曹麗蓉
數(shù)學(xué)研究性學(xué)習(xí)是學(xué)生數(shù)學(xué)學(xué)習(xí)的一個有機(jī)組成部分,是在基礎(chǔ)性、拓展性課程學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步鼓勵學(xué)生運(yùn)用所學(xué)知識解決數(shù)學(xué)的和現(xiàn)實(shí)的問題的一種有意義的主動學(xué)習(xí),是以學(xué)生動手動腦主動探索實(shí)踐和相互交流為主要學(xué)習(xí)方式的學(xué)習(xí)研究活動。它能營造一個使學(xué)生勇于探索爭論和相互學(xué)習(xí)鼓勵的良好氛圍,給學(xué)生提供自主探索、合作學(xué)習(xí)、獨(dú)立獲取知識的機(jī)會。數(shù)學(xué)研究性學(xué)習(xí)更加關(guān)注學(xué)習(xí)過程。
一、數(shù)學(xué)研究性學(xué)習(xí)的材料
用于數(shù)學(xué)研究性學(xué)習(xí)的材料應(yīng)是建立在學(xué)生現(xiàn)有知識經(jīng)驗(yàn)基礎(chǔ)之上,能夠激起學(xué)生解決問題的欲望,體現(xiàn)數(shù)學(xué)研究的思想方法和應(yīng)用價值,有利于營造廣闊的思維活動空間,使學(xué)生的思路越走越寬,思維的空間越來越大的一種研究性材料。
數(shù)學(xué)研究性學(xué)習(xí)的材料不僅僅是教師自己提供的,而且教師應(yīng)鼓勵學(xué)生通過思考、調(diào)查、查閱資料等方式概括出問題,甚至可以通過日常生活情景提出數(shù)學(xué)問題,進(jìn)而提煉成研究性學(xué)習(xí)的材料。在研究性學(xué)習(xí)的過程中,學(xué)生是學(xué)習(xí)的主人,是問題的研究者和解決者,是主角,而教師則在適當(dāng)?shù)臅r候?qū)W(xué)生給予幫助,起著組織和引導(dǎo)的作用。
二、數(shù)學(xué)研究性學(xué)習(xí)課題的選擇
數(shù)學(xué)研究性學(xué)習(xí)課題主要是指對某些數(shù)學(xué)問題的深入探討,或者從數(shù)學(xué)角度對某些日常生活中和其他學(xué)科中出現(xiàn)的問題進(jìn)行研究。要充分體現(xiàn)學(xué)生的自主活動和合作活動。研究性學(xué)習(xí)材料應(yīng)以所學(xué)的數(shù)學(xué)知識為基礎(chǔ),并且密切結(jié)合生活和生產(chǎn)實(shí)際。
新高中數(shù)學(xué)新教材研究性學(xué)習(xí)參考課題有:數(shù)列在分期付款中的應(yīng)用,向量在物理中的應(yīng)用,線性規(guī)劃的實(shí)際應(yīng)用,多面體歐拉定理的發(fā)現(xiàn)、楊輝三角等。 其教學(xué)目標(biāo)是:(1)學(xué)會提出問題和明確探究方向;(2)體驗(yàn)數(shù)學(xué)活動的過程;(3)培養(yǎng)創(chuàng)新精神和應(yīng)用能力;(4)以研究報(bào)告或小論文等形式反映研究成果,學(xué)會交流。
三、數(shù)學(xué)開放題與研究性學(xué)習(xí)
研究性學(xué)習(xí)的開展需要有合適的載體,即使是學(xué)生提出的問題也要加以整理歸類。在全國和各地的高考試題中連續(xù)出現(xiàn)具有開放性的題目。
數(shù)學(xué)開放題體現(xiàn)數(shù)學(xué)研究的思想方法,解答過程是探究的過程,數(shù)學(xué)開放題體現(xiàn)數(shù)學(xué)問題的形成過程,體現(xiàn)解答對象的實(shí)際狀態(tài),數(shù)學(xué)開放題有利于為學(xué)生個別探索和準(zhǔn)確認(rèn)識自己提供時空,便于因材施教,可以用來培養(yǎng)學(xué)生思維的靈活性和發(fā)散性,使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的成功感,使學(xué)生體驗(yàn)到數(shù)學(xué)的美感。因此數(shù)學(xué)開放題用于學(xué)生研究性學(xué)習(xí)應(yīng)是十分有意義的。
四、數(shù)學(xué)研究性學(xué)習(xí)中開放題的編制方法
無論是改造陳題,還是自創(chuàng)新題,編制數(shù)學(xué)開放題都要圍繞使用開放題的目的進(jìn)行,開放題應(yīng)當(dāng)隨著使用目的和對象的變化而改變,應(yīng)作為常規(guī)問題的補(bǔ)充,在研究型課程中適合學(xué)生研究性學(xué)習(xí)的開放題應(yīng)具備起點(diǎn)低、入口寬、可拓展性強(qiáng)的特點(diǎn)。具體的編制方法如下:
1. 以一定的知識結(jié)構(gòu)為依托,從知識網(wǎng)絡(luò)的交匯點(diǎn)尋找編制問題的切入點(diǎn)。能力是以知識為基礎(chǔ)的,但掌握知識并不一定具備能力,以一定的知識為背景,編制出開放題,面對實(shí)際問題情景,學(xué)生可以分析問題情景,根據(jù)自己的理解構(gòu)造具體的數(shù)學(xué)問題,然后嘗試求解形成的數(shù)學(xué)問題并完成解答.
2. 以某一數(shù)學(xué)定理或公設(shè)為依據(jù),編制開放題。數(shù)學(xué)中的定理或公設(shè)是數(shù)學(xué)學(xué)習(xí)的重要依據(jù),中學(xué)生的學(xué)習(xí)特別是研究性學(xué)習(xí)常常是已有的定理并不需要學(xué)生掌握,或者是學(xué)生暫時還不知道,因此我們可以設(shè)計(jì)適當(dāng)?shù)膯栴}情景,讓學(xué)生進(jìn)行探究,通過自己的努力去發(fā)現(xiàn)一般規(guī)律,體驗(yàn)研究的樂趣。
3. 從封閉題出發(fā)引申出開放題。我們平時所用習(xí)題多是具有完備的條件和確定的答案,把它稱之為封閉題,在原有封閉性問題基礎(chǔ)上,使學(xué)生的思維向縱深發(fā)展,發(fā)散開去,能夠啟發(fā)學(xué)生有獨(dú)創(chuàng)性的理解,就有可能形成開放題。在研究性學(xué)習(xí)中首先呈現(xiàn)給學(xué)生封閉題,解答完之后,進(jìn)一步引導(dǎo)學(xué)生進(jìn)行探究,如探究更一般的結(jié)論,探究更多的情形,或探究該結(jié)論成立的其它條件等等。
4.為體現(xiàn)或重現(xiàn)某一數(shù)學(xué)研究方法編制開放題。數(shù)學(xué)家的研究方法蘊(yùn)涵深刻的數(shù)學(xué)思想,在數(shù)學(xué)研究性學(xué)習(xí)中讓學(xué)生親身體驗(yàn)數(shù)學(xué)家的某些研究,做小科學(xué)家,點(diǎn)燃埋藏在學(xué)生心靈深處的智慧火種。以此為著眼點(diǎn)編制開放題,其教育價值是不言而喻的。
5.以實(shí)際問題為背景,體現(xiàn)數(shù)學(xué)的應(yīng)用價值編制開放題。在實(shí)際問題中,條件往往不能完全確定,即條件的不確定性是自然形成的或是實(shí)際需要,其不確定性是合理的。如包裝的外型,花圃的圖案,工程的圖紙這些是需要設(shè)計(jì)的,而由于考慮的角度不同,設(shè)計(jì)者的知識背景、價值判斷不同,得出的方案也會不同。
以實(shí)際問題為背景,編制出不同類型的開放題,用于研究性學(xué)習(xí),可以培養(yǎng)學(xué)生創(chuàng)新精神和實(shí)踐能力。將數(shù)學(xué)開放題作為數(shù)學(xué)研究性學(xué)習(xí)的一種載體,首先必須有適合的問題,如何編制能夠用于研究性學(xué)習(xí)的開放題,這是值得研究的。在研究性學(xué)習(xí)的教學(xué)實(shí)踐中,有充滿活力和創(chuàng)造力的學(xué)生的參與,必將促進(jìn)對這一問題認(rèn)識的深化和提高。