国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

查漏補缺之平面向量、解三角形

2013-12-29 00:00:00童殷

平面向量作為工具在高中數(shù)學(xué)中有著廣泛的運用,也是高考考查的重點內(nèi)容之一,因此能否熟練、靈活地運用向量知識也就顯得尤為重要. 為了讓同學(xué)們能更好地掌握它,本文梳理總結(jié)了向量的基礎(chǔ)知識和重難點,希望能對大家有所幫助.

1. 平面向量的基本概念

(1)你能說出與零向量有關(guān)的一些結(jié)論嗎?

作答:______________________

(2)你還記得向量a的單位向量的定義嗎?非零向量a的單位向量如何表示?

作答:______________________

(3)你還記得相等向量嗎?

作答:______________________

(4)你知道平行向量和共線向量的區(qū)別嗎?

作答:______________________

(1)0的方向是任意的;a=0?圳a+(-a)=0;以正n(n≥3,n∈N)邊形的中心為始點、各頂點為終點的n個向量的和為零向量;0與任一向量平行(共線).

(3)a=b且a,b同向?圳a=b.

(4)當(dāng)向量可自由平移后,平行向量為共線向量.

2. 平面向量的線性運算

(1)你記得向量的加法法則與減法法則嗎?

作答:________________1hhghMdIvP6PkGUG7iW/cHagOsndCY0EauQ1MKTNfOc=______

(2)當(dāng)λ>0時,λa與a方向相同;當(dāng)λ<0時,λa與a方向相反;當(dāng)λ=0時,λa=0.

3. 平面向量的基本定理

(1)平面向量的基本定理和共線定理你熟記了嗎?

作答:______________________

(2)你知道平面向量的基本定理和共線定理的用途嗎?

作答:______________________

(1)①平面向量的基本定理:e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一組基底;

②共線定理:如果b≠0,則a∥b?圳a=λb(λ∈R且唯一).

(2)用途:

①判斷若干個向量是否共線;

②把平面內(nèi)的任一向量用平面內(nèi)的一組基底表示;

③求參數(shù)的取值.

4. 平面向量的坐標(biāo)運算

(1)你記得平面向量的坐標(biāo)運算嗎?

作答:______________________

(2)你知道平面向量平行(共線)的坐標(biāo)表示嗎?

作答:______________________

(2)設(shè)a=(x1,y1),b=(x2,y2)(b≠0),則a∥b?圳x1y2-x2y1=0.

5. 平面向量的數(shù)量積及其應(yīng)用

設(shè)a=(x1,y1),b=(x2,y2)是兩個非零向量,夾角為θ(或〈a,b〉).

(1)兩個非零向量的夾角的定義及其取值范圍你還記得嗎?它們的數(shù)量積是如何定義的?

作答:______________________

(2)一個向量在另外一個向量方向上的投影指的是什么?其正負(fù)值如何確定?

作答:______________________

(3)對于向量的應(yīng)用,你記得哪些?

作答:______________________

(3)證明平行問題,包括相似問題,常用向量平行(或共線)的充要條件:

a∥b?圳a=λb?圳x1y2-x2y1=0(b≠0);

證明垂直問題,常用向量垂直的充要條件:

a⊥b?圳a·b=0?圳x1x2+y1y2=0;

求夾角或判斷夾角問題,常利用夾角公式:

6. 正弦、余弦定理及其應(yīng)用

(1)正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉(zhuǎn)化來解斜三角形?

作答:______________________

(2)你知道三角形的面積公式嗎?

作答:______________________

乌鲁木齐县| 漳平市| 博野县| 九江县| 庆城县| 资兴市| 宿州市| 阿拉尔市| 龙州县| 西华县| 皮山县| 绩溪县| 三台县| 通河县| 古丈县| 汉阴县| 财经| 建瓯市| 辉县市| 华容县| 定陶县| 通化市| 桃园县| 南华县| 祁阳县| 德清县| 新营市| 靖江市| 什邡市| 额济纳旗| 陆河县| 静乐县| 弋阳县| 马关县| 乌审旗| 广汉市| 新闻| 黄大仙区| 左权县| 循化| 芷江|