王 琪
(貴陽學(xué)院數(shù)學(xué)系,中國 貴陽 550005)
文獻(xiàn)[1~2]首先研究了正曲率空間形式中緊致閉子流形為全臍或有全臍乘積分解的一種充分條件.隨后,文獻(xiàn)[3~4]等對此作了進(jìn)一步研究.之后,文獻(xiàn)[5]研究了空間形式中常純量曲率的完備非緊子流形.
定理1[5]設(shè)Mn是空間形式Sn+p(1)中連通的完備非緊等距浸入子流形且單位平均曲率向量在法叢中平行.若Mn有常數(shù)純量曲率R且R≥n(n-1),則有如下結(jié)論:
本文進(jìn)一步得到如下定理A,定理A推廣并改進(jìn)了定理1的結(jié)論.
Mn的黎曼曲率張量Rijkl,法曲率張量Rαβij及純量曲率R有如下關(guān)系[1-13]
(1)
(2)
(3)
且有下列關(guān)系
(4)
我們需要考慮Mn上二階微分算子如下
(5)
其中fij是f在Mn上的二階協(xié)變微分.
(6)
本文需要用如下一些基本引理.
引理3當(dāng)n≥3時,有
引理4當(dāng)n≥2且p≥1時,有
引理5當(dāng)n≥8時,或當(dāng)n≥3且p≤2時,有
證p≤2意味著諸Lα可以同時對角化.由此易得.
引理6當(dāng)n=2,p≥1時,有
證n=2時,由引理4的不等式右邊第4項(xiàng)小括號中可以算出.
(7)
并且有如下結(jié)論.
(8)
(8)式兩邊取模長平方并用(7)式和Schwartz不等式,可得
(9)
由(9)式和aR+bH=c可得
(10)
(11)
(12)
由式(11)和(12)有
(13)
下面分3種情況討論.
(1)當(dāng)n≥8,p≥1時,或者當(dāng)n≥3,p≤2時,由引理3和5易得
(2)當(dāng)3≤n≤7時,由引理3和4易得
(3) 當(dāng)n=2,p≤2時,由引理7和8易得
當(dāng)n=2,p≥3時,由引理6和7易得
參考文獻(xiàn):
[1] YAU S T. Sub-manifolds with parallel mean curvature I [J].Amer J Math, 1974,96(2):346-366.
[2] YAU S T. Sub-manifolds with parallel mean curvature II [J].Amer J Math, 1975,97(1):76-100.
[3] SHEN Y B. Sub-manifolds with nonnegative sectional curvature [J].China Ann Math, 1984,5B(4):625-632.
[4] 林森春. 純量曲率和平均曲率成線性關(guān)系的完備超曲面[J].數(shù)學(xué)年刊,1989,10A(3):333-344.
[5] ZHONG H H. Sub-manifolds of constant scalar curvature in a space form[J].Kyun Math J, 1998,38(3):438-458.
[6] LI A M, LI J M. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Ark Math, 1992,58(3):582-594.
[7] LI H Z. Global rigidity theorems of hypersurfaces [J].Ark Math, 1997,35(2):327-351.
[8] CHERN B L, ZHU X P. Complete Riemannian manifolds with point-wise pinched curvature [J].Math Ann, 2003,327(1):1-23.
[9] BAO D, CHERN S S, CHERN Z. An introduction to Riemannian-Finsler geometry[M].New York: Springer-Verlag, 2000.
[10] ANDERSON M T, SCHOEN R. Positive harmonic functions on complete manifolds of negative curvature[J].Ann Math, 1985,121(3):429-461.
[11] CHENG S Y. On the upper estimate of the heat kernel of a complete Riemannian manifold[J].J Math, 1981,103(5):1021-1063.
[12] SPERB R P. Maximum principles and their applications[M].New York:Academic Press, 1981.
[13] GILBARG G, TRUDINGER N S. Elliptic partial differential equations of second order[M].2nd Ed. New York:Springer-Verlag, 1983.