李斌,卜長(zhǎng)江
(哈爾濱工程大學(xué) 理學(xué)院,黑龍江 哈爾濱 150001)
證明 由A的分解形式,設(shè)
則
由AX=XA可得X3=X4=O,且ΔX1=X1Δ.
所證成立.
引理3 設(shè)A、X分別有引理1、引理2中的分解形式,且rank(A)=rank(AX),那么:1)X1可逆;2)令 F=XAA#,則 F#存在,且滿(mǎn)足 XA2F#=A2,F(xiàn)#A A#=F#.
證明 由A、X的分解形式,可得:
rank(AX)=rank(A)=rank(Δ)=r,因此有
r=rank(Δ)=rank(ΔX1)≤ rank(X1)≤r,所以X1可逆.
引理 4 如果 rank(A)=rank(AX),那么rank(A2)=rank(A2X).
證明 由已知得 R(A)=R(AX),那么AR(A)=AR(AX),即 R(A2)=R(A2X),因此rank(A2)=rank(A2X).
1)M#存在的充分必要條件是 rank(B)=rank(BS);
證明:
所以M#存在?rank(M)=rank(M2)?rank(B)=rank(BS);
2)因?yàn)?rank(B)=rank(BS),R(BS)?R(B),所以R(BS)=R(B),那么
故rank(S2)=rank(S),即S#存在.
下面求導(dǎo)M#.由A、X的分解形式,可得
那么由引理3得
結(jié)合式(1)~(3)得
因此所證成立.
那么利用定理1的公式計(jì)算得
當(dāng)X滿(mǎn)足定理1中條件時(shí),顯然X不一定可逆,甚至X的群逆也不一定存在,但由文中定理可以知道此時(shí)M#仍然是可能存在的,而在原有的定理中,要求X可逆,因此本文定理大大地拓展了M#存在的條件,并且在新條件下給出了M#的表達(dá)形式.
[1]CAMPBELL S L.The Drazin inverse and systems of second order linear differential equations[J].Linear Multilinear Algebra,1983,14(2):195-198.
[2]CAMPBELL S L,MERYER C D.Generalized inverses of Linear transformations[M].NewYork:Dover Publications,1991:36-87.
[3]HARTWIG R ,LI X,WEI Y.Representations for the Drazin inverse of 2 ×2 block matrix[J].SIAM Journal on Matrix Analysis and Applications,2006,27(3):757-771.
[4]BU Changjiang,F(xiàn)ENG Chengcheng,BAI Shuyan.Representations for the Drazin inverses of the sum of two matrices and some block matrices[J].Applied Mathematics and Computation,2012,218(20):10226-10237.
[5]曹重光.體上分塊矩陣群逆的某些結(jié)果[J].黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2001,18(3):5-7.
CAO Chongguang.Some results of group inverses for partitioned matrices over skew fields[J].Journal Natural Science Heilongjiang University,2001,18(3):5-7.
[6]BU Changjiang,ZHAO Jiemei,ZHENG Jinshan.Group inverse for a class 2×2 block matrices over skew fields[J].Applied Mathematics and Computation,2008,204(1):45-49.
[7]BU Changjiang,ZHAO Jiemei,ZHANG Kuize.Some results on group inverses of block matrices over skew fields[J].E-lectron.J.Linear Algebra,2009,18(2):117-125.
[8]BU Changjiang,ZHANG Kuize,ZHAO Jiemei.Some results on the group inverse of the block matrix with a subblock of linear combination or product combination of matrices over skew fields[J].Linear Multilinear Algebra,2010,58(8):957-966.
[9]CAO Chongguang,LI Jiamei.A note on the group inverse of some 2×2 block matrices over skew fields[J].Applied Mathematics and Computation,2011,217(24):10271-10277.