馬振明
臨沂大學(xué)理學(xué)院,山東臨沂 276005
剩余格上的幾類n-重濾子及其特征
馬振明
臨沂大學(xué)理學(xué)院,山東臨沂 276005
為給不確定性信息處理理論提供可靠且合理的邏輯基礎(chǔ),許多學(xué)者提出并研究了非經(jīng)典邏輯系統(tǒng)。同時(shí),作為非經(jīng)典邏輯系統(tǒng)的語(yǔ)義系統(tǒng)的各種邏輯代數(shù)也被廣泛研究。目前,大多數(shù)學(xué)者都接受剩余格為一種最廣泛的邏輯代數(shù)結(jié)構(gòu),格蘊(yùn)涵代數(shù)、BL代數(shù)、R0代數(shù)、MTL代數(shù)等[1-4]均是剩余格的特殊情況。而濾子在研究邏輯代數(shù)與相關(guān)的邏輯系統(tǒng)完備性中起著非常重要的作用。從邏輯觀點(diǎn)來看,濾子與邏輯系統(tǒng)的可證公式密切相關(guān),濾子也被稱為演繹系統(tǒng)[5]。目前,在BL代數(shù)或者是一般剩余格中各種特殊濾子[6-9]已經(jīng)被引入,如正則濾子、MV-濾子、Boolean濾子、蘊(yùn)含濾子等,并獲得了許多重要的結(jié)果。最近,Haveshki等人在BL-代數(shù)上提出了濾子的重理論[10-14],將上述著名的濾子概念進(jìn)行了推廣。
本文將在剩余格上研究濾子的重理論,重點(diǎn)研究了n-重蘊(yùn)含濾子、n-重布爾濾子和n-重MV濾子,給出了這些n-重濾子的新的刻畫。通過這些新的刻畫,給出了n-重濾子之間的關(guān)系。
下面給出剩余格的性質(zhì)。
引理2.2[2]設(shè)L為剩余格,則:
上述濾子和其等價(jià)條件中各款在下文中經(jīng)常用到,因此直接使用,不加標(biāo)注。
3.1 n-重蘊(yùn)含濾子
3.2 n-重MV濾子
3.3 n-重布爾濾子
4幾類n-重濾子之間的關(guān)系
[1]Esteva F,Godo L.Monoid t-norm based logic:towards a logic for left-continuous t-norms[J].Fuzzy Sets and Systems,2001,124:271-288.
[2]Hájek P.Metamathematics of fuzzy logic[M].Dordrecht:Kluwer Academic Publisher,1998.
[3]Xu Yang,Ruan Da,Qin Keyun,et al.Lattice valued logic[M]. Berlin:Springer Verlag,2003.
[4]王國(guó)俊.非經(jīng)典數(shù)理邏輯與近似推理[M].北京:科學(xué)出版社,2008.
[5]Turunen E.Boolean deductive systems of BL-algebra[J].Arch Math Logic,2001,40:467-473.
[6]Haveshki M,Borumand Saeid A,Eslami E.Some types of filters in BL-algebras[J].Soft Comput,2006,10:657-664.
[7]Kondo M,Dudek W A.Filter theory of BL-algebras[J].Soft Comput,2008,12:419-423.
[8]Lianzhen L,Kaitai L.Boolean filters and positive implicative filters of residuated lattices[J].Information Sciences,2007,177:5725-5738.
[9]Zhu Y Q,Xu Y.On filter theory of residuated lattices[J]. Information Sciences,2010,180:3614-3632.
[10]Haveshki M,Eslami E.n-fold filters in BL-algebras[J].Math Log Quart,2008,54:176-186.
[11]Haveshki M,Mohamadhasani M.Folding theory applied to Rlmonoid[J].Annals of the University of Craiova:Mathematics and Computer Science Series,2010,37(4):9-17.
[12]Lele C.Folding theory for fantastic filters in BL-algebras[J]. International Journal of Artificial Life Research,2011,2(4):32-42.
[13]Motamed S,Saeid A B.n-fold obtinate filters in BL-algebras[J]. Neural Computing and Application,2011,20:461-472.
[14]Turunen E,Tchikapa N,Lele C.n-fold implicative basic logic is G?del logic[J].Soft Comput,2012,16:177-183.
MA Zhenming
School of Science,Linyi University,Linyi,Shandong 276005,China
Then-fold implicative filters,n-fold MV filters andn-fold Boolean filters in residuated lattices are introduced.Some alternative definitions of them are obtained.The correlations between them are investigated by these new characterizations.In particular,it is proven that a filter isn-fold Boolean filter if and only if it isn-fold implicative filter andn-fold MV filter.
residuated lattices;n-fold implicative filters;n-fold MV filters;n-fold Boolean filter
在剩余格上引入了n-重蘊(yùn)含濾子、n-重MV濾子和n-重布爾濾子,給出它們的一系列刻畫定理。通過新的刻畫定理得到了這些濾子之間的關(guān)系;并且證明了濾子是n-重布爾濾子當(dāng)且僅當(dāng)它是n-重蘊(yùn)含MV濾子。
剩余格;n-重蘊(yùn)含濾子;n-重MV濾子;n-重布爾濾子
A
O159
10.3778/j.issn.1002-8331.1208-0105
MA Zhenming.Some types of n-fold filters on residuated lattices and their characterizations.Computer Engineering and Applications,2013,49(19):36-38.
山東省自然科學(xué)基金(No.ZR2010AL004,No.ZR2011FL017)。
馬振明(1979—),男,講師,研究方向:智能計(jì)算。E-mail:dmgywto@126.com
2012-08-09
2012-10-10
1002-8331(2013)19-0036-03
CNKI出版日期:2012-11-21http://www.cnki.net/kcms/detail/11.2127.TP.20121121.1100.020.html