練繼建,王 旭,劉嬋玉,馬 超
(天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
長(zhǎng)距離明渠輸水工程突發(fā)水污染事件的應(yīng)急調(diào)控
練繼建,王 旭,劉嬋玉,馬 超
(天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
以南水北調(diào)中線總干渠典型明渠段為例,開展長(zhǎng)距離明渠輸水工程突發(fā)水污染事件應(yīng)急調(diào)控研究.采取數(shù)值模擬手段分析了不同閉閘調(diào)控方式和閉閘時(shí)間條件下渠段水流運(yùn)動(dòng)和污染物輸移擴(kuò)散規(guī)律,探討了污染云團(tuán)峰值輸移距離和縱向長(zhǎng)度計(jì)算方法,推導(dǎo)得出了將污染云團(tuán)控制在事故渠段內(nèi)的應(yīng)急閉閘時(shí)間計(jì)算公式.在此基礎(chǔ)上,提出了長(zhǎng)距離明渠輸水工程突發(fā)水污染事件的應(yīng)急調(diào)控方案,并結(jié)合案例驗(yàn)證了方案的可行性.結(jié)果表明:針對(duì)突發(fā)水污染事件,應(yīng)通過對(duì)比明渠輸水工程各渠段的最大水流傳播時(shí)間和將污染云團(tuán)控制在事故渠段內(nèi)的閉閘時(shí)間來確定閉閘調(diào)控時(shí)間,從而同步實(shí)現(xiàn)降低工程運(yùn)行安全風(fēng)險(xiǎn)和控制污染物范圍的目的.
明渠;輸水工程;突發(fā)水污染事件;應(yīng)急調(diào)控;南水北調(diào)中線工程
長(zhǎng)距離明渠輸水工程沿程控制建筑物和交叉建筑物眾多,存在突發(fā)水污染事件隱患.水污染事件如處置不當(dāng)和不及時(shí),將造成難以估量的后果.水污染事件突發(fā)后,應(yīng)提出閘群應(yīng)急調(diào)控方案,以實(shí)現(xiàn)從穩(wěn)定輸水狀態(tài)到污染物處置狀態(tài)的轉(zhuǎn)變,同時(shí)應(yīng)提供污染事件發(fā)生時(shí)到調(diào)控過渡時(shí)段末的污染物范圍,為應(yīng)急處置提供決策信息.
針對(duì)明渠輸水工程突發(fā)水污染事件應(yīng)急調(diào)控,國(guó)內(nèi)學(xué)者開展了一系列研究.阮新建等[1-2]采用現(xiàn)代控制理論研究了明渠自動(dòng)控制設(shè)計(jì)方法,設(shè)計(jì)了多渠段多級(jí)閘門渠道系統(tǒng)最優(yōu)控制器.丁志良等[3]運(yùn)用特征線法建立輸水渠道一維非恒定流數(shù)學(xué)模型,模擬了在不同的閘門調(diào)節(jié)組合及渠道運(yùn)行方式下,閘門調(diào)節(jié)速度對(duì)渠道水面線變化的影響.方神光等[4]利用南水北調(diào)中線電子渠道模型,對(duì)比了時(shí)序控制和同步控制兩種調(diào)度方式下干渠水流過渡過程.張成等[5]以南水北調(diào)中線工程總干渠典型渠段為例,模擬分析了非正常工況下退水閘的退水作用.聶艷華[6]在一維數(shù)學(xué)模型基礎(chǔ)上建立應(yīng)急反應(yīng)模塊,分別從事故閘關(guān)閉速率、陶岔首閘及閘前控制水位等方面對(duì)節(jié)制閘的運(yùn)行調(diào)度進(jìn)行模擬.蔣旭光等[7]分析了引水工程特點(diǎn),開發(fā)了引灤入津工程輸水安全應(yīng)急系統(tǒng)軟件.練繼建等[8-12]針對(duì)復(fù)雜輸水工程的水力控制及事故情況下的水力過渡過程進(jìn)行了研究.楊敏等[13]對(duì)明渠輸水工程下節(jié)制閘聯(lián)合控制中的同步控制法和順序控制法進(jìn)行了研究.張晨等[14-15]運(yùn)用數(shù)值模型對(duì)引黃濟(jì)津河道和于橋水庫(kù)下游渠道段進(jìn)行了突發(fā)水污染事件下的水動(dòng)力、水質(zhì)模擬和驗(yàn)證.朱德軍[16]利用一維模型對(duì)南水北調(diào)中線典型明渠段事故處置過程中,采用閘前定水位控制運(yùn)行方式下的非恒定流場(chǎng)和濃度場(chǎng)進(jìn)行了模擬研究,推導(dǎo)出渠道中擾動(dòng)的傳播速度,進(jìn)而分析了上游節(jié)制閘后水位變化與閘門啟閉速度之間的關(guān)系;比較了恒定流和非恒定流中污染物的輸移規(guī)律.
綜合而言,長(zhǎng)距離輸水工程根據(jù)運(yùn)行控制要求制定閘門調(diào)控方式,依據(jù)水位波度幅度安全限幅設(shè)定閘門關(guān)閉時(shí)間和速率.本文結(jié)合已有成果,以南水北調(diào)中線工程某典型渠段為例,開展突發(fā)水污染事故應(yīng)急調(diào)控研究.在數(shù)值分析閉閘調(diào)控下明渠水流運(yùn)動(dòng)和污染物輸移擴(kuò)散規(guī)律的基礎(chǔ)上,提出考慮輸水明渠運(yùn)行安全的閘控方案,并給出污染物輸移擴(kuò)散信息,為快速應(yīng)對(duì)突發(fā)水污染事件提供決策支持.
1.1 研究對(duì)象
選取南水北調(diào)中線總干渠京石應(yīng)急段起點(diǎn)至西黑山分水口之間的渠道作為研究對(duì)象,渠道基本特征如表1所示.
假定渠段中間位置發(fā)生污染事件,污染事件特征參數(shù)如表2所示.本研究?jī)H考慮污染物的輸移擴(kuò)散,不考慮生化反應(yīng).
表1 京石應(yīng)急段起點(diǎn)至西黑山分水口之間的渠道基本要素Tab.1 Basic elements of channel from Jingshi to Xiheishan
表2 突發(fā)水污染事件的特征參數(shù)Tab.2 Characteristic parameters of sudden water pollution accidents
1.2 情景設(shè)定
1.2.1 水閘調(diào)控情景
(1) 同步調(diào)控方式:閉閘時(shí)間為15~180,min,以15,min為間隔設(shè)定12種典型方案,方案不啟用退水閘.
(2) 異步調(diào)控方式:根據(jù)渠道內(nèi)水流傳播時(shí)間tb(tb=25,min)設(shè)定異步調(diào)控下的下游閘延遲關(guān)閉時(shí)間.閉閘時(shí)間為30~180,min,以30,min為間隔,共設(shè)定6種方案.
(3) 同步調(diào)控和啟用退水閘方式:閉閘時(shí)間為30~90,min,以30,min為間隔設(shè)定3種典型方案,退水閘在閉閘開始時(shí)刻同步開啟.另設(shè)定3種不啟用退水閘的對(duì)比方案.
1.2.2 污染物輸移擴(kuò)散情景
(1) 閘控前響應(yīng)時(shí)間:分別為3,min、10,min、20,min、30,min、40,min、50,min、60,min、120,min和180,min.所謂響應(yīng)時(shí)間,是指水污染事故發(fā)生到管理人員得知事故發(fā)生的時(shí)間跨度.
(2) 無響應(yīng)時(shí)間:閉閘時(shí)間為15~180,min,以15,min為間隔共設(shè)定12種典型方案.
(3) 存在30,min響應(yīng)時(shí)間:閉閘時(shí)間為30~180,min,以30,min為間隔,共設(shè)定6種方案.
1.3 模型構(gòu)建和參數(shù)設(shè)定
采取Hec_ras軟件構(gòu)建渠段一維水動(dòng)力和水質(zhì)耦合模擬模型,計(jì)算時(shí)間根據(jù)模擬情景設(shè)定,計(jì)算時(shí)間步長(zhǎng)為5,s.
(1) 同步閉閘方式.特征斷面(上游節(jié)制閘后和下游節(jié)制閘前)不同情景下水位變化特征值曲線如圖1和圖2所示.下游閘前斷面水位最高漲幅和上游閘后水位下降速度隨閉閘時(shí)間的延長(zhǎng)逐漸降低;當(dāng)閉閘時(shí)間介于30~60,min(大約1~2倍tb)時(shí),水位最高漲幅和水位下降速度均顯著降低.因此,同步閉閘方式下,閉閘調(diào)控時(shí)間應(yīng)大于2倍水流傳播時(shí)間.
(2) 異步閉閘方式.同步和異步閉閘方式下斷面水位變化特征值對(duì)比如圖3和圖4所示.相比同步閉閘方式,異步閉閘方式的下游閘前水位最高漲幅均明顯降低,最大降幅可達(dá)40,cm(30,min閉閘方案).當(dāng)閉閘時(shí)間小于120,min時(shí),異步閉閘方式下的上游閘后水位最大下降速度也有所降低,最大降幅可達(dá)0.32,m/h(30,min閉閘方案).對(duì)于長(zhǎng)距離明渠輸水工程,采取異步閉閘方式操作復(fù)雜.越往下游,閘門延遲關(guān)閉時(shí)間越長(zhǎng),不利于污染物控制.因此,同步閉閘方式更滿足應(yīng)急調(diào)控需求.
(3) 同步閉閘和啟用退水閘方式.如圖5和圖6所示,啟用退水閘后,下游節(jié)制閘前水位最高漲幅和上游節(jié)制閘后斷面水位下降速度均明顯降低,最大降幅分別為0.32,m/h(30,min閉閘方案)和0.19,m/h(90,min閉閘方案).因此,如果事故渠段存在退水閘,應(yīng)根據(jù)污染云團(tuán)到達(dá)退水閘的時(shí)間制定退水閘開啟方案,及時(shí)將污染水體排出事故渠段.
圖1 同步閉閘方式下水位最高漲幅曲線(下游閘前)Fig.1 Highest rise curve of water level for synchronization gate falling method(before the downstream gate)
圖2 同步閉閘方式下水位下降速度曲線(上游閘后)Fig.2 Descent velocity curve of water level for synchronization gate falling method (after the upstream gate)
圖3 不同閉閘方式下水位最高漲幅曲線對(duì)比(下游閘前)Fig.3 Highest rise curve of water level for different gate falling methods(before the downstream gate)
圖4 不同閉閘方式下水位下降速度曲線對(duì)比(上游閘后)Fig.4 Descent velocity curve of water level for different gate falling methods(after the upstream gate)
圖5 考慮退水閘的水位最高漲幅曲線(下游閘前)Fig.5 Highest rise curve of water level with regard to escape gate(before the downstream gate)
圖6 考慮退水閘的水位下降速度曲線(上游閘后)Fig.6 Descent velocity curve of water level with regard to escape gate(after the upstream gate)
3.1 不同響應(yīng)時(shí)間下渠段污染物輸移擴(kuò)散規(guī)律
閉閘前不同響應(yīng)時(shí)間下,渠段內(nèi)污染云團(tuán)輸移擴(kuò)散過程如圖7和圖8所示.由圖7可知,污染云團(tuán)峰值輸移距離與閉閘前響應(yīng)時(shí)間呈正比,等于輸水流速與響應(yīng)時(shí)間的乘積.污染云團(tuán)縱向長(zhǎng)度在tb時(shí)間內(nèi)隨響應(yīng)時(shí)間延長(zhǎng)而迅速增加,隨后近似線性增加.由圖8可知,污染云團(tuán)峰值濃度衰減為冪次降低過程.峰值濃度在tb時(shí)間內(nèi)隨響應(yīng)時(shí)間延長(zhǎng)而迅速衰減;隨后衰減趨于平緩.
圖7 峰值輸移距離和污染云團(tuán)縱向長(zhǎng)度變化曲線Fig.7 Variation of peak transport distance and longitudinal length of pollution at peak
圖8 峰值濃度及其衰減率變化曲線Fig.8 Variation of peak concentration and attenuation rate at peak
3.2 閉閘過程中渠段污染物輸移擴(kuò)散規(guī)律分析
不同閉閘時(shí)間和有無閉閘前響應(yīng)時(shí)間條件下,同步調(diào)控過程中渠段內(nèi)污染云團(tuán)輸移擴(kuò)散過程如圖9和圖10所示.由圖9可知,當(dāng)閉閘時(shí)間小于120,min(約為4倍tb)時(shí),污染云團(tuán)峰值輸移距離隨閉閘時(shí)間的延長(zhǎng)而增加;當(dāng)閉閘時(shí)間超過120,min后,峰值輸移距離趨于穩(wěn)定.隨著閉閘時(shí)間的延長(zhǎng),污染云團(tuán)縱向長(zhǎng)度近似線性增加,但受漲水逆波和跌水順波及其反射疊加作用的影響,增加速率不一致.如圖10所示,污染云團(tuán)峰值濃度隨閉閘時(shí)間延長(zhǎng)而呈現(xiàn)冪次降低過程.
圖9 無響應(yīng)時(shí)間和30,min響應(yīng)時(shí)間下污染云團(tuán)峰值輸移距離和縱向長(zhǎng)度變化曲線Fig.9 Variations of peak transport distance and longitudinal length of pollution cloud at 30,min response time and without response time
圖10 無響應(yīng)時(shí)間和30,min響應(yīng)時(shí)間下污染云團(tuán)峰值濃度及其衰減率變化曲線Fig.10 Variations of peak concentration and attenuation rate of pollution cloud at 30,min response time and without response time
3.3 閉閘過程中污染云團(tuán)特征值計(jì)算
3.3.1 污染云團(tuán)峰值輸移距離計(jì)算
閉閘調(diào)控下,污染云團(tuán)峰值輸移距離受到閉閘后水流輸移和水流往復(fù)運(yùn)動(dòng)的疊加影響,表3列出了兩種作用下的污染云團(tuán)峰值輸移距離.獨(dú)立考慮兩種影響,采取式(1)計(jì)算閉閘時(shí)間內(nèi)水流輸移引起的污染云團(tuán)峰值輸移距離DM,采取式(2)計(jì)算水流往復(fù)運(yùn)動(dòng)作用下的污染云團(tuán)峰值輸移距離DF,則閉閘調(diào)控下污染云團(tuán)峰值輸移距離DR表達(dá)式如式(3)所示.
式中:vs為前的輸水流速,m/s;tclose為閉閘調(diào)控時(shí)間,s;Ca和Cb分別為擬合參數(shù).
表3 閉閘調(diào)控下的污染云團(tuán)峰值輸移距離Tab.3 Peak transport distance of pollution cloud when sluice gates closed
3.3.2 污染云團(tuán)縱向長(zhǎng)度計(jì)算
所采用的水質(zhì)模型僅模擬離散區(qū)階段的污染云團(tuán)輸移擴(kuò)散過程.離散區(qū)階段,縱向污染云團(tuán)斷面平均濃度分布的方差σx采取式(4)計(jì)算.文獻(xiàn)[16]研究表明:離散區(qū)階段,∝t/ D,定義v=/dt,則xx
v具有速度量綱,表征污染云團(tuán)縱向長(zhǎng)度變化快慢,即污染云團(tuán)縱向拉伸速度,如式(5)所示.因此,T時(shí)間內(nèi)污染云團(tuán)縱向長(zhǎng)度W可采取式(6)計(jì)算.
式中:t為時(shí)間;x為距離;xxD為橫向擴(kuò)散系數(shù),m2/s; C為無量綱系數(shù).
3.4 考慮控制污染范圍目標(biāo)的閉閘調(diào)控時(shí)間
突發(fā)水污染事故下,已知得知事故發(fā)生時(shí)刻的污染云團(tuán)縱向長(zhǎng)度W0和此時(shí)污染云團(tuán)最上游斷面距事故渠段下游閘的距離LD,采取同步閉閘調(diào)控方式,將污染云團(tuán)控制在事故渠段內(nèi)的閉閘調(diào)控時(shí)間的計(jì)算思路如下所述.
(1) 根據(jù)W0及式(6),計(jì)算水污染事故發(fā)生到得知發(fā)生的時(shí)間和t0時(shí)間內(nèi)污染云團(tuán)峰值輸移距離D0=vst0.
(2) 閉閘過程中,峰值輸移距離DR可采用式(3)計(jì)算,污染云團(tuán)縱向長(zhǎng)度增幅
(3)根據(jù)LD,污染云團(tuán)峰值所在斷面距渠段下游閘的距離為L(zhǎng)D-0.5W0.
(4)將污染云團(tuán)控制在事故渠段內(nèi)需滿足:閉閘調(diào)控結(jié)束時(shí),事故渠段污染云團(tuán)縱向長(zhǎng)度的1/2與閉閘時(shí)間內(nèi)污染云團(tuán)峰值輸移距離之和小于LD-0.5W0,即
由此,得到將污染云團(tuán)控制在事故渠段內(nèi)的閉閘調(diào)控時(shí)間tclose的計(jì)算表達(dá)式為
突發(fā)水污染事件下明渠輸水工程應(yīng)急調(diào)控方案的制定策略為:綜合考慮水力調(diào)控安全和控制污染擴(kuò)散范圍的目標(biāo),采取同步閉閘調(diào)控方式,通過對(duì)比渠段最大水流傳播時(shí)間tb,max和污染云團(tuán)控制在事故渠段內(nèi)的閉閘調(diào)控時(shí)間tclose來確定應(yīng)急調(diào)控的閉閘時(shí)間.
(1)當(dāng)tclose>2tb.max時(shí),則應(yīng)急調(diào)控的閉閘時(shí)間T=tclose.
(2)當(dāng)tclose<2tb,max時(shí),若將水力調(diào)控安全作為首要目標(biāo),允許污染物擴(kuò)散至事故渠段下游,則應(yīng)急閉閘調(diào)控時(shí)間T=2tb.max;若將控制污染擴(kuò)散范圍作為首要目標(biāo),則T=tclose.
應(yīng)用案例中,明渠輸水工程由3個(gè)渠段和4個(gè)節(jié)制閘組成,渠段長(zhǎng)度依次為20,km、12,km和20,km,渠系基本要素如表1所示.首渠段發(fā)生水污染事件,得知事故發(fā)生時(shí)刻的LD=15,000,m,W0=3,000,m,彌散系數(shù)為7.0,m2/s;Ca為-8.97,m/min,Cb為1,576.0,m,/C為0.024,m/s-0.5.
根據(jù)W0和響應(yīng)時(shí)間t0計(jì)算公式,得出突發(fā)水污染事件發(fā)生到得知發(fā)生時(shí)間t0=86.4,min,對(duì)應(yīng)的污染云團(tuán)峰值輸移距離D0=3,680.6,m.根據(jù)D0得出突發(fā)水污染事件發(fā)生位置,距事故發(fā)生渠段下游截止閘17.18,km.
根據(jù)式(7),將污染云團(tuán)控制在事故渠段內(nèi)的tclose=619.4 min,對(duì)應(yīng)的DR+0.5(W0+ΔW)=13433m .
利用Hec_ras軟件構(gòu)建應(yīng)用案例的一維水動(dòng)力和污染物輸移擴(kuò)散模擬模型,在事故發(fā)生位置設(shè)定污染匯入源.根據(jù)計(jì)算結(jié)果,事故發(fā)生時(shí)刻,得知事故發(fā)生時(shí)刻及閉閘調(diào)控完成時(shí)刻的污染云團(tuán)位置和縱向長(zhǎng)度如圖11所示.結(jié)果表明:620,min閉閘時(shí)間下,DR+0.5(W0+ΔW)=8300+9 500/2= 13050 m ,小于LD-0.5W0,與式(7)計(jì)算結(jié)果十分接近.因此,所提出的應(yīng)急調(diào)控方案合理,可將污染云團(tuán)控制在事故渠道內(nèi).
由于tb,max=39.9 min,且tclose>2tb.max,最終確定應(yīng)急調(diào)控的閉閘時(shí)間為80 min.
圖11 不同特征時(shí)刻的污染云團(tuán)位置和縱向長(zhǎng)度Fig.11 Position and longitudinal length of pollution clouds at different characteristic times
(1) 突發(fā)水污染事件下,長(zhǎng)距離明渠輸水工程應(yīng)采取同步閉閘調(diào)控方式,考慮工程運(yùn)行安全的閉閘調(diào)控時(shí)間應(yīng)超過2倍渠段水流傳播時(shí)間.
(2) 如果事故渠段存在退水閘,應(yīng)急調(diào)控中應(yīng)根據(jù)污染云團(tuán)到達(dá)退水閘的時(shí)間制定退水閘開啟方案,及時(shí)將污染水體排出事故渠段.
(3) 污染云團(tuán)運(yùn)動(dòng)受渠段穩(wěn)定輸水和閉閘調(diào)控下的水流運(yùn)動(dòng)影響,其縱向長(zhǎng)度和峰值輸移距離變化過程以及峰值濃度衰減規(guī)律與閉閘前響應(yīng)時(shí)間和閉閘調(diào)控時(shí)間顯著相關(guān),呈現(xiàn)不同特征.
(4) 突發(fā)水污染事件下,長(zhǎng)距離明渠輸水工程應(yīng)急調(diào)控方案制定策略是采取同步閉閘調(diào)控方式,并通過對(duì)比明渠輸水工程各渠段的最大水流傳播時(shí)間和將污染云團(tuán)控制在事故渠段內(nèi)的閉閘時(shí)間來確定閉閘調(diào)控時(shí)間.
[1] 阮新建,劉自奎,蔡明貴,等. 渠道運(yùn)行控制數(shù)學(xué)模型及系統(tǒng)特性分析[J]. 武漢大學(xué)學(xué)報(bào):工學(xué)版,2002,35(2):40-44. Ruan Xinjian,Liu Zikui,Cai Minggui,et al. Mathematical model for canal operation control and system property analysis[J]. Engineering Journal of Wuhan University,2002,35(2):40-44(in Chinese).
[2] 阮新建,袁宏源,王長(zhǎng)德. 灌溉明渠自動(dòng)控制設(shè)計(jì)方法研究[J]. 水利學(xué)報(bào),2004,35(8):21-25. Ruan Xinjian,Yuan Hongyuan,Wang Changde. Design of irrigation canal automatic control [J]. Journal of Hydraulic Engineering,2004,35(8):21-25(in Chinese).
[3] 丁志良,談廣鳴,陳 立,等. 輸水渠道中閘門調(diào)節(jié)速度與水面線變化研究[J]. 南水北調(diào)與水利科技,2005,3(6):46-50. Ding Zhiliang,Tan Guangming,Chen Li,et al. Study of sluice gate regulating speed and changes of watersurface profile in transportation channels [J]. South-to-North Water Transfers and Water Science and Technology,2005,3(6):46-50(in Chinese).
[4] 方神光,吳保生,傅旭東. 南水北調(diào)中線干渠閘門調(diào)度運(yùn)行方式探討[J]. 水力發(fā)電學(xué)報(bào),2008,27(5):93-97. Fang Shenguang,Wu Baosheng,F(xiàn)u Xudong. Gate operation in the middle route of the south-to-north water diversion channel[J]. Journal of Hydroelectric Engineering,2008,27(5):93-97(in Chinese).
[5] 張 成,傅旭東,王光謙. 南水北調(diào)中線工程總干渠非正常工況下的水力響應(yīng)分析[J]. 南水北調(diào)與水利科技,2007,5(6):8-20. Zhang Cheng,F(xiàn)u Xudong,Wang Guangqian. Hydrau-lic response in abnormal operation modes of the middle route of the south-to-north water diversion project [J]. South-to-North Water Transfers and Water Science and Technology,2007,5(6):8-20(in Chinese).
[6] 聶艷華. 長(zhǎng)距離引水工程突發(fā)事件的應(yīng)急調(diào)度研究[D]. 武漢:長(zhǎng)江科學(xué)院,2011. Nie Yanhua. Emergency Scheduling for Sudden Water Pollution Accidents in Long Distance Water Diversion Works [D]. Wuhan:Yangtze River Academy of Sciences,2011(in Chinese).
[7] 椂蔣旭光,司春. 引水工程安全保障體系研究[C]//水力學(xué)與水利信息學(xué)進(jìn)展. 南京:河海大學(xué)出版社,2007:312-320. Jiang Xuguang,Si Chundi. Study on safety control system of water diversion project[C]//Hydraulics and Water Conservancy Informatics Progress. Nanjing:Hohai University Press,2007:312-320(in Chinese).
[8] 穆祥鵬,練繼建,劉瀚和. 復(fù)雜輸水系統(tǒng)水力過渡的數(shù)值方法比較及適用性分析[J]. 天津大學(xué)學(xué)報(bào),2008,41(5):515-521. Mu Xiangpeng,Lian Jijian,Liu Hanhe. Comparison and applicability analysis of numerical methods for transient of complex water diversion system [J]. Journal of Tianjin University,2008,41(5):515-521(in Chinese).
[9] 穆祥鵬,練繼建,趙 威. 并聯(lián)輸水箱涵檢修操作過程中的水力仿真及瞬變控制[J]. 水利學(xué)報(bào),2008,39(4):448-453. Mu Xiangpeng,Lian Jijian,Zhao Wei. Hydraulic control of long distance water diversion box culvert with multiple opening in the process of gate operation for overhaul [J]. Journal of Hydraulic Engineering,2008,39(4):448-453(in Chinese).
[10] 穆祥鵬,練繼建,李 琳. 基于水力控制的分段低壓輸水系統(tǒng)優(yōu)化研究[J]. 四川大學(xué)學(xué)報(bào):工程科學(xué)版,2008,40(1):58-63. Mu Xiangpeng,Lian Jijian,Li Lin. Optimization on the stepped low-pressurized water diversion system based on hydraulic control[J]. Journal of Sichuan University:Engineering Science Edition,2008,40(1):58-63(in Chinese).
[11] 楊 敏,李 強(qiáng),李 琳,等. 有壓管道充水過程數(shù)值模擬[J]. 水利學(xué)報(bào),2007,38(2):171-175. Yang Min,Li Qiang,Li Lin,et al. Numerical simulation of water-filling process in pressure conduit[J]. Journal of Hydraulic Engineering,2007,38(2):171-175(in Chinese).
[12] 練繼建,鄭 政,李 琳,等. 多孔并聯(lián)分段低壓輸水系統(tǒng)的水力特性和控制[J]. 水利學(xué)報(bào),2006,37(8):950-957. Lian Jijian,Zheng Zheng,Li Lin,et al. Hydraulic characteristics and control approach of stepped lowpressurized water diversion system with parallel multiholes in regulation tanks [J]. Journal of Hydraulic Engineering,2006,37(8):950-957(in Chinese).
[13] 楊 敏,周 芳. 節(jié)制閘聯(lián)合調(diào)度控制下明渠輸水系統(tǒng)水力控制研究[J]. 西安理工大學(xué)學(xué)報(bào),2010,26(2):202-205. Yang Min,Zhou Fang. A study of hydraulic control of the open channel water diversion system under combined control of all check sluices[J]. Journal of Xi’an University of Technology,2010,26(2):202-205(in Chinese).
[14] 張 晨. 長(zhǎng)距離調(diào)水工程水質(zhì)安全研究與應(yīng)用[D]. 天津:天津大學(xué)建筑工程學(xué)院,2008. Zhang Chen. Study on the Security of Water Quality and Application for Long Distance Water Diversion Project [D]. Tianjin:School of Civil Engineering,Tianjin University,2008(in Chinese).
[15] 高學(xué)平,張 晨,張 亞,等. 引黃濟(jì)津河道水質(zhì)數(shù)值模擬與預(yù)測(cè)[J]. 水動(dòng)力學(xué)研究與進(jìn)展:A輯,2007,22(1):36-43. Gao Xueping,Zhang Chen,Zhang Ya,et al. Numerical simulation and prediction of water quality for water supply from Yellow River to Tianjin[J]. Journal of Hydrodynamics:Ser A,2007,22(1):36-43(in Chinese).
[16] 朱德軍. 南水北調(diào)中線明渠段事故污染特性模擬方法研究[D]. 北京:清華大學(xué)水利水電工程系,2007. Zhu Dejun. Study on Numerical Methods for Water Pollution Accidents in the Middle Route Open Channel of the South-to-North Water Transfer[D]. Beijing:Department of Hydraulic Engineering,Tsinghua University,2007(in Chinese).
Emergency Regulation for Sudden Water Pollution Accidents of Open Channel in Long Distance Water Transfer Project
Lian Jijian,Wang Xu,Liu Chanyu,Ma Chao
(State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China)
Taking the typical main canal of the middle route of South-to-North Water Transfer project as an example,the research on emergency regulation of sudden water pollution accidents has been carried out for the long-distance open channel water transfer project. The numerical simulation is employed to analyze the water movement and pollutant transport law under the different conditions of the gate falling regulation and gate falling time. Calculation method of the pollution cloud peak transport distance and the longitudinal length is also discussed. Then the calculation formula of emergency gate falling time is proposed in order to control the pollution in the channel of accident. On this basis,emergency regulation rules are proposed for the solutions of sudden pollution accidents in long-distance open channel transfer projects,and the feasibility of the rules is verified by cases. The results show that for the sudden water pollution accidents,emergency gate falling time should be developed with a comparison of maximum wave propagation time in each section of open channel water transfer project and the time to control the pollution in the channel of accident. Regulation of the emergency gate falling time can reduce the security risks of operation and control the pollution area simultaneously.
open channel;water transfer project;sudden water pollution accident;emergency regulation;middle route of South-to-North Water Transfer project
X522
A
0493-2137(2013)01-0044-07
2012-09-17;
2012-10-22.
國(guó)家重大科技專項(xiàng)基金資助項(xiàng)目(2012ZX07205005);國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(51109156);教育部新教師青年基金資助項(xiàng)目(20100032120048).
練繼建(1965— ),男,博士,教授.
練繼建,tju_luntan@126.com.