王克彥,王奇生
?
二維Helmholtz方程Taylor多項(xiàng)式逼近及誤差分析
王克彥,王奇生
(五邑大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,廣東 江門(mén) 529020)
利用Taylor多項(xiàng)式方法,對(duì)二維Helmholtz方程進(jìn)行數(shù)值解研究. 首先將Helmholtz方程問(wèn)題轉(zhuǎn)化為矩陣方程,建立了Taylor多項(xiàng)式逼近解的求解格式;其次給出了Taylor逼近解與精確解的誤差分析,同時(shí)給出了幾個(gè)數(shù)值例子驗(yàn)證該方法的有效性與可靠性.
二維Helmholtz方程;Taylor多項(xiàng)式逼近;誤差分析
Helmholtz方程在波傳導(dǎo)和振動(dòng)現(xiàn)象相關(guān)的工程與物理等領(lǐng)域中有著廣泛的應(yīng)用,如輻射波問(wèn)題、散射波問(wèn)題、聲學(xué)空腔問(wèn)題、結(jié)構(gòu)振動(dòng)問(wèn)題及近海結(jié)構(gòu)工程等都需要應(yīng)用到Helmholtz方程,因而研究該方程具有重要的理論價(jià)值和實(shí)際意義[1-2].
本文主要研究一類重要的橢圓型偏微分方程,考慮二維Helmholtz方程
邊界條件問(wèn)題:
初始條件問(wèn)題:
Helmholtz方程的數(shù)值解法有許多的研究,常見(jiàn)的求解方法有有限差分法和有限單元法[3-4]. Taylor多項(xiàng)式方法廣泛應(yīng)用近似求解積分、微分、積分微分方程. Blübül和Sezer使用了Taylor多項(xiàng)式方法求解了一類雙曲型偏微分方程[5]. 王奇生等[6]使用了該方法求解了一類Volterra-Fredholm混合型積分方程. 本文利用Taylor多項(xiàng)式逼近求解方法,對(duì)二維Helmholtz方程的邊界條件問(wèn)題與初始條件問(wèn)題進(jìn)行了較為系統(tǒng)的研究.
Taylor多項(xiàng)式逼近方法主要分為3大步驟,首先將Helmholtz方程(1)轉(zhuǎn)化成矩陣方程,然后再將邊界條件(2)和初始條件(3)轉(zhuǎn)化成矩陣方程,最后對(duì)上述第一,二步中矩陣方程進(jìn)行合并,構(gòu)成新的矩陣方程,從而求出邊界條件問(wèn)題與初始條件問(wèn)題的Taylor逼近解.
簡(jiǎn)化上述邊界條件和初始條件矩陣形式,有
邊界條件(2)矩陣方程:
初始條件(3)矩陣方程:
由(13)可以得到推論1,
例1 求解Helmholtz方程的邊值問(wèn)題
例2 求解Helmholtz方程的邊界問(wèn)題
表1 例2的誤差函數(shù)變化趨勢(shì)
圖1 例2數(shù)值解與誤差函數(shù)的圖像
例3 求解Helmholtz方程的初始問(wèn)題
表2 例3的誤差函數(shù)變化趨勢(shì)
圖2 例3數(shù)值解與誤差函數(shù)的圖像
[1] BAYLISS A, GOLDSTEIN C I, TURKEL E. The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics [J]. Comput Math Appl, 1985, 11: 655-665.
[2] HARARI I, HUGHES T J R, Finite element methods for the Helmholtz equation in an exterior domain: model problems [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 87(1): 59-96.
[3] THOMPSON L L, PINSKY P M, A galerkin least-squares finite element method for the two-dimensional Helmholtz equation [J]. International Journal for Numerical Methods in Engineering, 1995, 38(3): 371-397.
[4] ZHANLAV T, ULZIIBAYAR V. The best finite-difference scheme for the Helmholtz equation [J]. American Journal of Computational Mathematics, 2012, 2: 207-212.
[5] BULBUL B, SEZER M. Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients [J]. International Journal of Computer Mathematics, 2011, 88: 533-544.
[6] 王奇生,賴嘉導(dǎo). 二維Volterra-Fredholm型積分方程問(wèn)題Taylor配置解法及誤差分析[J]. 五邑大學(xué)學(xué)報(bào):自然科學(xué)版,2013, 27(1): 1-5.
[責(zé)任編輯:韋 韜]
Taylor Polynomial Approximation and Error Analysis of 2-Dimensional Helmholtz Equation
WANGKe-yan, WANGQi-sheng
(School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China)
In this paper, the Taylor polynomial method is used to solve the two-Dimensional Helmholtz equation. First, using the method of Taylor polynomial approximation, the Helmholtz equation is transformed into matrix equation and the format of the solution is obtained. The error analysis of the method is given between the approximate solution and the exact solution, and some numerical experiments are given to prove the efficiency and dependability of the method.
two-dimensional Helmholtz equation; Taylor polynomial approximation; error analysis
1006-7302(2013)04-0015-06
O189.1
A
2013-03-29
廣東省計(jì)算科學(xué)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(201206007);江門(mén)市科技計(jì)劃資助項(xiàng)目(江財(cái)工〔2012〕156號(hào))
王克彥(1984—),男,湖南衡陽(yáng)人,在讀碩士生,研究方向?yàn)槲⒎e分方程數(shù)值解法;王奇生,教授,博士,碩士生導(dǎo)師,通信作者,研究方向?yàn)槲⒎e分方程數(shù)值解法.