[J].J.Chromatogr.B,2000,743:235~239.
[107]K.Kimura.Simultaneous accumulation of low-molecular-mass RNA at the interface along with accumulation of high-molecular-mass RNA on aqueous two-phase system partitioning[J].J.Chromatogr.B,2000,743:421~442.
[108]K.C.Ross,C.Zhang.Separation of recombinant β-glucuronidase from transgenic tobacco by aqueous two-phase extraction[J].Biochem.Eng.J.,2010,49(3):343~350.
[109]G.M.F.Braas,S.G.Walker,A.Lyddiatt.Recovery in aqueous two-phase systems of nanoparticulates applied as surrogate mimics for viral gene therapy vectors[J].J.Chromatogr.B,2000,743:409~419.
[110]T.d.Gouveia,B.V.Kilikian.Bioaffinity extraction of glucoamylase in aqueous two-phase systems using starch as free bioligand[J].J.Chromatogr.B,2000,743:241~246.
[111]B.Kavak?glu,L.Tarhan.Initial purification of catalase from Phanerochaete chrysosporium by partitioning in poly(ethylene glycol)/salt aqueous two phase systems[J].Sep.Purif.Technol.,2013,105:8~14.
[112]D.Garai,V.Kumar.Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system:Optimization by Box-Behnken design approach[J].Biocatalysis and Agricultural Biotechnology,2013,2(2):125~131.
[113]F.C.De Oliveira,J.S.Dos Reis Coimbra,L.H.M.Da Silva,et al.Ovomucoid partitioning in aqueous two-phase systems[J].Biochem.Eng.J.,2009,47(1-3):55~60.
[114]U.Sivars,J.Abramson,S.Iwata,et al.Affinity partitioning of a poly(histidine)-tagged integral membrane protein,cytochrome bo3 ubiquinol oxidase,in a detergent-polymer aqueous two-phase system containing metal-chelating polymer[J].J.Chromatogr.B,2000,743:307-316.
[115]M.Rito-Palomares,A.Negrete,E.Galindo,et al.Aroma compounds recovery from mycelial cultures in aqueous two-phase processes[J].J.Chromatogr.B,2000,743:403~408.
[116]B.U.Rosso,C.d.A.Lima,T.S.Porto,et al.Partitioning and extraction of collagenase from Penicillium aurantiogriseum in poly(ethylene glycol)/phosphate aqueous two-phase system[J].Fluid Phase Equilib.,2012,335:20~25.
[117]C.A.Lima,A.C.V.F.Júnior,J.L.L.Filho,et al.Two-phase partitioning and partial characterization of a collagenase from Penicillium aurantiogriseum URM4622:Application to collagen hydrolysis[J].Biochem.Eng.J.,2013,75:64~71.
[118]Q.K.Shang,W.Li,Q.Jia,et al.Partitioning behavior of amino acids in aqueous two-phase systems containing polyethylene glycol and phosphate buffer[J].Fluid Phase Equilib.,2004,219(2):195~203.
[119]S.Shahriari,V.Taghikhani,M.Vossoughi,et al.Measurement of partition coefficients of β-amylase and amyloglucosidase enzymes in aqueous two-phase systems containing poly(ethylene glycol) and Na2SO4/KH2PO4at different temperatures[J].Fluid Phase Equilib.,2010,292(1-2):80~86.
[120]M.A.Bim,T.T.Franco.Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching[J].J.Chromatogr.B,2000,743:349~356.
[121]S.A.Costa,Jr.A.Pessoa,I.C.a.Roberto.Partitioning of xylanolitic complex from Penicillium janthinellum by an aqueous two-phase system[J].J.Chromatogr.B,2000,743:339~348.
[122]S.Engel,Z.Barak,D.M.Chipman,et al.Purification of acetohydroxy acid synthase by separation in an aqueous two-phase system[J].J.Chromatogr.B,2000,743:281~286.
[123]H.S.Ng,C.P.Tan,M.N.Mokhtar,et al.Recovery of Bacillus cereus cyclodextrin glycosyltransferase and recycling of phase components in an aqueous two-phase system using thermo-separating polymer[J].Sep.Purif.Technol.,2012,89:9~15.
[124]M.C.De Oliveira,M.A.H.De Abreu Filho,P.d.A.Pessa Filho.Phase equilibrium and protein partitioning in aqueous two-phase systems containing ammonium carbamate and block copolymers PEO-PPO-PEO[J].Biochem.Eng.J.,2007,37(3):311~318.
[125]H-G.Xie,Y-J.Wang,M.Sun.Modeling of the partitioning of membrane protein and phase equilibria for Triton X-100-salt aqueous two-phase systems using a modified generalized multicomponent osmotic virial equation[J].Process Biochem.,2006,41(3):689~696.
[126]J.F.B.Pereira,V.C.Santos,H-O.Johansson,et al.A stable liquid-liquid extraction system for clavulanic acid using polymer-based aqueous two-phase systems[J].Sep.Purif.Technol.,2012,98:441~450.
[127]P.A.G.Soares,C.O.Nascimento,T.S.Porto,et al.Purification of a lectin from Canavalia ensiformis using PEG-citrate aqueous two-phase system[J].J.Chromatogr.B,2011,879(5-6):457~460.
[128]C.S.Porto,T.S.Porto,K.S.Nascimento,et al.Partition of lectin from Canavalia grandiflora Benth in aqueous two-phase systems using factorial design[J].Biochem.Eng.J.,2011,53(2):165~171.
[129]C.O.Nascimento,P.A.G.Soares,T.S.Porto,et al.Aqueous two-phase systems:new strategies for separation and purification of lectin from crude extract of Cratylia mollis seeds[J].Sep.Purif.Technol.,2013,116:154~161.
[130]S.Chethana,C.A.Nayak,K.S.M.S.Raghavarao.Aqueous two phase extraction for purification and concentration of betalains[J].J.Food Eng.,2007,81(4):679~687.
[131]Q.Cao,S.Li,C.He,et al.Extraction and determination of papaverin in pericarpium papaveris using aqueous two-phase system of poly(ethylene glycol)-(NH4)2SO4coupled with high-performance liquid chromatography[J].Anal.Chim.Acta,2007,590(2):187~194.
[132]謝 濤,王雯娟,吳如春等.PEG/(NH4)2SO4雙水相體系萃取甘草中的有效成分[J].化學(xué)研究與應(yīng)用,2005,17(2):230~232.
[133]石 慧,陳媛梅.PEG/(NH4)2SO4雙水相體系在加楊葉總黃酮萃取分離中的應(yīng)用[J].現(xiàn)代生物醫(yī)學(xué)進(jìn)展,2008,8(5):854~857.
[134]趙愛(ài)麗,陳曉青,蔣新宇.應(yīng)用雙水相萃取法分離黃芩苷的研究[J].中成藥,2008,30(4):498~501.
[135]濤 謝,廖安平,易元龍等.雙水相萃取三七中三七皂苷的研究[J].中藥材,2008,31(4):535~537.
[136]K.S.Nascimento,P.A.J.Rosa,K.S.Nascimento,et al.Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology[J].Sep.Purif.Technol.,2010,75(1):48~54.
[137]Q.Huo,Q.A.Lin,W.Gao,et al.Measurement and correlation of partition coefficients of glycyrrhizic in aqueous two-phase EOPO/K2HPO4systems[J].Asian J.Chem.,2010,22(6):4496~4500.
[138]戚 琦,李 蕾,李 勛等.聚乙二醇800-PVP雙水相體系萃取熒光測(cè)定阿司匹林腸溶片中水楊酸[J].光譜實(shí)驗(yàn)室,2005.01,22(1):103~105.
[139]M.M.Bora,S.Borthakur,P.C.Rao,et al.Aqueous two-phase partitioning of cephalosporin antibiotics:effect of solute chemical nature[J].Sep.Purif.Technol.,2005,45(2):153~156.
[140]C.Aguirre,I.Concha,J.Vergara,et al.Partition and substrate concentration effect in the enzymatic synthesis of cephalexin in aqueous two-phase systems[J].Process Biochem.,2010,45(7):1163~1167.
[141]Y.Ni,J.Zhou,Z.Sun.Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp.in an aqueous two-phase system[J].Process Biochem.,2012,47(7):1042~1048.
[142]S.G.Doozandeh,G.Pazuki,B.Madadi,et al.Measurement of cephalexin partition coefficients in PEG+K2HPO4+H2O aqueous two-phase systems at 301.15,306.15 and 311.15K[J].J.Mol.Liq.,2012,174:95~99.
[143]朱自強(qiáng),關(guān)怡新,李 勉.雙水相系統(tǒng)在抗生素提取和合成中的應(yīng)用[J].化工學(xué)報(bào),2011,52(12):1029~1048.
[144]M.C.B.Pimentel,A.I.Araújo,Z.M.B.Figueiredo,et al.Aqueous two-phase system for citrinin extraction from fermentation broth[J].Sep.Purif.Technol.,2013,110:158~163.
[145]J.F.B.Pereira,F.Vicente,V.C.Santos-Ebinuma,et al.Extraction of tetracycline from fermentation broth using aqueous two-phase systems composed of polyethylene glycol and cholinium-based salts[J].Process Biochem.,2013,48(4):716~722.
[146]B.Chen,J.Han,Y.Wang,et al.Separation,enrichment and determination of ciprofloxacin using thermoseparating polymer aqueous two-phase system combined with high performance liquid chromatography in milk,egg,and shrimp samples[J].Food Chem.,2014,148:105~111.
[147]X.Xie,Y.Wang,J.Han,et al.Extraction mechanism of sulfamethoxazole in water samples using aqueous two-phase systems of poly(propylene glycol) and salt[J].Anal.Chim.Acta,2011,687(1):61~66.
Polymer-SaltAqueousTwo-PhaseTechnologyanditsResearchProgress
YANYong-sheng1,LUYang1,2,HANJuan1,WANGYun1
(1.School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang 212013,China;2.College of Computer,Jilin Normal University,Siping 136000,China)
Aqueous two phase extration is a new and green separation and enrichment technology,and it has some advantages,such as simple,timesaving,efficient,green and eco-friendly,and it has been applied to the quantitative separation and extraction of metal ions,separation and purification of bioactivator and extraction of natural product.The existent aqueous two-phase system included polymer-polymer aqueous two-phase system,polymer-salt aqueous two-phase system,ionic liquid-salt aqueous two-phase system and micromolecule organic solvent-salt aqueous two-phase system.Because organic solvent is volatile and instable,the price of ionic liquid is higher and the viscosity of system containing two polymer is larger,the application of these three types of aqueous two-phase systems in large-scale industrial production was affected.One polymer of polymer-polymer aqueous two-phase system was replaced by salt,and it is polymer-salt aqueous two-phase system.The cost and viscosity of polymer-salt aqueous two-phase system is cheaper,and it has the advantage of good biocompatibility.It is applied in the separation and enrichment of bioactivator,natural product and antibiotic,and has high-exploited value and broad prospects on its application.In this paper,the research progress on the polymer-salt aqueous two-phase system was given,and hoping that is will be of help fo further research.
aqueous two-phase system;polymer;salt
郎集會(huì))
2014-06-07
國(guó)家自然科學(xué)基金(21076098,21206059);教育部博士點(diǎn)基金(20133227120006);江蘇省自然科學(xué)基金(BK2011529,BK20141289);國(guó)家博士后科學(xué)基金(2013M531284)
閆永勝(1962-),男,吉林省東豐縣人,現(xiàn)為江蘇大學(xué)化學(xué)化工學(xué)院教授,博士,博士生導(dǎo)師.研究方向: 環(huán)境化學(xué)及環(huán)境分析化學(xué).
O642.4
A
1674-3873-(2014)03-0006-11