国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

克拉瑪依侏羅紀(jì)玄武巖地球化學(xué)特征及其殼幔作用過程研究

2013-07-11 13:26:40陳雙雙蘇玉平鄭建平
地球化學(xué) 2013年1期
關(guān)鍵詞:準(zhǔn)噶爾古拉克拉瑪依

陳雙雙, 蘇玉平, 鄭建平, 魏 穎

(中國(guó)地質(zhì)大學(xué)(武漢) 地球科學(xué)學(xué)院, 地質(zhì)過程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室, 湖北 武漢 430074)

0 引 言

中亞造山帶經(jīng)歷了碰撞造山、后碰撞和板內(nèi)演化三個(gè)階段, 是全球顯生宙陸殼增生與板內(nèi)演化最顯著的地區(qū)之一[1]。新疆北部是中亞造山帶的重要組成部分, 具有完整且明顯的陸殼增生演化過程[2]。特別是古生代經(jīng)歷了復(fù)雜的地質(zhì)演化, 中生代以后開始進(jìn)入相對(duì)穩(wěn)定的板內(nèi)演化階段[3]。該地區(qū)廣泛發(fā)育古生代蛇綠巖套[4–6], 如 447~531 Ma的唐巴勒蛇綠巖[4]、(472±8.4) Ma的洪古勒楞蛇綠巖[5]及391 Ma的達(dá)拉布特蛇綠巖[6]; 至晚古生代準(zhǔn)噶爾地體及周邊廣泛發(fā)育后碰撞花崗巖[7–9], 表明古準(zhǔn)噶爾洋的閉合演化過程。與古生代碰撞-后碰撞巖漿活動(dòng)相比, 在新疆北部地區(qū)很少有關(guān)于中新生代巖漿活動(dòng)的報(bào)道, 僅在較老資料中有過百口泉、白堿灘等地區(qū)中生代玄武巖的記載[10], 但由于當(dāng)時(shí) K-Ar同位素年代學(xué)測(cè)試精度的限制, 沒有得到普遍認(rèn)同[3]。近年來, 不斷發(fā)現(xiàn)的中新生代巖漿活動(dòng)[3,11–15], 提供了揭示新疆北部地區(qū)中新生代巖石圈深部過程的重要窗口[16–17]。在詳細(xì)的野外地質(zhì)和室內(nèi)巖相學(xué)基礎(chǔ)上, 本次工作對(duì)克拉瑪依玄武巖開展了全巖主元素、微量元素和Sr-Nd同位素以及鋯石U-Pb年代學(xué)、Hf同位素的全面分析, 擬對(duì)巖漿活動(dòng)的成因機(jī)制及構(gòu)造背景進(jìn)行探討, 以期為新疆北部顯生宙地幔演化提供資料。

1 地質(zhì)背景

西準(zhǔn)噶爾位于西伯利亞板塊、哈薩克斯坦板塊和塔里木板塊交匯區(qū)域, 其與相鄰三大板塊的關(guān)系一直受到地質(zhì)學(xué)界的關(guān)注。泥盆紀(jì)末至石炭紀(jì)初西準(zhǔn)噶爾地區(qū)廣泛發(fā)育的蛇綠巖套和島弧火山巖, 表明古準(zhǔn)噶爾洋的俯沖消減過程[4–6]; 晚古生代準(zhǔn)噶爾地體及周邊廣泛發(fā)育的后碰撞花崗巖, 表明古洋盆的閉合及區(qū)域進(jìn)入后碰撞期階段[7–9]。王京彬等[18]將西準(zhǔn)噶爾地區(qū)“后碰撞”的時(shí)間厘定為石炭紀(jì)至二疊紀(jì), 而韓寶福等[9]將準(zhǔn)噶爾后碰撞深成巖漿的活動(dòng)時(shí)間限定于早石炭中晚期至早二疊世末期。晚二疊世之后西準(zhǔn)噶爾地區(qū)進(jìn)入了穩(wěn)定的板內(nèi)演化階段[19]。所以西準(zhǔn)噶爾地區(qū)經(jīng)歷了主碰撞-后碰撞-板內(nèi)環(huán)境這樣一套完整的構(gòu)造-巖漿活動(dòng)的演化歷史。與古生代碰撞-后碰撞的巖漿活動(dòng)相比, 具有確切年齡依據(jù)的中新生代幔源巖漿活動(dòng)較少。近幾年來, 在新疆北部地區(qū)報(bào)道的中新生代巖漿活動(dòng)記錄主要有克拉瑪依玄武巖(192 Ma)[3]、托云玄武巖類(100~40.36 Ma)[11–13]、哈拉喬拉橄欖玄武巖(20~10 Ma)[14–15](圖1a), 這些巖漿活動(dòng)主要沿著斷裂帶或薄弱帶分布。

本次研究的玄武巖(圖1b)位于克拉瑪依市西南10 km 處的侏羅統(tǒng)八道灣組底部(45.5348°N, 84.7576°E),與下伏下石炭統(tǒng)太勒古拉組地層呈角度不整合接觸關(guān)系, K-Ar年齡在170~190 Ma之間[10]。研究區(qū)域內(nèi)發(fā)育了一系列 NE-NNE向斷層, 其周圍地層中還發(fā)育了大量的 NE-NNE向和 NWW-NW 向基性巖墻群[21]。研究區(qū)域內(nèi)主要出露晚古生代至中新生代地層, 中生代地層出露較全。下伏地層是下石炭統(tǒng)太勒古拉組, 其地層產(chǎn)狀陡傾, 存在各種斷裂和褶皺構(gòu)造。侏羅紀(jì)地層覆蓋于太勒古拉組地層之上, 兩者呈角度不整合接觸關(guān)系[3]。

2 巖石學(xué)特征

本次研究的玄武巖具有明顯的柱狀節(jié)理(圖2a),樣品新鮮, 呈致密塊狀構(gòu)造, 顯微鏡下顯示斑狀結(jié)構(gòu)。斑晶主要由富Ca斜長(zhǎng)石、普通輝石和橄欖石組成, 包括深灰色橄欖玄武巖和深黑色含菱鐵礦橄欖玄武巖。

圖1 新疆北部地區(qū)中新生代火山巖分布圖(a) (據(jù)文獻(xiàn)[20])和克拉瑪依區(qū)域地質(zhì)簡(jiǎn)圖及采樣點(diǎn)(b) (據(jù)文獻(xiàn)[21])Fig.1 Distribution of Mesozoic-Cenozoic volcanic rocks in northern Xinjiang (a) (modified from reference [20]); The simplified geological map of the Karamay region and sampling locations (b) (modified from reference [21])1–第四紀(jì)沉積物; 2–下白堊統(tǒng)吐谷魯組沉積巖; 3–中-上侏羅統(tǒng)沉積巖; 4–下侏羅統(tǒng)八道灣組火山沉積巖; 5–上二疊統(tǒng)小泉溝組沉積巖; 6–下石炭統(tǒng)太勒古拉組凝灰?guī)r-中基性火山巖; 7–花崗巖-花崗閃長(zhǎng)巖; 8–角閃花崗巖-黑云母花崗巖; 9–中基性巖脈; 10–采樣點(diǎn)。1–quaternary sediment; 2–lower Cretaceous Tugulu formation sediment; 3–Middle-Upper Jurassic sediment; 4–Lower Jurassic Badaowan formation sediment; 5–Lower Permian Xiaoquangou formation sediment; 6–Lower Carboniferous Tailegula formation tufa and intermediate-basic volcanic rock;7–granite and granodiorite; 8–hornblende-granite and biotite-granite; 9–intermediate-basic dyke; 10–sampling site.

深灰色橄欖玄武巖(圖2b), 斑晶主要由富Ca斜長(zhǎng)石、普通輝石和橄欖石組成, 還含有少量磁鐵礦,樣品較新鮮, 沒有明顯的蝕變。富 Ca斜長(zhǎng)石(45%~50%)呈自形-半自形板狀, 粒徑 0.2~0.6 mm;普通輝石(20%~25%)呈板狀、粒狀, 粒徑 0.05~0.2 mm; 橄欖石(5%)呈不規(guī)則粒狀, 粒徑很小?;|(zhì)具有間粒間隱結(jié)構(gòu), 主要由斜長(zhǎng)石、玻璃和少量磁鐵礦組成。

深黑色含菱鐵礦橄欖玄武巖(圖 2c), 斑晶由富Ca斜長(zhǎng)石、普通輝石、橄欖石和碳酸鹽礦物菱鐵礦組成。菱鐵礦呈顆粒狀, 粒徑較大, 約為0.5 mm, 薄片中無色, 閃突起, 具有明顯的十字消光[21](圖2d)?;|(zhì)也具有間粒間隱結(jié)構(gòu)。

圖2 克拉瑪依玄武巖野外及鏡下照片F(xiàn)ig.2 Photomicrographs and field photos of Karamay basalts(a)克拉瑪依玄武巖明顯的柱狀節(jié)理; (b)深灰色橄欖玄武巖的正交偏光顯微照片; (c)深黑色含菱鐵礦橄欖玄武巖的正交偏光顯微照片; (d)鏡下可見特征碳酸鹽礦物菱鐵礦。Ol–橄欖石; Cpx–單斜輝石; P1–斜長(zhǎng)石; G–玻璃; Mag–磁鐵礦; Sid–菱鐵礦。(a) The columnar jointing structure of Karamay basalts; (b) Microphotographs of cross-polarized light of the dark grey olivine basalt; (c) Microphotographs of cross-polarized light of the dark-coloured siderite-bearing olivine basalt; (d) Siderite (carbonate minerals) can be seen. O1–olivine,Cpx–clinopyroxene, Pl–plagioclase, G–glass, Mag–magnetite, Sid–siderite.

3 實(shí)驗(yàn)分析方法

全巖主元素和微量元素分析均在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室完成, 主元素采用 XRF法分析, 測(cè)試精度優(yōu)于 1%。利用標(biāo)樣 GBW07113評(píng)估實(shí)驗(yàn)室 XRF測(cè)試數(shù)據(jù)的準(zhǔn)確度(表1)。微量元素分析采用兩酸(HNO3+HF)酸溶方法對(duì)樣品粉末進(jìn)行溶解, 采用 ICP-MS(Agilent 7500a)測(cè)定元素含量。分別用AGV-2、BHVO-2、BCR-2、RGM-1和GSR-1這5個(gè)標(biāo)樣評(píng)估實(shí)驗(yàn)室ICP-MS測(cè)試數(shù)據(jù)的準(zhǔn)確度(表2), 大多數(shù)元素的相對(duì)誤差小于5%, 部分元素相對(duì)誤差小于10%。Sr-Nd同位素(表3)組成在中國(guó)地質(zhì)大學(xué)(武漢)的MAT 261固體質(zhì)譜儀上分析, Nd和 Sr同位素比值分別采用146Nd/144Nd=0.7219和86Sr/88Sr=0.1194進(jìn)行校正。

鋯石的所有測(cè)試分析均在澳大利亞 Macquarie大學(xué)GEMOC中心完成。由巖石樣品經(jīng)過破碎、重液分離和磁選初步分選出鋯石, 再在雙目鏡下分選出晶型完好、顆粒大于50 μm的鋯石, 并將代表性鋯石制成環(huán)氧樹脂樣品靶, 然后在顯微鏡下觀察并進(jìn)行CL照相。鋯石U-Pb同位素(表4)分析在Agilent 7500電感耦合等離子質(zhì)譜與Merchantek/NWR 213 nm激光熔蝕探針聯(lián)機(jī)上進(jìn)行。U-Pb同位素?cái)?shù)據(jù)由Glitter軟件處理,206Pb/238U加權(quán)平均年齡及諧和年齡圖由Isoplot程序計(jì)算繪制。鋯石Hf同位素(表5)在 Nu Plasma多接受器的電感耦合等離子質(zhì)譜與Merchantek/NWR 213nm激光熔蝕探針的聯(lián)機(jī)上進(jìn)行。選用Blichert-Toft et al.[26]建議的球粒隕石值計(jì)算 εHf(t), 用 Griffin et al.[27]建議的虧損地幔值和大陸平均地殼的176Lu/177Hf=0.015[28]來計(jì)算虧損地幔模式年齡(TDM)和平均大陸地殼模式年齡(Tcrust)。

表1 克拉瑪依玄武巖主元素分析結(jié)果 (%)Table 1 Major element analytical results (%) of Karamay basalts

表3 新疆北部晚古生代和中新生代火山巖的Sr-Nd同位素特征Table 3 Sr-Nd isotopes of Late Paleozoic and Mesozoic-Cenozoic volcanic rocks in northern Xinjiang

表4 克拉瑪依玄武巖鋯石LA-ICPMS U-Pb分析數(shù)據(jù)Table 4 Zircon LA-ICPMS U-Pb analytical data of Karamay basalts

表5 克拉瑪依玄武巖鋯石Hf同位素成分Table 5 Hf isotopic compositions of zircon in Karamay basalts

4 分析結(jié)果

4.1 主元素和微量元素特征

克拉瑪依玄武巖 SiO249.6%~51.2%, FeOT10.4%~12.7%, MgO 3.58%~6.81%, CaO 6.74%~7.98%, K2O+Na2O 5.27%~5.60%, Mg#值在 0.26~0.55之間。與正常的大洋中脊玄武巖相比, 堿含量明顯偏高, 尤其是鉀含量。利用Zr/TiO2-Nb/Y圖解[29]對(duì)克拉瑪依玄武巖進(jìn)行分類(圖3), 顯示它們屬于堿性玄武巖系列, 里特曼指數(shù)σ=3.87~4.68(表1)。

這些玄武巖的稀土元素總量較高(113~118 μg/g), 具有富集輕稀土元素特征, 稀土分布模式曲線均向右傾斜(圖 4a), 且(La/Yb)N比值較高(4.99~10.1), 表現(xiàn)較強(qiáng)的輕重稀土元素分異特征。它們沒有Eu的負(fù)異常(δEu=1.02~1.06)。在微量元素蛛網(wǎng)圖(圖 4b)中, 相對(duì)富集大離子親石元素 LILE(如Rb、Ba和 K 等), Nb-Ta、Zr-Hf表現(xiàn)為相對(duì)富集, Ba、Sr顯示明顯正異常, Th、P為負(fù)異常。所有微量元素含量都高于原始地幔值, 且多數(shù)元素高出10倍以上,并且稀土分布模式曲線和蛛網(wǎng)圖與典型的OIB特征都極為相似, 但顯示更為虧損的特點(diǎn)(圖4)。

圖3 克拉瑪依玄武巖Zr/TiO2-Nb/Y圖解(據(jù)文獻(xiàn)[30])Fig.3 Plots of Zr/TiO2-Nb/Y for Karamay basalts (after reference [30])

圖4 克拉瑪依玄武巖稀土元素球粒隕石標(biāo)準(zhǔn)化分布模式(a)和微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(b)Fig. 4 Chondrite normalized REE patterns of Karamay basalts (a);Primitive mantle normalized trace element patterns of Karamay basalts (b)球粒隕石、原始地幔、E-MORB、N-MORB及OIB資料據(jù)文獻(xiàn)[31]。The data of Chondrite, Primitive mantle, E-MORB, N-MORB and OIB are from reference [31].

4.2 全巖Sr-Nd同位素特征

克拉瑪依玄武巖的初始 Sr同位素(87Sr/86Sr)i變化范圍很小(0.7048~0.7049), εNd(t)值具有相對(duì)較低的正值(+2.95~+3.02), Nd同位素二階段模式年齡TDM2為 725~731 Ma(表 3)。相比于晚古生代基性火山巖(較高的正εNd(t)值、較低的(87Sr/86Sr)i值, 表3),這些玄武巖表現(xiàn)出虧損程度相對(duì)較低的特征, 且落在DM與EMⅠ地幔演化范圍內(nèi)(圖5)。

4.3 鋯石U-Pb年代學(xué)和Hf同位素特征

在近3 kg的樣品中經(jīng)人工重砂分選發(fā)現(xiàn)10顆鋯石。所有鋯石沒有完整的形態(tài), 但多發(fā)育典型的巖漿結(jié)晶結(jié)構(gòu)特點(diǎn) (圖6)。除KL5a偏離諧和曲線外,其他顆粒都落在諧和曲線上, 其中 1個(gè)鋯石分析點(diǎn)(KL4b)得到了相對(duì)較老的206Pb/238U年齡(424.1 Ma),其余 8個(gè)鋯石分析點(diǎn)集中分布, 給出了(357.3±5.1)Ma (MSWD=1.6)的諧和年齡(圖 6)。這些鋯石的 U和 Th 的含量分別為 86~245 μg/g 和 56~257 μg/g (表4), Th/U比值介于0.55~0.76之間, 也具巖漿鋯石特征。

圖5 晚古生代和中新生代火山巖的εNd(t)-(87Sr/86Sr)i (a)和εNd(t)-t關(guān)系圖(b)Fig.5 Plots of εNd(t) vs. initial 87Sr/86Sr (a) and εNd(t) vs. age (b) for late Paleozoic and Mesozoic-Cenozoic volcanic rocks圖5a改自文獻(xiàn)[32], MORB數(shù)據(jù)來自文獻(xiàn)[33], OIB數(shù)據(jù)來自文獻(xiàn)[34],EMⅠ和EMⅡ數(shù)據(jù)來自文獻(xiàn)[35]。在圖5a和圖5b中, 晚古生代基性火山巖包括西準(zhǔn)噶爾玄武安山巖[22]、富鈮玄武巖[20]、三塘湖盆地玄武巖[24]和柳園玄武巖[25]; 中新生代基性火山巖包括克拉瑪依玄武巖[3]、托云玄武巖[11–13]和哈拉喬拉玄武巖[14–15]。Fig.5 a is modified from Reference [32], the data of MORB are from reference [33], the data of OIB are from Reference [34], the data of enriched mantle Ⅰ (EMⅠ) and Ⅱ (EMⅡ) are from reference [35];In Fig.5a and Fig.5b, Late Paleozoic basic volcanic rocks include Western Junggar basaltic andesite[22], Nb-enriched basalt[20], Santanghu basalt[24], Liuyuan basalts[25]; Mesozoic-Cenozoic basic volcanic rocks include Karamay basalt[3], Tuoyun basalt[11–13], Halaqiaola basalt[14–15].

圖6 克拉瑪依玄武巖中鋯石LA-ICPMS U-Pb諧和曲線圖Fig.6 LA-ICPMS U-Pb concordia diagram of zircons from Karamay basalts

顆粒 KL4b(424 Ma)的初始 Hf同位素比值(176Hf/177Hf)i=0.282720, εHf(t)值為+7.48; 其余 8 顆鋯石(357 Ma)的(176Hf/177Hf)i值為 0.282730~0.282960、εHf(t)值為+6.23~+10.22(表 5)。它們的模式年齡 TDM和 Tcrust分別在 581~741 Ma和 712~968 Ma之間。

5 討 論

5.1 克拉瑪依玄武巖成巖年齡及石炭系地層關(guān)系

本研究所得克拉瑪依玄武巖鋯石的主體 U-Pb諧和年齡為(357.3±5.1) Ma, 該年齡不能代表克拉瑪依玄武巖的噴發(fā)時(shí)代, 而是代表了圍巖太勒古拉組地層時(shí)代。支持該結(jié)論的主要證據(jù)包括有: 徐新等[3]對(duì)這套克拉瑪依玄武巖進(jìn)行40Ar/39Ar定年, 確定其形成年齡為(192.7±1.3) Ma; 薛云興等[21]系統(tǒng)研究了這套橄欖玄武巖中菱鐵礦成因, 明確指出其應(yīng)形成于侏羅紀(jì)造山期后的板內(nèi)巖漿活動(dòng); 郭麗爽等[36]曾對(duì)太勒古拉組玄武巖進(jìn)行鋯石U-Pb定年, 測(cè)得結(jié)果為(357.5±5.4) Ma, 與我們所得鋯石 U-Pb年齡(357.3±5.1) Ma相當(dāng)一致; 特別是從野外產(chǎn)狀上看,克拉瑪依玄武巖呈角度不整合覆蓋在太勒古拉組火山-沉積巖之上[21], 且發(fā)育明顯的柱狀節(jié)理(圖 2a);并且侏羅紀(jì)玄武巖與周邊古生代玄武巖具有明顯不同的地球化學(xué)特征。此外, 鋯石具有較高的正 εHf(t)值 (+6.23~+14.49)和 較 高 的 (176Hf/177Hf)i值(0.282725~0.282977), 其中1個(gè)鋯石分析點(diǎn)KL4a的εHf(t)值高達(dá)+14.49, 這都暗示了其具有較虧損地幔源區(qū)特征, 而下文“巖石成因”中分析克拉瑪依玄武巖具有與 OIB型源區(qū)相似的幔源源區(qū)特征, 這就更加暗示該巖漿鋯石不是來自于克拉瑪依玄武巖,而更可能是捕獲于太勒古拉組地層的繼承鋯石。

西準(zhǔn)噶爾地區(qū)下石炭統(tǒng)地層的上下關(guān)系一直存在著爭(zhēng)議。一些學(xué)者[36]認(rèn)為石炭系從下到上分別為太勒古拉組、包古圖組和希貝庫拉斯組; 也有學(xué)者[37]認(rèn)為從下到上為希貝庫拉斯組, 包古圖組和太勒古拉組。廖卓庭等[38]根據(jù)生物化石將這三個(gè)組的上下關(guān)系定為: 包古圖組、希貝庫拉斯組和太勒古拉組。我們?cè)诳死斠赖貐^(qū)獲得的太勒古拉組地層時(shí)代為(357.3±5.1) Ma, 該年齡大于(345.6±6.2) Ma 的包古圖組安山巖[39]、328~342 Ma的包古圖組蝕變凝灰?guī)r[37]和(335.6±7.8) Ma的包古圖組侵入巖體[40], 并且野外產(chǎn)狀表明包古圖組呈角度不整合伏于希貝庫拉斯組之下[36,41], 根據(jù)希貝庫拉斯組與夏爾甫東巖體的侵入接觸關(guān)系, 推斷希貝庫拉斯組形成年齡應(yīng)早于293 Ma[42]。據(jù)此推測(cè)西準(zhǔn)噶爾下石炭統(tǒng)地層從下到上依次為太勒古拉組、包古圖組和希貝庫拉斯組, 這樣可能更合適。

5.2 巖石成因

克拉瑪依侏羅紀(jì)玄武巖 SiO2含量為49.56%~51.22%, 不可能是由下地殼巖石部分熔融形成, 應(yīng)來源于地幔源區(qū)。需要討論的是克拉瑪依玄武巖的幔源原始巖漿的分異作用、地殼混染程度、地幔源區(qū)性質(zhì)以及是否發(fā)生交代富集作用。

5.2.1 地殼混染與結(jié)晶分異作用

這些玄武巖的堿含量明顯偏高(尤其是鉀含量),屬于堿性玄武巖系列(σ=3.87~4.68)。該玄武巖Nb、Ta含量較高, 沒有顯示虧損的特征, Zr、Hf也沒有明顯的正異常, Nb/Ta比值為16.7~18.1, Zr/Hf比值約為 40.0, 分別與原始地幔(Nb/Ta=17.5, Zr/Hf=36.3)相近而遠(yuǎn)高于大陸地殼值(Nb/Ta=12.1, Zr/Hf =11.0);較低的 Th/Ce比值(0.06)和較低的 Th/La比值(0.13~0.14), 與幔源巖漿的 Th/Ce比值(0.02~0.05)和Th/La比值(約0.12)相當(dāng)而明顯低于地殼的Th/Ce比值(約 0.15)和 Th/La 比值(約 0.30)[31,43]。此外, Zr/Yb比值(124~139)、Th/La 比值(0.13~0.14)、Ta/Yb 比值(1.58~1.83)、Nb/Yb 比值(28.0~30.8)和 La/Yb 比值(12.3~14.1)也都具有與原始地幔比值相似且遠(yuǎn)偏于地殼比值的特征[31,44]。在Nb-Ta異常圖中(圖7c、圖7d), 克拉瑪依玄武巖遠(yuǎn)離UCC區(qū)域, 也暗示了其受到的地殼混染作用很小。盡管鋯石是捕獲于早期巖漿活動(dòng)(太勒古拉組地層)的繼承鋯石, 但是, 不論從巖相學(xué)角度還是從地球化學(xué)角度, 都可以明顯看出, 克拉瑪依玄武巖受地殼物質(zhì)影響程度相對(duì)有限,特別是沒有古老地殼物質(zhì)的混染; 至于受古生代太勒古拉組火山巖混染確實(shí)無法完全排除, 因此我們只能采用逼近的方法, 利用其地球化學(xué)數(shù)據(jù)討論源區(qū)特征。

圖7 晚古生代和中新生代火山巖的Th/Yb-Nb/Yb (a)、Th/Y-Sm/Th (b)、Ta*-Nb* (c)和Nb/Ta-Nb (d)關(guān)系圖Fig.7 Plots of Th/Yb-Nb/Yb (a), Th/Y-Sm/Th (b), Ta*-Nb* (c) and Nb/Ta-Nb (d)圖7a改自文獻(xiàn)[20, 45], HS表示較深的幔源, LS表示較淺的幔源。圖7b改自文獻(xiàn)[46], PM、OIB和N-MORB數(shù)據(jù)來自文獻(xiàn)[31]。圖7c改自文獻(xiàn)[47], OIB、E-MORB、N-MORB數(shù)據(jù)來自文獻(xiàn)[48], PM數(shù)據(jù)來自文獻(xiàn)[31], UCC數(shù)據(jù)來自文獻(xiàn)[49]。圖7d改自文獻(xiàn)[50], 球粒隕石、OIB、PM、DM數(shù)據(jù)來自文獻(xiàn)[51, 52], UCC數(shù)據(jù)來自文獻(xiàn)[50]?;曰鹕綆r數(shù)據(jù)來源與圖5相同。Fig.7 a is modified from reference [20, 45]; HS represents deep mantle source, while LS is superficial mantle source. Fig.7b is modified from reference[46]; the data of PM, OIB and N-MORB are from reference [31]. Fig.7c is modified from reference [47]; the data of OIB, E-MORB and N-MORB are from reference [48]; the data of PM are from reference [31]; the data of UCC are from reference [49], Fig.7d is modified from reference [50]; the data of chondrite, OIB, PM, and DM are from reference [51, 52]; the data of UCC are from reference [50]. The data source of basic rocks are identical with those of Fig.5.

La和La/Sm相關(guān)圖呈一條水平直線, 暗示了玄武巖巖漿上升過程中結(jié)晶分異作用具有一定影響。Eu 沒有明顯的負(fù)異常(δEu=1.02~1.06), Ba、Sr表現(xiàn)出較弱的正異常以及Nb、Ta相對(duì)富集(圖4), 且TiO2與 FeOT、K2O和 Na2O沒有明顯相關(guān)關(guān)系, 表明斜長(zhǎng)石和鈦鐵氧化物、角閃石的結(jié)晶分異不明顯。而MgO與FeOT、Cr與Ni呈明顯正相關(guān)關(guān)系, 且相對(duì)較低的 Ni、Cr含量(表 2)以及橄欖石和單斜輝石的斑晶(圖2), 都暗示著橄欖石和單斜輝石的結(jié)晶分異在巖漿演化過程起一定作用。

5.2.2 源區(qū)特征

克拉瑪依侏羅紀(jì)玄武巖的稀土分布模式曲線和蛛網(wǎng)圖(圖4)都具有明顯右傾的特點(diǎn), 富集輕稀土元素和大離子親石元素(如Rb、Ba和K等), 與OIB的分布曲線模式很相似, 且其元素含量相比于 OIB都較為虧損, 暗示其具有與 OIB型源區(qū)相似但較為虧損的源區(qū)特征。它們的Nb/U比值(56.4~58.0)與OIB(Nb/U=52.0±15.0)相當(dāng)[53]; La/Nb 比值(0.43~0.46)遠(yuǎn)低于地殼(La/Nb=1.50~2.20)和原始地幔(La/Nb=0.98~1.00), 與 OIB(La/Nb=0.68)接近且略低于OIB的La/Nb比值[53]; Ce/Pb、Nb/Pb比值也有同樣特點(diǎn)。在εNd(t)-(87Sr/86Sr)i圖解(圖5)中, 相比于晚古生代基性火山巖, 侏羅紀(jì)玄武巖源區(qū)虧損程度相對(duì)較低, 且落在OIB的幔源源區(qū)范圍內(nèi)(圖7), 指示著這些玄武巖源區(qū)具有與OIB型源區(qū)相似但較為虧損的源區(qū)特征。

侏羅紀(jì)玄武巖強(qiáng)烈富集輕稀土元素和強(qiáng)不相容元素以及表現(xiàn)Ba、Sr的正異常, 暗示了巖石圈地??赡芙?jīng)歷過交代富集作用。斑晶菱鐵礦的存在和偏高的Zr/Hf比值(40.0~41.6), 也通常被認(rèn)為是碳酸鹽熔體交代地幔過程的結(jié)果[54–58]。綜上所述, 我們推測(cè)克拉瑪依侏羅紀(jì)玄武巖源區(qū)可能經(jīng)歷過交代富集作用, 使其巖漿源區(qū)虧損程度相對(duì)較低且具有與OIB型源區(qū)相似的幔源源區(qū)的特征。

稀土元素的豐度和比值可以用來推測(cè)源區(qū)深度及部分熔融的程度[59–60]??死斠蕾_紀(jì)玄武巖具有相對(duì)較高的 Sm/Yb比值(4.17~4.71)和較高的La/Yb比值(12.3~14.1)指示其源區(qū)深度可能在80 km以下深處的石榴石二輝橄欖巖地幔[46,61], 并且其部分熔融程度較低, 處于5%~10%之間(圖8)。

圖8 晚古生代和中新生代火山巖的Sm/Yb-Sm (a)和Sm/Yb-La/Yb (b)關(guān)系圖Fig.8 Plots of Sm/Yb-Sm (a) and Sm/Yb-La/Yb (b) for late Paleozoic and Mesozoic-Cenozoic volcanic rocksDM端元數(shù)據(jù)來源文獻(xiàn)[62], La 0.206 μg/g, Sm 0.299 μg/g, Yb 0.347 μg/g, La/Yb=0.594, Sm/Yb=0.862; PM 端元數(shù)據(jù)來源文獻(xiàn)[31], La 0.687 μg/g, Sm 0.444 μg/g, Yb 0.493 μg/g, La/Yb=1.394, Sm/Yb=0.901;虛線和實(shí)線分別代表DM熔融曲線和PM熔融曲線, 尖晶石二輝橄欖巖(Ol0.530+Opx0.270+Cpx0.170+Sp0.030和 Ol0.060+Opx0.280+Cpx0.670+Sp0.110)和石榴石二輝橄欖巖(Ol0.600+Opx0.200+Cpx0.100+Gt0.100和 Ol0.030+Opx0.160+Cpx0.880+Gt0.090)熔融曲線來自文獻(xiàn)[59, 60], 曲線上的數(shù)字代表熔融程度; 基性火山巖數(shù)據(jù)來源與圖5相同。The data of Depleted Mantle (DM) are from reference [62], La=0.206 μg/g, Sm=0.299 μg/g, Yb=0.347 μg/g, La/Yb=0.594, Sm/Yb=0.862;Primitive Mantle (PM) are from reference [31], La=0.687 μg/g,Sm=0.444 μg/g, Yb=0.493 μg/g, La/Yb=1.394, Sm/Yb=0.901; Dashed and solid curves are the melting trends from DM and PM, Melting curves for spinel lherzolite(Ol0.530+Opx0.270+Cpx0.170+Sp0.030 and Ol0.060+ Opx0.280+Cpx0.670+Sp0.110) and garnet lherzolite (Ol0.600+Opx0.200+Cpx0.100+Gt0.100 and Ol0.030+Opx0.160+Cpx0.880+Gt0.090) are from reference [59, 60],Numbers along melting curves represent the degree of partial melting.The data source of basic rocks are identical with those of Fig.5.

5.3 構(gòu)造演化過程

克拉瑪依侏羅紀(jì)玄武巖具有相對(duì)高的Ti/Y比值和低的 Hf/Ta比值, 類似于板內(nèi)玄武巖[63]。用Hf-Th-Ta (圖 9a)、Nb-Zr-Y 三角圖 (圖 9b)判別, 結(jié)果也是一致的。實(shí)際上, 從區(qū)域大地構(gòu)造演化和對(duì)比分析來看, 新疆北部在中新生代時(shí)早已經(jīng)進(jìn)入了板內(nèi)環(huán)境[2,3,9,18,19]。

新疆北部晚古生代基性火山巖具有較低的(87Sr/86Sr)i值(低至 0.7034)和較高的正 εNd(t)值(高達(dá)+8.84), 具有虧損地幔源區(qū)特征, 主要位于 DM 區(qū)域;而中新生代玄武巖具有相對(duì)較高的(87Sr/86Sr)i值(高達(dá) 0.7056)和相對(duì)較低的正 εNd(t)值(低至+0.29), 位于 DM 和 EMⅠ混合的地幔演化區(qū)域, 虧損程度相對(duì)較低(圖5)。同樣, 圖7a和圖7b也表現(xiàn)出晚古生代與中新生代火山巖巖漿源區(qū)的虧損富集的差別。此外, 從源區(qū)深度來看, 晚古生代巖漿源區(qū)主要處于較淺的尖晶石穩(wěn)定深度且源巖熔融程度較高, 而中新生代的巖漿源區(qū)則主要位于較深的石榴子石穩(wěn)定深度范圍, 熔融程度較低(圖 8); 并且, 晚古生代基性火山巖受到較大程度的地殼物質(zhì)混入作用, 可能與俯沖環(huán)境有關(guān)[61,66], 而中新生代玄武巖則受到很小程度的地殼混染(圖7c, 圖7d, 圖9)。

由晚古生代到中新生代, 地幔源區(qū)由較淺的虧損地幔逐步向較深的虧損程度相對(duì)較低的幔源演化、熔融程度以及地殼物質(zhì)混入程度逐漸變低。引起這種變化的原因可能是俯沖的洋殼物質(zhì)以及拆層的巖石圈在地幔一定深度發(fā)生變質(zhì)重熔后, 與原虧損地幔和巖石圈地幔不斷交代富集的結(jié)果[2,67–70]。此外, 俯沖板片和拆層巖石圈在地幔中重熔可形成富集Nb-Ta的熔體[71–72], 而高Nb-Ta的熔體交代地幔是導(dǎo)致克拉瑪依玄武巖富集Nb-Ta的主要原因[73–74]。

根據(jù)上述分析, 新疆北部地區(qū)晚古生代到中新生代的殼-幔作用過程, 可能包括: (1)古準(zhǔn)噶爾洋發(fā)生俯沖消減, 俯沖板片在一定的溫壓條件下釋放出流體和熔體, 導(dǎo)致上覆相對(duì)虧損的地幔楔部分熔融(圖 10a), 形成了 331~375 Ma的較虧損的且受地殼物質(zhì)混染的基性火山巖[22–23]。(2)早期的俯沖板片持續(xù)下沉最終在300 Ma左右發(fā)生板片斷離[20]。由于古準(zhǔn)噶爾洋的閉合及板塊的碰撞增生, 使巖石圈不斷增厚而最終發(fā)生拆層去根作用[75–77], 導(dǎo)致軟流圈地幔急劇上升[20,70–80](圖10b)。虧損的軟流圈地幔上涌底侵并發(fā)生部分熔融, 在侵入地殼過程中受到地殼物質(zhì)或早期俯沖帶物質(zhì)的混染[2,9,81], 形成了260~290 Ma的較虧損的且受到較大程度地殼物質(zhì)混染的玄武巖[24–25]。(3)拆層巖石圈和俯沖下沉的洋殼物質(zhì)下降到地幔一定深度, 開始發(fā)生變質(zhì)重熔作用, 形成富集堿質(zhì)、Nb-Ta、大離子親石元素(LILE)和輕稀土元素(LREE)的熔/流體。這些富集熔/流體在上升過程中, 與原虧損地幔和巖石圈地幔不斷地交代平衡, 逐步改造為較富堿、富含不相容元素的虧損程度相對(duì)較低的地幔。繼而沿著斷裂帶或薄弱帶快速上涌噴出地表, 形成了中新生代虧損程度較低的、源區(qū)深度較深的且僅受到較小程度地殼混染的玄武巖(圖10c)。

圖9 晚古生代和中新生代火山巖的Hf-Th-Ta (a) (據(jù)文獻(xiàn)[64])和Nb-Zr-Y (b) (據(jù)文獻(xiàn)[65])構(gòu)造判別圖Fig.9 Tectonic discrimination diagrams of Hf-Th-Ta (a) (after reference [64]) and Nb-Zr-Y (b) (after reference [65]) for late Paleozoic and Mesozoic-Cenozoic volcanic rocks圖9a中: T–島弧拉斑玄武巖; CAB–鈣堿性玄武巖; N-MORB–洋中脊玄武巖; E-MORB+WPT–富集的洋中脊玄武巖和板內(nèi)拉斑玄武巖; WPA–板內(nèi)堿性玄武巖。圖 9b中: WPA–板內(nèi)堿性玄武巖; WPA+WPT–板內(nèi)堿性玄武巖和板內(nèi)拉斑玄武巖; E-MORB–富集的洋中脊玄武巖;N-MORB+CAB–洋中脊玄武巖和鈣堿性玄武巖; WPT+CAB–板內(nèi)拉斑玄武巖和鈣堿性玄武巖?;曰鹕綆r數(shù)據(jù)來源與圖5相同。In Fig.9a, IAT–Island-Arc Tholeiites, CAB–Calc-Alkaline Basalts, N-MORB–N-type Mid-Ocean Ridge Basalts, E-MORB+WPT–E-type Mid-Ocean Ridge Basalts+Within-Plate Tholeiites, WPA–within-plate alkaline basalt; In Fig.9b, WPA–within-plate alkaline basalt, WPA+WPT–within-plate alkaline basalt+Within-Plate Tholeiites, E-MORB–E-type Mid-Ocean Ridge Basalts, N-MORB+CAB–N-type Mid-Ocean Ridge Basalts+Calc-Alkaline Basalts, WPT+CAB–Within-Plate Tholeiites+Calc-Alkaline Basalts; The data source of basic rocks are identical with those of Fig.5.

6 主要認(rèn)識(shí)

(1)克拉瑪依侏羅紀(jì)玄武巖中獲得鋯石的 U-Pb諧和年齡(357.3±5.1) Ma代表了圍巖太勒古拉組地層時(shí)代, Hf同位素表明太勒古拉組火山巖可能來自虧損地幔。

(2)侏羅紀(jì)玄武巖源區(qū)具有與OIB型源區(qū)相似但較為虧損的源區(qū)特征。該玄武巖可能來源于>80 km處的石榴子石二輝橄欖巖穩(wěn)定存在的地幔源區(qū)的低程度部分熔融??死斠佬鋷r僅受到很小程度的地殼混染, 橄欖石和單斜輝石的結(jié)晶分異具較明顯的控制作用。

(3)與晚古生代島弧及后碰撞基性火山巖不同,侏羅紀(jì)玄武巖形成于相對(duì)穩(wěn)定的板內(nèi)構(gòu)造環(huán)境, 其地幔源區(qū)虧損程度不及晚古生代火山巖源區(qū), 可能與俯沖下沉洋殼和拆層巖石圈在一定深度發(fā)生變質(zhì)重熔形成富集熔體并不斷與地幔發(fā)生交代富集作用有關(guān)。

:

[1] Khain E V, Bibikova E V, Kr?ner A, Zhuravlev D Z, Sklyarov E V, Fedotova A A, Kravchenko-Berezhnoy I R. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth Planet Sci Lett,2002, 199(3/4): 311-325.

[2] 郭召杰, 韓寶福, 張?jiān)? 陳石. 中亞造山帶中新生代殼慢相互作用特征與過程-新疆北部慢源巖漿巖系對(duì)比研究[J].巖石學(xué)報(bào), 2010, 26(2): 431-439.Guo Zhao-jie, Han Bao-fu, Zhang Yuan-yuan, Chen Shi.Mesozoic and Cenozoic crust-mantle interaction in the Central Asian Orogenic Belt: A comparative study of mantle-derived magmatic rocks in northern Xinjiang[J]. Acta Petrol Sinica,2010, 26(2): 431-439 (in Chinese with English abstract).

[3] 徐新, 陳川, 丁天府, 劉興義, 李華芹. 準(zhǔn)噶爾西北緣早侏羅世玄武巖的發(fā)現(xiàn)及地質(zhì)意義[J]. 新疆地質(zhì), 2008, 26(1):9-17.Xu Xin, Chen Chuan, Ding Tian-fu, Liu Xing-yi, Li Hua-qin.Discovery of lisa basalt Northwestern edge of Junggar basin and it's geological significance[J]. Xingjiang Geol, 2008,26(1): 9-17 (in Chinese with English abstract).

[4] 楊寶凱. 新疆西準(zhǔn)噶爾唐巴勒蛇綠巖及構(gòu)造意義[D]. 西安:長(zhǎng)安大學(xué), 2011.Yang Bao-kai. The study of Tangbale ophiolitic in West Junggar, Xinjiang[D]. Xi’an: Chang’an University, 2011 (in Chinese with English abstract).

[5] 張?jiān)? 郭召杰. 準(zhǔn)噶爾北部蛇綠巖形成時(shí)限新證據(jù)及其東、西準(zhǔn)噶爾蛇綠巖的對(duì)比研究[J]. 巖石學(xué)報(bào), 2010, 26(2):421-430.Zhang Yuan-yuan, Guo Zhao-jie. New constraints on formation ages of ophiolites in northern Junggar and comparative study on their connection[J]. Acta Petrol Sinica, 2010, 26(2):421-430 (in Chinese with English abstract).

[6] 陳石, 郭召杰. 達(dá)拉布特蛇綠巖帶的時(shí)限和屬性以及對(duì)西準(zhǔn)噶爾晚古生代構(gòu)造演化的討論[J]. 巖石學(xué)報(bào), 2010, 26(8):2336-2344.Chen Shi, Guo Zhao-jie. Time constraints, tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar[J]. Acta Petrol Sinica, 2010, 26(8): 2336-2344 (in Chinese with English abstract).

[7] 王濤, 洪大衛(wèi), 童英, 韓寶福, 石玉若. 中國(guó)阿爾泰造山帶后造山喇嘛昭花崗巖體鋯石SHRIMP年齡、成因及陸殼垂向生長(zhǎng)意義[J]. 巖石學(xué)報(bào), 2005, 21(3): 640-650.Wang Tao, Hong Da-wei, Tong Ying, Han Bao-fu, Shi Yu-Ruo.Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: its implications for vertical continental growth[J]. Acta Petrol Sinica, 2005, 21(3):640-650 (in Chinese with English abstract).

[8] 蘇玉平, 唐紅峰, 侯廣順, 劉叢強(qiáng). 新疆西準(zhǔn)噶爾達(dá)拉布特構(gòu)造帶鋁質(zhì) A型花崗巖的地球化學(xué)研究[J]. 地球化學(xué),2006, 35(1): 55-67.Su Yu-ping, Tang Hong-feng, Hou Guang-shun, Liu Cong-qiang. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar, Xinjiang[J].Geochimica, 2006, 35(1): 55-67 (in Chinese with English abstract).

[9] 韓寶福, 季建清, 宋彪, 陳立輝, 張磊. 新疆準(zhǔn)噶爾晚古生代陸殼垂向生長(zhǎng)(I)——后碰撞深成巖漿活動(dòng)的時(shí)限[J]. 巖石學(xué)報(bào), 2006, 22(5): 1077-1086.Han Bao-fu, Ji Jian-qing, Song Biao, Chen Li-hui, Zhang Lei.Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China(Part I): Timing of post-collisional plutonism[J]. Acta Petrol Sinica, 2006, 22(5):1077-1086 (in Chinese with English abstract).

[10] 新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)局. 新疆維吾爾自治區(qū)區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社, 1993: 1-782.Xinjiang Bureau of Geology and Mineral Resources. Regional Geology of Xinjiang[M]. Beijing: Geological Publishing House, 1993: 1-782 (in Chinese).

[11] 韓寶福, 王學(xué)潮, 何國(guó)琦, 吳泰然, 李茂松, 劉玉琳, 王式?jīng)? 西南天山早白堊世火山巖中發(fā)現(xiàn)地幔和下地殼捕虜體[J]. 科學(xué)通報(bào), 1998, 43(23): 2544-2547.Han Bao-fu, Wang Xue-chao, He Guo-qi, Wu Tai-ran, Li Mao-song, Liu Yu-lin, Wang Shi-guang. Mantle and lower crustal xenoliths were found in the early Cretaceous volcanic rocks from Southwest Tianshan[J]. Chinese Sci Bull, 1998,43(23): 2544-2547 (in Chinese with English abstract).

[12] 徐學(xué)義, 夏林圻, 夏祖春, 何世平, 馬中平. 西南天山托云地區(qū)白堊世-早第三紀(jì)玄武巖的地球化學(xué)特征及成因機(jī)制[J]. 地球化學(xué), 2003, 32(6): 551-560.Xu Xue-yi, Xia Lin-qi, Xia Zu-chun, He Shi-ping, Ma Zhong-ping. Geochemistry and genesis of Cretaceous-Paleogene basalts from the Tuoyun Basin, Southwest Tianshan Mountains[J]. Geochimica, 2003, 32(6): 551-560(in Chinese with English abstract).

[13] 季建清, 韓寶福, 朱美妃, 儲(chǔ)著銀, 劉玉琳. 西天山托云盆地及周邊中新生代巖漿活動(dòng)的巖石學(xué)、地球化學(xué)與年代學(xué)研究[J]. 巖石學(xué)報(bào), 2006, 22(5): 1324-1340.Ji Jian-qing, Han Bao-fu, Zhu Mei-fei, Chu Zhu-yin, Liu Yu-lin. Cretaceous-Paleogene alkaline magmatism in Tuoyun Basin, Southwest Tianshan Mountains: Geochronology, petrology and geochemistry[J]. Acta Petrol Sinica, 2006, 22(5):1324-1340 (in Chinese with English abstract).

[14] 王登紅, 李天德. 阿爾泰東部新生代火山巖的地球化學(xué)特點(diǎn)及構(gòu)造環(huán)境[J]. 大地構(gòu)造與成礦學(xué), 2001, 25(3): 282-289.Wang Deng-hong, Li Tian-de. Geochemistry and environment of the Cenozoic Basalts in Halaqiaola, East Altai Mountains[J].Geotecton Metallogen, 2001, 25(3): 282-289 (in Chinese with English abstract).

[15] 張?jiān)? 郭召杰, 劉暢, 許文騫. 新疆阿爾泰東部新生代玄武巖的地球化學(xué)特征與地質(zhì)意義[J]. 巖石學(xué)報(bào), 2007, 23(7):1730-1738.Zhang Yuan-yuan, Guo Zhao-jie, Liu Chang, Xu Wen-qian.Geochemical characteristics and geologic implications of Cenozoic basalts, East Altai, Xinjiang[J]. Acta Petrol Sinica,2007, 23(7): 1730-1738 (in Chinese with English abstract).

[16] 鄭建平, 路鳳香, O’Reilly S Y, 羅照華. 新疆托云地幔單斜輝石微量元素與西南天山巖石圈深部過程[J]. 科學(xué)通報(bào),2001, 46(6): 497-502.Zheng Jian-ping, Lu Feng-xiang,Reilly S Y, Luo Zhao-hua. Trace elements of clinopyroxene from Tuoyun mantle, Xinjiang and deep process of lithosphere of southwestern Tianshan[J]. Chinese Sci Bull, 2001, 46(6): 497-502(in Chinese with English abstract).

[17] 鄭建平, 羅照華, 余淳梅, 余曉露, 張瑞生, 路鳳香, 李惠民. 新疆托云麻粒巖捕虜體地球化學(xué)和鋯石年代學(xué): 巖石成因及西南天山下地殼性質(zhì)[J]. 科學(xué)通報(bào), 2005, 50(8):793-801.Zheng Jian-ping, Luo Zhao-hua, Yu Chun-mei, Yu Xiao-Lu,Zhang Rui-sheng, Lu Feng-xiang, Li Hui-min. Geochemistry and geochronology of Tuoyun granulite xenoliths, Xinjiang:Petrogenesis and the characteristics of liwer crust from southwestern Tianshan[J]. Chinese Sci Bull, 2005, 50(8):793-801. (in Chinese with English abstract).

[18] 王京彬, 徐新. 新疆北部后碰撞構(gòu)造演化與成礦[J]. 地質(zhì)學(xué)報(bào), 2006, 80(1): 23-31.Wang Jing-bin, Xu Xin. Post-collisional tectonic evolution and metallogenesis in Northern Xinjiang, China[J]. Acta Geol Sinica, 2006, 80(1): 23-31 (in Chinese with English abstract).

[19] 第鵬飛. 西準(zhǔn)噶爾晚古生代花崗巖地球化學(xué)特征及構(gòu)造意義的初步研究[D]. 甘肅: 蘭州大學(xué), 2010.Di Peng-fei. The preliminary study of the Geochemistry and tectonic significance of Late Paleoaoic granitoids in West Junggar[D]. Gansu: Lanzhou University, 2010 (in Chinese with English abstract).

[20] Yuan C, Sun M, Wilde S, Xiao W J, Xu Y G, Long X P, Zhao G C. Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off[J]. Lithos, 2010, 119(3/4): 269-288.

[21] 薛云興, 朱永峰. 克拉瑪依侏羅紀(jì)橄欖玄武巖中菱鐵礦的成因[J]. 巖石學(xué)報(bào), 2007, 23(5): 1108-1122.Xue Yun-xing, Zhu Yong-feng. Genesis of the siderite in Jurrasic olivine basalt, Karamay, Xinjiang, NW China[J]. Acta Petrol Sinica, 2007, 23(5): 1108-1122 (in Chinese with English abstract).

[22] Geng H Y, Sun M, Yuan C, Zhao G C, Xiao W J. Geochemical and geochronological study of early Carboniferous volcanic rocks from the West Junggar: Petrogenesis and tectonic implications[J]. J Asian Earth Sci, 2011, 42(5): 854-866.

[23] 張海祥, 牛賀才, Hiroaki Sato, 單強(qiáng), 于學(xué)元, Jun’ichi Ito,張旗. 新疆北部晚古生代埃達(dá)克巖、富鈮玄武巖組合: 古亞洲洋板塊南向俯沖的證據(jù)[J]. 高校地質(zhì)學(xué)報(bào), 2004, 10(1):106-113.Zhang Hai-xiang, Niu He-cai, Hiroaki Sato, Shan Qiang, Yu Xue-yuan, Jun’ichi Ito, Zhang Qi. Late Paleozoic adakite and Nb-enriched basalt from Northern Xinjiang: Evidence for the Southward Subduction of the Paleo-Asian Ocean[J]. Geol J China Univ, 2004, 10(1): 106-113 (in Chinese with English abstract).

[24] 趙澤輝, 郭召杰, 韓寶福, 王毅. 新疆三塘湖盆地古生代晚期火山巖地球化學(xué)特征及其構(gòu)造-巖漿演化意義[J]. 巖石學(xué)報(bào), 2006, 22(1): 199-214.Zhao Ze-hui, Guo Zhao-jie, Han Bao-fu, Wang Yi. The geochemical characteristics and tectonic-magmatic implications of the latest-Paleozoic volcanic rocks from Santanghu basin,eastern Xinjiang, Northwest China[J]. Acta Petrol Sinica,2006, 22(1): 199-214 (in Chinese with English abstract).

[25] 趙澤輝, 郭召杰, 韓寶福, 王毅, 劉暢. 新疆東部-甘肅北山地區(qū)二疊紀(jì)玄武巖對(duì)比研究及其構(gòu)造意義[J]. 巖石學(xué)報(bào),2006, 22(5): 1279-1293.Zhao Ze-hui, Guo Zhao-jie, Han Bao-fu, Wang Yi, Liu Chang.Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu Province and its tectonic implications[J]. Acta Petrol Sinica, 2006, 22(5): 1279-1293 (in Chinese with English abstract).

[26] Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of the chondrites and the evolution of the mantle-crust system[J]. Earth Planet Sci Lett, 1997, 148(1/2): 243-258.

[27] Griffin W L, Belousova E, Jackson S E, van Achterbergh E,O'Reilly S Y, Shee S R, Pearson N J. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochim Cosmochim Acta,2000, 64(1): 133-147.

[28] Griffin W L, Belousova E, Shee S R. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precamb Res, 2004, 131(3/4):231-282.

[29] Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth Planet Sci Lett, 1973, 19(3): 290-300.

[30] Winchester J A, Floyd P A. Geochemical discrimination of different magmas series and their differentiation products using immobile elements[J]. Chem Geol, 1997, 20: 325-343.

[31] Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process[J]. Geol Soc Spec Publ, 1989, 42: 313-345.

[32] Zindler A, Hart S R. Chemical geodynamics[J]. Ann Rev Earth Planet Sci, 1986, 14: 493-571.

[33] Zimmer M, Kr?ner A, Jochum K P, Reischmann T, Todt W.The Gabal Gerf complex: A precambrian N-MORB ophiolite in the Nubian Shield, NE Africa[J]. Chem Geol, 1995,123(1-4): 29-51.

[34] White W M, Duncan R A. Geochemistry and geochronology of the Society Island: New evidence for deep mantle recycling[J]. Amer Geophys Union Geophys Monogr, 1996, 95:183-206.

[35] Hart S R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies[J]. Earth Planet Sci Lett, 1998, 90(3):273-296.

[36] 郭麗爽, 劉玉琳, 王政華, 宋達(dá), 許發(fā)軍, 蘇犁. 西準(zhǔn)噶爾包古圖地區(qū)地層火山巖鋯石 LA-ICP-MS U-Pb年代學(xué)研究[J]. 巖石學(xué)報(bào), 2010, 26(2): 471-477.Guo Li-shuang, Liu Yu-lin, Wang Zheng-hua, Song Da, Xu Fa-jun, Su Li. The zircon U-Pb LA-ICP-MS geochronology of volcanic rocks in Baogutu areas, Western Junggar[J]. Acta Petrol Sinica, 2010, 26(2): 471-477 (in Chinese with English abstract).

[37] 安芳, 朱永峰. 新疆西準(zhǔn)噶爾包古圖組凝灰?guī)r鋯石SHRIMP年齡及其地質(zhì)意義[J]. 巖石學(xué)報(bào), 2009, 25(6):1437-1445.An Fang, Zhu Yong-feng. SHRIMP U-Pb zircon ages of tuff in Baogutu Formation and their geological significances[J]. Acta Petrol Sinica, 2009, 25(6): 1437-1445 (in Chinese with English abstract).

[38] 廖卓庭, 王玉凈, 王克良. 新疆北部石炭紀(jì)生物地層研究新進(jìn)展[M]. 北京: 科學(xué)出版社, 1993: 79-94.Liao Zhuo-ting, Wang Yu-jing, Wang Ke-liang. New Development of Carboniferous biostratigraphy of Northern Xinjiang[M]. Beijing: Science Press, 1993: 79-94 (in Chinese).

[39] 佟麗莉, 李永軍, 張兵, 劉靜, 龐振甲, 王軍年. 新疆西準(zhǔn)噶爾達(dá)爾布特?cái)嗔褞习艌D組安山巖 LA-ICP-MS鋯石U-Pb測(cè)年及地質(zhì)時(shí)代[J]. 新疆地質(zhì), 2009, 27(3): 226-230.Tong Li-li, Li Yong-jun, Zhang Bing, Liu Jing, Pang Zhen-jia,Wang Jun-nian. Zircon LA-ICP-MS U-Pb dating and geologic age of the Baogutu Formation andesite in the south of Daerbute Faulted Zone, Western Junggar[J]. Xinjiang Geol, 2009,27(3): 226-230 (in Chinese with English abstract).

[40] Liu Y L, Guo L S, Liu Y D, Song H X, Song B, Zhang R, Xu F J, Zhang Y X. Geochronology of Baogutu porphyry copper deposit in Western Junggar area, Xinjiang of China[J]. Sci China (D), 2009, 52(10): 1543-1549.

[41] 李永軍, 佟麗莉, 張兵, 劉靜, 張?zhí)炖^, 王軍年. 論西準(zhǔn)噶爾石炭系希貝庫拉斯組與包古圖組的新老關(guān)系[J]. 新疆地質(zhì), 2010, 28(2): 130-136.Li Yong-jun, Tong Li-li, Zhang Bing, Liu Jing, Zhang Tian-ji,Wang Jun-nian. On the old and new relationship beween Xibeikulasi Formation and Baogutu Formation of the Carboniferous system, Western Junggar[J]. Xinjiang Geol, 2010,28(2): 130-136 (in Chinese with English abstract).

[42] 魏少妮, 程軍峰, 喻達(dá)兵, 鄭波, 朱永峰. 新疆包古圖Ⅲ號(hào)巖體巖石學(xué)和鋯石SHRIMP年代學(xué)研究[J]. 地學(xué)前緣, 2011,18(2): 212-222.Wei Shao-ni, Cheng Jun-feng, Yu Da-bing, Zheng Bo, Zhu Yong-feng. Petrology and SHRIMP zircon ages of intrusive body Ш in Baogutu Area, Xinjiang[J]. Earth Science Frontiers,2011, 18(2): 212-222 (in Chinese with English abstract).

[43] Plank T. Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the Evolution of the Continents[J]. J Petrol, 2005, 46(5): 921-944.

[44] Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth Planet Sci Lett, 1991, 104(2-4): 381-397.

[45] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Ann Rev Earth Planet Sci,1995, 23: 251-285.

[46] Su Y P, Zheng J P, Griffin W L, Zhao J H, Tang H Y, Ma Q,Lin X Y. Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition[J]. Gondwana Research,2012, 22(3/4): 1009-1029.

[47] Niu Y L, Collerson K D, Batiza R, Wendt J I, Regelous M.Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20'N[J]. J Geophys Res, 1999, 104(B4): 7067-7087.

[48] Niu Y L, O Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. J Geophys Res, 2003, 108(B4): 5-19.

[49] Rudnick R L, Gao S. Composition of the Continental Crust[J].Treatise on Geochemistry, 2003, 3: 1-64.

[50] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chem Geol,2000, 165(3/4): 197-213.

[51] McDonough W F, Sun S S. The composition of the Earth[J].Chem Geol, 1995, 120(3/4): 223-253.

[52] Jochum K P, Pfander J, Snow J E, Hofmann A W. Nb/Ta in mantle and crust[J]. EOS (Trans. Am. Geophys. Union), 1997,78: 804.

[53] Dungan M A, Lindstrom M M, MeMiland N J. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico, the petrology and geochemistry of the Servillets basalt[J]. J Geophys Res, 1986, 91(B6): 5999-6028.

[54] Dupuy C, Liotard J M, Dostal J. Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source[J]. Geochim Cosmochim Acta, 1992, 56(6):2417-2423.

[55] Rudnick R L, McDonough W F, Chapell B W. Carbonatite metasomatism in the northern Tanzanian mantle: Petrographic and geochemical characteristics[J]. Earth Planet Sci Lett,1993, 114(4): 463-475.

[56] Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province[J]. Lithos, 1999, 48(1-4): 237-262.

[57] 劉暢, 趙澤輝, 郭召杰. 甘肅北山地區(qū)煌斑巖的年代學(xué)和地球化學(xué)及其殼幔作用過程討論[J]. 巖石學(xué)報(bào), 2006, 22(5):1294-1306.Liu Chang, Zhao Ze-hui, Guo Zhao-jie. Chronology and geochemistry of lamprophyre dykes from Beishan area, Gansu Province and implication for the crust-mantle interaction[J].Acta Petrol Sinica, 2006, 22(5): 1294-1306 (in Chinese with English abstract).

[58] 牛耀齡. 板內(nèi)洋島玄武巖 OIB成因的一些基本概念和存在的問題[J]. 科學(xué)通報(bào), 2010, 55(2): 103-114.Niu Yao-ling. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts[J]. Chinese Sci Bull, 2010, 55(2): 103-114 (in Chinese with English abstract).

[59] Aldanmaz E, Pearce J A, Thirlwall M F, Mitchell J G. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. J Volcanol Geoth Res, 2000,102(1/2): 67-95.

[60] Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precamb Res, 2007, 152(1/2): 27-47.

[61] Saunders A D, Storey M, Kent R W, Norry M J. Consequences of plume-lithosphere interactions//[C]. Storey B C, Alabaster T, Pankhurst R J. Magmatism and the Cause of Continental Break-up[M]. Geol Soc Spec Publ London, 1992, 68: 41-60.

[62] McKenzie D, O'Nions R K. Partial melt distribution from inversion of rare earth element concentrations[J]. J Petrol, 1991,32(5): 1021-1091.

[63] Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance[J]. Lithos, 1989, 23(1/2): 1-18.

[64] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth Planet Sci Lett, 1980,50(1): 11-30.

[65] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chem Geol, 1986, 56(3/4):207-218.

[66] Thompson R N, Morrison M A. Asthenospheric and lower-lithospheric mantle contributions to continental extension magmatism: An example from the British Tertiary Province[J]. Chem Geol, 1988, 68(1/2): 1-15.

[67] Meen J K, Eggler D H, Ayers J C. Experimental evidence for very low solubility of rare-earth elements in CO2-rich fluids at mantle conditions[J]. Nature, 1989, 340: 301-303.

[68] Holm P M, Munksgaard N C. Evidence for mantle metasomatism: An oxygen and strontium isotope study of the Vulsinian District, Central Italy[J]. Earth Planet Sci Lett, 1982, 60(3):376-388.

[69] Ujike O. Probable mineralogic control on the mantle metasomatic fluid composition beneath the Northeast Japan arc[J]. Geochim Cosmochim Acta, 1988, 52(8): 2037-2046.

[70] Maurv R C, Defant M J, Joron J L. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenolith[J]. Nature, 1992, 360: 661-663.

[71] Gao J, John T, Klemd R, Xiong X M. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China[J]. Geochim Cosmochim Acta, 2007, 71(20):4974-4996.

[72] 趙振華, 熊小林, 王強(qiáng), 喬玉樓. 鈮與鉭的某些地球化學(xué)問題[J]. 地球化學(xué), 2008, 37(4): 304-320.Zhao Zhen-hua, Xiong Xiao-lin, Wang Qiang, Qiao Yu-lou.Some aspects on geochemistry of Nb and Ta[J]. Geochimica,2008, 37(4): 304-320 (in Chinese with English abstract).

[73] 丁爍, 黃慧, 牛耀齡, 趙志丹, 喻學(xué)惠, 莫宣學(xué). 東昆侖高Nb-Ta流紋巖的年代學(xué)、地球化學(xué)及成因[J]. 巖石學(xué)報(bào),2011, 27(12): 3603-3614.Ding Shuo, Huang Hui, Niu Yao-ling, Zhao Zhi-dan, Yu Xue-hui, Mo Xuan-xue. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrol Sinica, 2011, 27(12): 3603-3614 (in Chinese with English abstract).

[74] Agangi A, Kamenetsky V S, McPhie J. The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: Insights from the Gawler range volcanics,South Australia[J]. Chem Geol, 2010, 273(3/4): 314-325.

[75] Guo F, Fan W M, Wang Y J, Zhang M. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt[J]. Lithos, 2004, 78(3):291-305.

[76] Guo F, Fan W M, Wang Y J, Li C W. Petrogenesis and tectonic implications of early Cretaceous high-K calc-alkaline volcanic rocks in the Laiyang basin of the Sulu belt, eastern China[J].Island Arc, 2005, 14(2): 69-90.

[77] Guo F, Fan W M, Li C W. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China: Magma genesis and implications for crustal recycling beneath continental collisional orogens[J]. Geol Mag, 2006, 143(1): 1-13.

[78] 趙振華, 白正華, 熊小林, 梅厚鈞, 王一先. 西天山北部晚古生代火山-淺侵位巖漿巖40Ar/39Ar同位素定年[J]. 地球化學(xué), 2003, 32(4): 317-327.Zhao Zhen-hua, Bai Zheng-hua, Xiong Xiao-lin, Mei Hou-jun,Wang Yi-xian.40Ar/39Ar chronological study of Late Paleozoic volcanic-hypabyssal igneous rocks in western Tianshan, Xinjiang[J]. Geochimica, 2003, 32(4): 317-327 (in Chinese with English abstract).

[79] Zhao J H, Zhou M F. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 2009, 107(3/4):152-168.

[80] Zhou T F, Yuan F, Fan Y, Zhang D Y, Cooke D, Zhao G C.Granites in the Sawuer region of the west Junggar, Xinjiang Province, China: Geochronological and geochemical characteristics and their geodynamic significance[J]. Lithos, 2008,106(3/4): 191-206.

[81] Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Hangshan district, Eastern XinJiang,Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chem Geol, 2004, 209(3/4):233-257.

猜你喜歡
準(zhǔn)噶爾古拉克拉瑪依
克拉瑪依胡楊
四、準(zhǔn)噶爾對(duì)天山南北麓維吾爾人的統(tǒng)治
二、準(zhǔn)噶爾汗國(guó)的建立與葉爾羌汗國(guó)
古利和古拉
乾隆年間清軍的第三次出征準(zhǔn)噶爾考辨
SBS改性克拉瑪依瀝青的相容性和穩(wěn)定性機(jī)理
石油瀝青(2018年5期)2018-10-24 05:41:08
準(zhǔn)噶爾遠(yuǎn)征軍進(jìn)藏線路考
克拉瑪依城市防護(hù)綠地樹種的選擇和配置的探討
《古利和古拉》
———走進(jìn)去,就感到快樂
再唱克拉瑪依
社旗县| 广灵县| 古蔺县| 曲靖市| 沂南县| 扎鲁特旗| 图木舒克市| 和硕县| 万安县| 拜城县| 陈巴尔虎旗| 建水县| 塘沽区| 长海县| 扬中市| 尉氏县| 颍上县| 通州市| 保康县| 清流县| 库尔勒市| 玛多县| 岑巩县| 苍溪县| 建德市| 广灵县| 枣阳市| 乌恰县| 乐平市| 息烽县| 多伦县| 云梦县| 华阴市| 萍乡市| 巴塘县| 中西区| 固安县| 铜山县| 尚志市| 集贤县| 乳源|