黃 瑩, 李雅穎, 姚槐應(yīng), 2
(1 浙江大學(xué)環(huán)境與資源學(xué)院, 杭州 310058; 2 中國(guó)科學(xué)院城市環(huán)境研究所,福建廈門 361021)
強(qiáng)酸性茶園土壤中添加不同肥料氮后N2O釋放量變化
黃 瑩1, 李雅穎2*, 姚槐應(yīng)1, 2
(1 浙江大學(xué)環(huán)境與資源學(xué)院, 杭州 310058; 2 中國(guó)科學(xué)院城市環(huán)境研究所,福建廈門 361021)
茶園由于長(zhǎng)期偏施氮肥,造成土壤酸化現(xiàn)象嚴(yán)重和N2O大量排放。本文對(duì)強(qiáng)酸性茶園土壤進(jìn)行不同氮肥處理試驗(yàn),結(jié)果表明, 通過31 d的好氣培養(yǎng),各施肥處理均顯著提高N2O排放, 其中施硝酸鉀(KNO3)處理平均每天排放的N2O最高,總排放量為對(duì)照(CK)的17倍,其次是硝酸銨(NH4NO3)處理, 尿素[CO(NH2)2]和硫酸銨[(NH4)2SO4]處理雖然能增加N2O排放,但遠(yuǎn)遠(yuǎn)小于硝酸鉀處理。對(duì)各氮肥處理硝化勢(shì)的測(cè)定表明,尿素、 硫酸銨和硝酸銨處理均明顯增加土壤硝化活性,而硝酸鉀處理硝化勢(shì)與對(duì)照相比顯著降低。強(qiáng)酸性茶園土壤中N2O排放的主要來源是反硝化作用。氧化亞氮還原酶(nosZ)的定量PCR分析表明,硝酸鉀處理的nosZ基因拷貝數(shù)與對(duì)照相比顯著降低(P<0.05)。因此,強(qiáng)酸性土壤中N2O還原酶活性被NO3-抑制是導(dǎo)致高N2O排放的重要原因之一。
茶園土; 不同氮肥處理; N2O排放;nosZ基因; 定量PCR
Abstract: In recent years the long-term application of large amount of nitrogen fertilizers has led to the serious acidification of tea orchard soils with high N2O emission. In this study, different N fertilizers were applied to a highly acid tea orchard soil to evaluate the effects of N fertilizers on N2O emission. The results suggest that all the treatments increase N2O production significantly by the 31 days’ aerobic incubation. The average N2O emission from the KNO3treatment is the highest and total emission is 17 times higher than that of the control. The N2O emission of the NH4NO3treatment is the next. The total N2O productions from the urea[CO(NH2)2] and (NH4)2SO4treatments are stimulated but the N2O emissions are significantly lower than that of the KNO3treatment. The Urea, (NH4)2SO4and NH4NO3treatments significantly stimulate soil nitrification activity, while the KNO3treatment decreases nitrification potential. The results that denitrification is the dominant source of N2O emission in the highly acid tea orchard soil. To find out the microbial mechanism, quantitative PCR of the functional gene of nitrous oxide reductase(nosZ) was determined. The results suggest thatnosZgene copies from the KNO3treatment are significantly(P<0.05) lower than those of the control. Therefore, the inhibition of N2O reductase is one of the important factors to induce the high N2O emission in the highly acid soil.
Keywords: tea orchard soil; nitrogen fertilizer treatment; N2O emission;nosZgene; quantitative PCR
氧化亞氮(N2O)是地球上重要的溫室氣體之一,其增溫潛勢(shì)值為310[1],紅外吸收能力大約為CO2的200倍,CH4的4倍。而且還參與大氣的光化學(xué)反應(yīng),破壞臭氧層。氧化亞氮一方面使得全球氣候變暖,對(duì)人類居住環(huán)境構(gòu)成很大的威脅[2];另一方面,使得全球氮沉降持續(xù)升高,加劇酸化作用等環(huán)境危害[3]。在眾多N2O產(chǎn)生源中,土壤排放是N2O的最主要來源,因此對(duì)陸地系統(tǒng)中N2O的產(chǎn)生進(jìn)行系統(tǒng)研究十分必要。
土壤中的N2O主要由硝化作用和反硝化作用產(chǎn)生,二者對(duì)N2O排放的相對(duì)貢獻(xiàn)因土壤生態(tài)系統(tǒng)不同而存在顯著差異[4-6]。硝化作用是由NH4+或NH3氧化為NO2-和NO3-的過程,N2O產(chǎn)生于NH3氧化為NO2-的過程中。一般來說,對(duì)于施用肥料和含水量較低的土壤,硝化作用在農(nóng)田土壤N2O排放過程中起主要作用[7],而在濕地等厭氧系統(tǒng)中,反硝化作用能產(chǎn)生大量N2O[8]。在反硝化過程中,NO3-通過硝酸還原酶(由narG,narH或者napA基因編碼)、 亞硝酸還原酶(由nirK或nirS基因編碼)、 NO還原酶(由qnorB或cnorB基因編碼)、 N2O還原酶(由nosZ基因編碼)逐步還原為N2,N2O是其中的重要中間產(chǎn)物。nosZ作為能夠編碼還原N2O的反硝化細(xì)菌群落的功能基因,在土壤N2O釋放的過程中起著非常關(guān)鍵的作用[9]。
1.1 采樣地點(diǎn)及土壤樣品處理
土樣采自浙江省杭州市西湖區(qū)梅家塢茶園(30°11′N,120°05′E),此區(qū)屬中亞熱帶濕潤(rùn)季風(fēng)氣候,年平均氣溫15℃,年平均降水量大約1500 mm。土壤為發(fā)育于石英砂巖(薄層頁(yè)巖相間)母質(zhì)上的紅壤。采樣茶園有100年植茶歷史,試驗(yàn)分3個(gè)小區(qū)進(jìn)行土樣采集,每個(gè)小區(qū)按S形線路選取8個(gè)采樣點(diǎn),采樣深度0—20 cm。采集的新鮮土樣充分混勻過2 mm篩后,一部分裝入無菌塑料袋內(nèi),貯存于4℃的冰箱用于培養(yǎng)試驗(yàn)和生物性質(zhì)測(cè)定,剩余部分風(fēng)干后供土壤基本理化性質(zhì)測(cè)定。供試土壤基本性質(zhì)為: 有機(jī)質(zhì)含量93.1 g/kg,全氮5.6 g/kg、 硝態(tài)氮57.9 mg/kg、 銨態(tài)氮22.0 mg/kg、 微生物量碳241.4 mg/kg、 速效磷(P2O5)76.1 mg/kg,pH 3.5。
1.2 測(cè)定項(xiàng)目和方法
土壤pH以1 ∶2.5土水比用復(fù)合電極測(cè)定;全氮用濃硫酸消煮—氮磷流動(dòng)分析儀測(cè)定;土壤有機(jī)碳用重鉻酸鉀容量法外加熱法;銨態(tài)氮和硝態(tài)氮用1 mol/L KCl提取—氮磷流動(dòng)分析儀測(cè)定[12];速效磷用0.03 mol/L NH4F-0.025 mol/L HCl浸提,比色法測(cè)定。土壤微生物量碳采用氯仿熏蒸-0.5 mol/L K2SO4提取[13],提取液中可溶性有機(jī)碳用TOC-500有機(jī)碳自動(dòng)分析儀測(cè)定。
1.3 培養(yǎng)試驗(yàn)
稱取新鮮土壤樣品500 g(以干土計(jì))5份,以N 200 mg/kg干土重的量分別加入硝酸銨(NH4NO3)、 硫酸銨[(NH4)2SO4]、 尿素[CO(NH2)2]、 硝酸鉀(KNO3),并設(shè)對(duì)照處理(CK),調(diào)節(jié)土壤含水量至田間持水量的60%,裝于燒杯中,用錫箔紙于避光處培養(yǎng),其間稱重并定時(shí)補(bǔ)充失去的水分。
1.4土壤N2O排放和硝化勢(shì)的測(cè)定
分別于1、 3、 10、 17、 24、 31 d稱取土樣10 g(以干土計(jì))于120 mL血清瓶中,用膠塞和鋁蓋將瓶口密閉。在0 h和24 h用氣相色譜儀測(cè)定N2O濃度。然后從血清瓶中取土測(cè)定土壤pH和NO3-含量。以培養(yǎng)時(shí)間為橫坐標(biāo),以NO3-含量為縱坐標(biāo),求出斜率,即土壤硝化勢(shì)[12]。
1.5 氣樣N2O濃度的測(cè)定
氣樣N2O濃度采用中國(guó)科學(xué)院城市環(huán)境研究所的安捷倫7890氣相色譜儀進(jìn)行分析(帶有ECD檢測(cè)器),具體測(cè)定條件依據(jù)文獻(xiàn)進(jìn)行[14]。
1.6 DNA的提取
31 d培養(yǎng)結(jié)束時(shí),稱取500 mg土壤至2 mL滅菌的離心管中,總DNA的提取按照MoBio UltraCleanTM(San Diego, CA, USA)試劑盒標(biāo)準(zhǔn)步驟進(jìn)行。
1.7 定量PCR
標(biāo)準(zhǔn)質(zhì)粒的提取方法按照TIAN Prep Mini Plasmid Kit(TIANGEN BIOTECH BEIJING)試劑盒標(biāo)準(zhǔn)步驟進(jìn)行。實(shí)驗(yàn)前,對(duì)標(biāo)準(zhǔn)質(zhì)粒進(jìn)行稀釋。采用ABI PRISM 7500定量PCR儀(Applied Biosystem USA)。PCR反應(yīng)體系(20 μL)為: SYBR?premix Ex TaqTMII(Takara Bio, Dalian, Liaoning, China) 10 μL,DNA樣品2 μL,nosZ使用的基因引物為nosZ1F(5′ WCSYTGTTCMTCGACAGCCAG 3′)和nosZ1R(5′ ATGTCGATCARCTGVKCRTTYTC 3′)[10],濃度為10 μmol/L。nosZ的PCR反應(yīng)條件為95℃ 10 min,95℃ 15 s,68℃ 1 min(-1℃/cycle), 81.5℃ 30 s, 循環(huán)6次;95℃15 s,62℃1 min,81.5℃ 30 s,循環(huán)40次。所有樣品重復(fù)3次并設(shè)置陰性對(duì)照,通過溶解曲線分析和瓊脂糖凝膠電泳鑒定產(chǎn)物的特異性。
1.8 數(shù)據(jù)統(tǒng)計(jì)
SPSS 16.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行處理,數(shù)據(jù)為3次重復(fù)的平均值,采用方差分析,計(jì)算最小顯著性差異(LSD),對(duì)不同樣品平均值之間進(jìn)行多重比較。
2.1 茶園土壤的化學(xué)和生物學(xué)特性
供試100年茶園土由于植茶年齡長(zhǎng)、 酸化程度嚴(yán)重,pH僅為3.5。土壤有效態(tài)氮絕大多數(shù)仍以NO3--N的形式存在,是NH4+-N的2.6倍,有機(jī)質(zhì)含量為92.1 g/kg,微生物量碳含量為241.1 mg/kg,土壤微生物量碳占土壤有機(jī)碳的1.50%。
2.2 不同施肥處理對(duì)茶園土壤N2O排放的影響
2.2.1 對(duì)土壤pH的影響 茶園土壤pH測(cè)試結(jié)果表明,不同處理間的pH變化存在顯著差異(P<0.05)(圖1)。培養(yǎng)初期,尿素在土壤脲酶的水解作用下釋放NH4+,導(dǎo)致土壤pH顯著增加,以第1 d最高,且顯著高于其余4個(gè)處理,此后由于土壤發(fā)生硝化作用pH逐漸降低。31 d培養(yǎng)結(jié)束時(shí),尿素和對(duì)照處理的土壤pH差異不顯著,但均明顯高于其余3個(gè)處理。硫酸銨、 硝酸銨處理的土壤pH顯著低于對(duì)照。硝酸鉀處理的土壤pH最低,這可能與土壤膠體之間的離子交換有關(guān)。
圖1 培養(yǎng)期間不同氮肥處理土壤pH變化Fig.1 Soil pH of the different N fertilizer treatments during the incubation
2.2.2 氮肥處理對(duì)土壤硝化勢(shì)的影響 NH4+-N作為硝化細(xì)菌進(jìn)行硝化作用的初始反應(yīng)物,其來源對(duì)硝化作用具有顯著影響。由圖2可知,不同氮肥處理中以尿素處理硝化勢(shì)最高,為2.7 mg/(kg·d),比對(duì)照高4.7倍。其次是硫酸銨和硝酸銨處理,硝化勢(shì)分別為1.87和1.03 mg/(kg·d),比對(duì)照增加3.2和1.8倍。硝酸鉀處理不能為硝化作用增加底物,其硝化勢(shì)與對(duì)照相比顯著(P<0.05)降低。
圖2 培養(yǎng)期間不同氮肥處理土壤硝化勢(shì)的變化Fig.2 Nitrification potential of different N fertilizer treatments during incubation[注(Note): 柱上的不同字母表示同一時(shí)期處理間差異達(dá)到5%顯著水平Different letters above the bars at the same stage mean significant difference among treatments at the 5% level.]
圖3 培養(yǎng)期間不同氮肥處理日均N2O排放及總N2O排放Fig.3 The average and total N2O emissions from the different N fertilizer treatments during incubation[注(Note): 方柱上的不同字母表示處理間差異達(dá)到5%顯著水平 Different letters above the bars mean significant difference among different treatments at the 5% level.]
2.2.3 對(duì)土壤N2O排放的影響 土壤N2O排放測(cè)定結(jié)果表明,不同氮肥處理的N2O排放量均存在明顯差異,并隨培養(yǎng)時(shí)間增加發(fā)生顯著變化。圖3表明,所有土壤N2O日排放量以第1 d最高,此后逐漸降低;其中硝酸鉀處理第1 d排放的N2O為對(duì)照的14倍,此后排放量迅速降低,3 d后N2O排放量基本穩(wěn)定但仍然高于其余4個(gè)處理;硝酸銨處理的N2O排放量?jī)H次于硝酸鉀處理,但顯著高于其余3個(gè)處理;培養(yǎng)前3 d與對(duì)照相比,尿素顯著(P<0.05)刺激N2O排放;而硫酸銨處理則與對(duì)照差異不顯著(P>0.05),3 d后硫酸銨處理的N2O排放逐漸增大,到培養(yǎng)結(jié)束時(shí)與尿素處理差異不顯著。經(jīng)過31 d好氣培養(yǎng),硝酸鉀處理N2O總量為744.8 ng/g,比對(duì)照增加了16倍;其次是硝酸銨處理,N2O總排放為對(duì)照的5.5倍;尿素和硫酸銨處理N2O總排放量分別為4.0和3.1 ng/g,顯著小于硝酸鉀處理。
圖4 不同氮肥處理nosZ基因拷貝數(shù)Fig.4 nosZ gene copy numbers per g dry soil from the different N fertilizer treatments[注(Note): 柱上的不同字母表示處理間差異達(dá)到5%顯著水平Different letters above the bars mean significant diffeence among different treatments at the 5% level.]
2.2.4 反硝化作用功能微生物的定量PCR結(jié)果 作為編碼N2O到N2還原過程的關(guān)鍵基因,nosZ的表達(dá)在一定程度上決定N2O的排放強(qiáng)度。從圖4可以看出,經(jīng)過31 d的好氣培養(yǎng),除了尿素處理與對(duì)照差異不顯著(P>0.05)外,其余三種氮肥處理的nosZ基因豐度均顯著(P<0.05)小于對(duì)照。其中硝酸鉀和硝酸銨處理的nosZ基因拷貝數(shù)最低,分別為4.3×109和2.5×109copies/g干土;硫酸銨處理的土壤nosZ基因拷貝數(shù)為1.8×1010copies/g干土,也顯著(P<0.05)低于尿素和對(duì)照處理。
銨態(tài)氮肥料能刺激硝化微生物群落生長(zhǎng),提高硝化作用強(qiáng)度[19-22]。本試驗(yàn)硫酸銨、 硝酸銨施入土壤后均顯著促進(jìn)了硝化活性(見圖2)。隨著硝化微生物對(duì)NH3的吸收利用,大量H+被釋放到土壤中,導(dǎo)致土壤pH較對(duì)照顯著(P<0.05)降低。對(duì)于尿素處理來說,土壤脲酶能迅速水解尿素為碳酸銨和碳酸氫銨,使得培養(yǎng)初期土壤pH顯著提高。隨后由于硝化作用的進(jìn)行,土壤pH呈下降趨勢(shì)。施入硝酸鉀肥料雖然沒有刺激硝化作用,但土壤pH仍然下降,這可能與K+與H+之間的離子交換有關(guān)。
在強(qiáng)酸性茶園土壤中,反硝化過程是產(chǎn)生N2O的主要來源;不同施肥處理能顯著影響N2O的排放速率,硝態(tài)氮肥處理的土壤N2O排放遠(yuǎn)遠(yuǎn)高于銨態(tài)氮肥;高濃度硝態(tài)氮能顯著降低nosZ基因豐度,N2O還原酶被硝態(tài)氮抑制是酸性茶園土壤中高通量N2O排放的關(guān)鍵原因。
[1] Houghton J T, Meira Filho L G, Callander B Aetal.The science of climate change. Contribution of group Ι to second assessment report of the intergovernmental panel to climate change[R]. New York, USA: Cambridge University Press,1995.
[2] 劉義, 陳勁松, 劉慶, 陳林武. 土壤硝化和反硝化作用及影響因素研究進(jìn)展[J].四川林業(yè)科技, 2006, 27(2): 36-41. Liu Y, Chen J S, Liu Q, Chen L W. Advances in studies of soil nitrification and denitrification and controlling factors[J]. J. Sichuan For. Sci. Tech., 2006, 27(2): 36-41.
[3] 張玉樹, 丁洪, 秦勝金. 農(nóng)業(yè)生態(tài)系統(tǒng)中氮素反硝化作用與N2O排放研究進(jìn)展[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(6): 253-259. Zhang Y S, Ding H, Qin S J. Progress in the studies of nitrogen denitrification and N2O emission in agro-ecosystem[J]. Chin. Agric. Sci. Bull., 2010, 26(6): 253-259.
[4] Firestone M K, Firestone R B, Tiedje J M. Nitrous oxide from soil denitrification: factors controlling its biological production[J]. Science, 1980, 208: 749-751.
[5] Wrage N, Lauf J, Prado A Detal. Distinguishing sources of N2O in European grasslands by stable isotope analysis[J]. Rapid Commun. Mass Spectrom., 2004, 18: 1201-1207.
[6] Nakajima Y, Ishizuka S, Tsuruta Hetal. Microbial processes responsible for nitrous oxide production from acid soils in different land-use patterns in Pasirmayang, central Sumatra, Indonesia[J]. Nutr. Cycl. Agroecosys., 2005, 71: 33-42.
[7] Stevens R J, Laughlin R J, Burns L Cetal. Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil[J]. Soil Biolo. Biochem., 1997, 29: 139-151.
[8] Hefting M M, Bobbink R, De C H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones[J]. J. Environ. Qual., 2003, 32: 1194-1203.
[9] Henry S, Bru D, Stres Betal. Quantitative detection of thenosZgene, encoding nitrous oxide reductase, and comparison of the abundance of 16S rRNA,narG, nirK, andnosZgenes in soils[J]. Appl. Environ. Microbiol., 2006, 72(8): 5181-5189.
[10] 韓文炎, 阮建云, 林智, 等.茶園土壤主要營(yíng)養(yǎng)障礙因子及系列專用肥的研制[J]. 茶葉科學(xué), 2002, 22(1): 70-74. Han W Y, Ruan J Y, Lin Zetal. The major nutritional limiting factors in tea soils and development of tea speciality fertilizer series[J]. J. Tea. Sci., 2002, 22(1): 70-74.
[11] Akiyama H, Yan X, Yagi K. Estimations of emission factors for fertilizer-induced direct N2O emissions and estimate of N2O emission factors from agricultural soils in Japan: Summary of available data[J]. Soil Sci. Plant Nutr, 2006, 52(6): 774-787.
[12] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析法[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社,1999. Lu R K. Soil and agro-chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 1999.
[13] Vance E D, Brookes P C, Jenkinson D C. An extraction method for measueing soil microbial biomass C[J]. Soil Bio. Biochem., 1987, 79: 703-707.
[14] Molstad L, D?rsch P, Bakken L R. Robotized incubation system for monitoring gases(O2, NO, N2O, N2) in denitrifying cultures[J]. J. Microbiol. Methods, 2007, 71: 202-211.
[15] Tokuda S, Hayatsu M. Nitrous oxide production from strongly acid tea field soils[J]. Soil Sci. Plant Nutr., 2000, 46(4): 835-844.
[16] Hankinson T R, Schmidt E L. An acidophilic and a neutrophilic nitrcbacter strain isolated from the nnmencaly predominant nitrite-oxidizing population of an acid forest soil[J]. Appl. Environ. Microbiol., 1988, 54: 1536-1540.
[17] Paul E A, Clark F E. Soil microbiology and biochemistry[M]. San Diego, California: Academic Press, 1989.
[18] Hayatsu M, Kosuge N. Autotrophic nitrification in acid tea soils[J]. Soil Sci. Plant Nutr., 1993, 39(2): 209-217.
[19] Martikainen P J. Numbers of autotrophic nitrifiers and nitrification in fertilized forest soil[J]. Soil Biol. Biochem., 1985, 17: 245-248.
[20] Mendum T A, Sockett R E, Hirsch P R. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia -oxidizing populations of the β subdivision of the class proteobacteria in arable soils to nitrogen fertilizer[J]. Appl. Environ. Microbiol., 1999, 66: 4155-4162.
[21] Chu H Y, Fujii T, Morimoto Setal. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management[J]. Soil Biol. Biochem., 2008, 40: 1960-1963.
[22] Xue D, Gao Y M, Yao H Y, Huang C Y. Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils[J]. J. Environ. Sci., 2009, 21: 1225-1229.
[23] Chon K, Chang J S, Lee Eetal. Abundance of denitrifying genes coding for nitrate(narG), nitrite(nirS), and nitrous oxide(nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands[J]. Ecol. Eng., 2011, 37: 64-69.
[24] Philippot L, Andert J, Jones C Metal. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Glob. Change. Biol., 2011, 17: 1497-1504.
[25] Zhou Z F, Zheng Y M, Shen J Petal. Response of denitrification genes nirS, nirK, andnosZto irrigation water quality in a Chinese agricultural soil[J]. Environ. Sci. Pollut. Rea, 2011, 18: 1644-1652.
[26] Palmer K, Biasi C, Horn M A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra[J]. ISME J., 2012, 6: 1058-1077.
[27] Ma W K, Bedard-Haughn A, Siciliano S D, Farrell R E. Relationships between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils[J]. Soil Biol. Biochem., 2008, 40: 1114-1123.
[28] Nommik H, Thorin J. A mass spectrometric technique for studying the nitrogenous gases produced on the reaction of nitrite with raw humus[J]. Agrochimica, 1972, 16: 319-322.
[29] Blackmer A M, Bremner J M. Inhibitory effectt of nitrate on reduction of N2O to N2by soil microorganisms[J]. Soil Biol. Biochem., 1978, 10: 187-191.
EffectsofdifferentnitrogenfertilizersonN2Oemissionsinahighlyacidteaorchardsoils
HUANG Ying1, LI Ya-ying2*, YAO Huai-ying1, 2
(1CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China; 2InstituteofUrbanEnvironment,ChineseAcademyofSciences,Xiamen,Fujian361021,China)
2013-02-06接受日期2013-05-23
國(guó)家自然科學(xué)基金項(xiàng)目(31071869, 31272256)資助。
黃瑩(1987—), 女, 安徽池州人, 博士研究生, 主要從事土壤生物化學(xué)和微生物生態(tài)研究。 Tel: 0592-6190586;E-mail: hybg0418@126.com * 通信作者 E-mail: yyli@iue.ac.cn。
S143.1; 153.6
A
1008-505X(2013)06-1533-06