張藍(lán)寧,盧才義,尹 彤
?
氯吡格雷藥物基因組學(xué)及個體化治療研究進(jìn)展與展望
張藍(lán)寧,盧才義*,尹 彤*
(解放軍總醫(yī)院老年心血管病研究所,北京 100853)
通過與阿司匹林聯(lián)合應(yīng)用,氯吡格雷已經(jīng)成為治療急性冠脈綜合征和預(yù)防經(jīng)皮冠狀動脈介入術(shù)后支架內(nèi)血栓形成和再發(fā)缺血事件的經(jīng)典口服抗血小板藥物。盡管如此,氯吡格雷抗血小板的反應(yīng)性和療效存在顯著的個體間差異。近年來的研究證實(shí),除臨床環(huán)境因素外,遺傳變異是導(dǎo)致氯吡格雷抗血小板反應(yīng)性個體間差異的重要因素之一。多項大規(guī)模臨床藥物基因組學(xué)研究發(fā)現(xiàn),參與氯吡格雷代謝的關(guān)鍵酶——CYP2C19功能缺失型等位基因與氯吡格雷治療期間高血小板反應(yīng)性及心血管一級缺血終點(diǎn)事件的發(fā)生密切相關(guān)。另外,與氯吡格雷代謝相關(guān)的其他基因變異型也被證實(shí)可能與氯吡格雷抗血小板反應(yīng)性及不良心血管事件相關(guān)。在此基礎(chǔ)上,利用藥物基因組學(xué)基因型檢測指導(dǎo)氯吡格雷個體化抗血小板治療,可能部分克服氯吡格雷治療期間的高血小板反應(yīng)性,但研究結(jié)果之間仍存在爭議,尚需深入研究以提供更有力的證據(jù)。除此之外,未來有必要進(jìn)一步深入研究基因型檢測聯(lián)合血小板功能監(jiān)測共同指導(dǎo)氯吡格雷抗血小板個體化治療的效果。
氯吡格雷;遺傳藥理學(xué);CYP2C19;血小板反應(yīng)性;心血管缺血事件;個體化醫(yī)學(xué)
通過與阿司匹林聯(lián)合應(yīng)用,氯吡格雷(clopidogrel)已經(jīng)成為治療急性冠脈綜合征(acute coronary syndrome,ACS)和預(yù)防經(jīng)皮冠狀動脈介入(percutaneous coronary intervention,PCI)術(shù)后支架內(nèi)血栓形成和再發(fā)缺血事件的經(jīng)典口服抗血小板藥物[1,2],但氯吡格雷抗血小板反應(yīng)性和療效存在顯著的個體差異。除臨床環(huán)境因素外,基因多態(tài)性在其中起了重要作用。多項大規(guī)模臨床藥物基因組學(xué)研究發(fā)現(xiàn),CYP2C19功能缺失型等位基因(CYP2C19*2和*3)與氯吡格雷治療期間高血小板反應(yīng)性(high on-treatment platelet reactivity,HPR)及心血管一級缺血終點(diǎn)事件的發(fā)生密切相關(guān)[3,4];與氯吡格雷代謝相關(guān)的其他基因變異型(PON1Q192R和ABCB1C3435T)也可能與氯吡格雷抗血小板反應(yīng)性及不良心血管事件相關(guān)[5,6],但各研究結(jié)果間存在較大爭議。通過相關(guān)基因檢測預(yù)測藥物療效,選擇合適的藥物和劑量進(jìn)行個體化治療是心血管藥物治療的必然趨勢,具有重大的意義。因此,研究者們利用藥物基因組學(xué)基因型檢測指導(dǎo)氯吡格雷個體化抗血小板治療,進(jìn)行了許多有益的探索。
本文重點(diǎn)闡述了氯吡格雷藥物代謝基因多態(tài)性與抗血小板反應(yīng)性及臨床預(yù)后的關(guān)系,并就利用藥物基因組學(xué)基因型檢測指導(dǎo)氯吡格雷個體化抗血小板治療的研究進(jìn)展加以綜述。
氯吡格雷是藥物前體,在小腸的吸收受到ABCB1(MDR1)基因編碼的質(zhì)子泵P-糖蛋白調(diào)控,然后在肝臟中經(jīng)兩級氧化反應(yīng)轉(zhuǎn)化為含巰基的活性代謝產(chǎn)物[7](圖1),其中CYP2C19參加了兩級氧化反應(yīng)。二磷酸腺苷(adenosine diphosphate,ADP)是引起血小板活化和聚集的重要介質(zhì),它通過兩個G蛋白耦聯(lián)受體(P2Y1和P2Y12)與血小板結(jié)合。P2Y12受體與Gi耦聯(lián)后使血小板聚集并維持穩(wěn)定。氯吡格雷活性代謝產(chǎn)物與血小板P2Y12受體不可逆地共價結(jié)合,抑制ADP誘導(dǎo)的血小板聚集。
圖1 氯吡格雷在肝臟中的氧化反應(yīng)及代謝酶
Figure 1 Hepatic metabolism of clopidogrel and involved esterases
眾多證據(jù)表明CYP2C19在氯吡格雷活化過程中起主導(dǎo)作用,目前已探明CYP2C19至少存在25種變異型[4]。其中CYP2C19*1為編碼正?;钚悦傅幕?,CYP2C19*2和CYP2C19*3為功能缺失型等位基因。CYP2C19基因型變異分布存在顯著的種族差異性。CYP2C19*2基因型常見于高加索人、非洲人、美洲人和亞洲人,其中亞洲人群攜帶率高達(dá)30%[8,9]。CYP2C19*3亞洲人群攜帶率為5%~10%,而其他人群攜帶率均<1%[10]。
2006年Hulot等[3]首次證實(shí)了CYP2C19*2基因型與氯吡格雷抗血小板反應(yīng)性降低顯著相關(guān)。Mega等[4]發(fā)現(xiàn)攜帶至少1個CYP2C19*2基因型的患者血漿中,氯吡格雷活性代謝產(chǎn)物明顯減少。隨后大量前瞻性臨床研究表明,CYP2C19*2基因型與再發(fā)心血管缺血事件密切相關(guān)。Sibbing等[11]和Collet等[12]均發(fā)現(xiàn)CYP2C19*2攜帶者發(fā)生支架內(nèi)血栓和再發(fā)心血管事件的風(fēng)險明顯增加。Jeong等[13]和Hwang等[14]研究發(fā)現(xiàn)韓國人群中的CYP2C19功能缺失型等位基因和氯吡格雷抗血小板反應(yīng)性間存在顯著的劑量-效應(yīng)關(guān)系。筆者最近發(fā)表的研究提示,在所觀察到的中國ACS人群中,CYP2C19功能缺失型等位基因與穩(wěn)定劑量氯吡格雷治療下的HPR密切相關(guān),CYP2C19*2基因攜帶者發(fā)生HPR的風(fēng)險大大增加,而CYP2C19*3不能獨(dú)立預(yù)測發(fā)生HPR的風(fēng)險[15]。筆者前期的研究還發(fā)現(xiàn)CYP2C19*2是影響所觀察到的中國漢族老年ACS患者氯吡格雷抗血小板反應(yīng)性的主要藥物基因組學(xué)相關(guān)因素[16]。Hulot等[17]薈萃分析發(fā)現(xiàn),CYP2C19*2攜帶者比非攜帶者發(fā)生主要不良心血管事件的風(fēng)險高30%,無論是該基因型的純合子還是雜合子攜帶者,其發(fā)生支架內(nèi)血栓和死亡的風(fēng)險均大大增加。然而CURE和ACTIVEA試驗(yàn)卻發(fā)現(xiàn)CYP2C19功能缺失型等位基因攜帶者抗血小板反應(yīng)性和臨床終點(diǎn)事件發(fā)生率與非攜帶者相比并無明顯差異[18]。上述研究結(jié)果存在差異的原因可能與納入病例之間存在明顯的異質(zhì)性有關(guān)[19],CURE試驗(yàn)中PCI術(shù)后患者僅占14.5%,前述研究中超過70%的患者接受過PCI,而PCI術(shù)后患者從氯吡格雷中的獲益要遠(yuǎn)遠(yuǎn)大于其他類型患者[20]。
CYP2C19*17在西方人群中的攜帶率(18%~28%)遠(yuǎn)遠(yuǎn)高于亞洲人群(1%~4%)[7,21]。在西方人群中的研究發(fā)現(xiàn),攜帶CYP2C19*17等位基因與血小板活化能力增強(qiáng)相關(guān)。Gurbel等[22]和Sibbing等[23]的研究結(jié)果均提示,CYP2C19*17等位基因(純合子和雜合子)與氯吡格雷治療中出血風(fēng)險增加有關(guān),但是未觀察到CYP2C19*17對支架內(nèi)血栓或再發(fā)缺血事件有保護(hù)性作用。筆者前期在中國人群中的研究并未發(fā)現(xiàn)上述相關(guān)性[15],研究結(jié)果差異可能與CYP2C19*17在該人群中的發(fā)生率較低相關(guān)(1.4%,=7)。
盡管相當(dāng)多的研究證實(shí),CYP2C19基因型與氯吡格雷抗血小板反應(yīng)性和療效的個體間差異相關(guān),但是CYP2C19*2僅能解釋12%的血小板反應(yīng)性變異,而血小板反應(yīng)性的遺傳度高達(dá)78%[24],因此可能還存在著其他相關(guān)的遺傳因素。最近,一項振奮人心的研究通過體外微粒體模型發(fā)現(xiàn),PON1Q192R是參與氯吡格雷活性轉(zhuǎn)化第二步的代謝酶[5]。Bouman等[5]首次發(fā)現(xiàn)攜帶PON1Q192等位基因?qū)е?-氧化氯吡格雷轉(zhuǎn)化為活性代謝產(chǎn)物的效率低下,純合子PON1QQ192攜帶者發(fā)生支架內(nèi)血栓的風(fēng)險增加。但最近一項納入17個研究(共11 449例患者)的薈萃分析結(jié)果并未發(fā)現(xiàn)PON1基因多態(tài)性與氯吡格雷抗血小板反應(yīng)性或臨床療效相關(guān)[25]。
在氯吡格雷的代謝通路中,位于腸道細(xì)胞膜上由ABCB1編碼的P-糖蛋白參與氯吡格雷的吸收過程[6,26]。研究發(fā)現(xiàn),ABCB1基因3435位點(diǎn)上的CT和TT兩種基因型攜帶者的氯吡格雷生物利用度比CC基因型攜帶者明顯降低[6]。FAST-MI(French Registry of Acute ST-Elevation and Non-ST- Elevation Myocardial Infarction)研究還發(fā)現(xiàn),TT基因型攜帶者發(fā)生不良心血管事件的風(fēng)險比CC攜帶者高[27];而(PLATelet inhibition and patient Outcomes,PLATO)研究卻發(fā)現(xiàn)攜帶CC基因型的患者不良心血管事件的發(fā)生率最高[28]。因此,目前ABCB1基因多態(tài)性對氯吡格雷抗血小板反應(yīng)性及臨床預(yù)后的影響尚不明確。
除遺傳學(xué)影響因素,氯吡格雷反應(yīng)性還受臨床、環(huán)境等眾多因素綜合影響。質(zhì)子泵抑制劑、他汀類藥物、鈣離子通道阻滯劑、咖啡因(caffeine)和華法林(warfarin)通過藥物間相互作用改變氯吡格雷的藥效學(xué)。此外,血小板壽命、血小板對ADP敏感性和反應(yīng)性增強(qiáng)、P2Y1和P2Y2受體上調(diào)以及臨床病理生理因素如糖尿病、高脂血癥、高膽固醇血癥以及體質(zhì)量指數(shù)等都可能引起氯吡格雷反應(yīng)性變異[24,29,30]。因此,需進(jìn)一步研究上述因素如何綜合地影響氯吡格雷反應(yīng)性,從而優(yōu)化臨床氯吡格雷的治療。
基于大量藥物基因組學(xué)研究證據(jù),2009年美國食品藥品管理局建議對攜帶CYP2C19功能缺失型等位基因的高危人群調(diào)整氯吡格雷劑量或使用替代藥物。為克服氯吡格雷抗血小板反應(yīng)性變異的影響,臨床多采用增加氯吡格雷劑量、聯(lián)用西洛他唑(ciluostazot)或更換新型抗血小板藥物等方法,其中增加氯吡格雷劑量較為常用。研究者們就此對藥物基因組學(xué)指導(dǎo)氯吡格雷個體化抗血小板治療進(jìn)行了許多有益的探索。
Gladding等[31]研究發(fā)現(xiàn),給予患者高負(fù)荷劑量氯吡格雷后CYP2C19*2攜帶者的血小板抑制度遠(yuǎn)遠(yuǎn)低于野生型基因攜帶者。Collet等[32]發(fā)現(xiàn)高負(fù)荷劑量氯吡格雷可使CYP2C19*2雜合子的血小板抑制度增強(qiáng),而對純合子作用不明顯。Mega等[33]在一項多中心、隨機(jī)雙盲對照研究中增加CYP2C19*2攜帶者的氯吡格雷維持劑量,發(fā)現(xiàn)可以克服CYP2C19*2雜合子患者的抗血小板反應(yīng)性變異,而對于CYP2C19*2純合子患者則需要采取其他措施,如三聯(lián)抗血小板治療或更換新型抗血小板藥物。Cuisset等[34]增加低治療反應(yīng)患者氯吡格雷負(fù)荷劑量和維持劑量,發(fā)現(xiàn)并不能克服CYP2C19*2攜帶者的HPR。Jeong等[35]發(fā)現(xiàn)在高維持劑量的氯吡格雷治療下,CYP2C19功能缺失型基因攜帶者的血小板反應(yīng)性仍高于非攜帶者,提示增加氯吡格雷劑量或許不能完全克服CYP2C19基因變異帶來的影響。
目前各臨床研究結(jié)果并不一致,而且多局限于單中心、小樣本研究。因此,尚需進(jìn)一步深入研究以提供更有力的證據(jù)。除此之外,還有必要探索基因型檢測和血小板功能監(jiān)測聯(lián)合應(yīng)用指導(dǎo)氯吡格雷抗血小板個體化治療的效果。
隨著氯吡格雷藥物基因組學(xué)指導(dǎo)抗血小板個體化治療研究的逐漸深入,越來越多的證據(jù)提示,將患者按攜帶CYP2C19功能缺失型等位基因是否進(jìn)行危險分層來指導(dǎo)臨床治療,可能得到更大獲益。目前相關(guān)臨床研究主要集中在西方人群中,研究結(jié)果并不一致,尚需進(jìn)一步深入研究以提供更確鑿的證據(jù),進(jìn)而推動臨床CYP2C19功能缺失型等位基因常規(guī)檢測。
藥物基因組學(xué)的研究成果正逐漸被用于指導(dǎo)臨床個體化抗血小板治療,但仍有不少實(shí)際問題有待解決。首先,必須建立迅速而準(zhǔn)確的CYP2C19檢驗(yàn)平臺以應(yīng)對急癥患者的需求。其次,對患者進(jìn)行基因分型指導(dǎo)抗血小板治療是否符合效益-成本仍有待考量。第三,還需更深入研究高劑量氯吡格雷或者替代藥物的安全性和有效性,為個體化抗血小板治療提供更確鑿的依據(jù)。
[1] Chen ZM, Jiang LX, Chen YP,. Addition of clopidogrel to aspirin in 45 852 patients with acute myocardial infarction: randomised placebo-controlled trial[J]. Lancet, 2005, 366(9497): 1607?1621.
[2] Sabatine MS, Cannon CP, Gibson CM,. Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics: the PCI-CLARITY study[J]. JAMA, 2005, 294(10): 1224?1232.
[3] Hulot JS, Bura A, Villard E,. Cytochrome p450 2c19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects[J]. Blood, 2006, 108(7): 2244?2247.
[4] Mega JL, Close SL, Wiviott SD,. Cytochrome p-450 polymorphisms and response to clopidogrel[J]. N Engl J Med, 2009, 360(4): 354?362.
[5] Bouman HJ, Schomig E, van Werkum JW,. Paraoxonase-1 is a major determinant of clopidogrel efficacy[J]. Nat Med, 2011, 17(1): 110?116.
[6] Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events[J]. N Engl J Med, 2009, 360(4): 363?375.
[7] Sim SC, Risinger C, Dahl ML,. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants[J]. Clin Pharmacol Ther, 2006, 79(1): 103?113.
[8] Man M, Farmen M, Dumaual C,. Genetic variation in metabolizing enzyme and transporter genes: comprehensive assessment in 3 major East Asian subpopulations with comparison to Caucasians and Africans[J]. J Clin Pharmacol, 2010, 50(8): 929?940.
[9] Lee JM, Park S, Shin DJ,. Relation of genetic polymorphisms in the cytochrome P450 gene with clopidogrel resistance after drug-eluting stent implantation in Koreans[J]. Am J Cardiol, 2009, 104(1): 46?51.
[10] Goldstein JA, Ishizaki T, Chiba K,. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations[J]. Pharmacogenetics, 1997, 7(1): 59?64.
[11] Sibbing D, Stegherr J, Latz W,. Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention[J]. Eur Heart J, 2009, 30(8): 916?922.
[12] Collet JP, Hulot JS, Pena A,. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study[J]. Lancet, 2009, 373(9660): 309?317.
[13] Jeong YH, Tantry US, Kim IS,. Effect of CYP2C19*2 and *3 loss-of-function alleles on platelet reactivity and adverse clinical events in East Asian acute myocardial infarction survivors treated with clopidogrel and aspirin[J]. Circ Cardiovasc Interv, 2011, 4(6): 585?594.
[14] Hwang SJ, Jeong YH, Kim IS,. The cytochrome 2C19*2 and *3 alleles attenuate response to clopidogrel similarly in East Asian patients undergoing elective percutaneous coronary intervention[J]. Thromb Res, 2011, 127(1): 23?28.
[15] Zhang L, Chen Y, Jin Y,. Genetic determinants of high on-treatment platelet reactivity in clopidogrel treated Chinese patients[J]. Thromb Res, 2013, 132(1): 81?87
[16] 張藍(lán)寧, 鄭小琴, 徐 斌, 等. 中國漢族老年急性冠脈綜合征患者氯吡格雷抗血小板治療反應(yīng)性的藥物基因組學(xué)相關(guān)分析[J]. 中華老年多器官疾病雜志, 2012, 11(12): 906 ?911.
[17] Hulot JS, Collet JP, Silvain J,. Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: a systematic meta-analysis[J]. J Am Coll Cardiol, 2010, 56(2): 134?143.
[18] Pare G, Mehta SR, Yusuf S,. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment[J]. N Engl J Med, 2010, 363(18): 1704?1714.
[19] Johnson JA, Roden DM, Lesko LJ,. Clopidogrel: a case for indication-specific pharmacogenetics[J]. Clin Pharmacol Ther, 2012, 91(5): 774?776.
[20] Yin T, Miyata T. Pharmacogenomics of clopidogrel: evidence and perspectives[J]. Thromb Res, 2011, 128(4): 307?316.
[21] Tang XF, Wang J, Zhang JH,. Effect of the CYP2C19*2 and *3 genotypes, ABCB1 C3435T and PON1Q192R alleles on the pharmacodynamics and adverse clinical events of clopidogrel in Chinese people after percutaneous coronary intervention[J]. Eur J Clin Pharmacol, 2013, 69(5): 1103?1112.
[22] Gurbel PA, Bliden KP, Hiatt BL,. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity[J]. Circulation, 2003, 107(23): 2908?2913.
[23] Sibbing D, Koch W, Gebhard D,. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement [J]. Circulation, 2010, 121(4): 512?518.
[24] Shuldiner AR, O’Connell JR, Bliden KP,. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy[J]. JAMA, 2009, 302(8): 849?857.
[25] Reny JL, Combescure C, Daali Y,. Influence of the paraoxonase-1 Q192R genetic variant on clopidogrel responsiveness and recurrent cardiovascular events: a systematic review and meta-analysis[J]. J Thromb Haemost, 2012, 10(7): 1242?1251.
[26] Taubert D, von Beckerath N, Grimberg G,. Impact of P-glycoprotein on clopidogrel absorption[J]. Clin Pharmacol Ther, 2006, 80(5): 486?501.
[27] Simon T, Steg PG, Gilard M,. Clinical events as a function of proton pump inhibitor use, clopidogrel use, and cytochrome P450 2C19 genotype in a large nationwide cohort of acute myocardial infarction: results from the French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI)[J]. Circulation, 2011, 123(5): 474?482.
[28] Wallentin L, James S, Storey RF,. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticasgrelorclopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial[J]. Lancet, 2010, 376(9749): 1320?1328.
[29] Sibbing D, von Beckerath O, Schomig A,. Impact of body mass index on platelet aggregation after administration of a high loading dose of 600 mg of clopidogrel before percutaneous coronary intervention[J]. Am J Cardiol, 2007, 100(2): 203?205.
[30] Singla A, Antonino MJ, Bliden KP,. The relation between platelet reactivity and glycemic control in diabetic patients with cardiovascular disease on maintenance aspirin and clopidogrel therapy[J]. Am Heart J, 2009, 158(5): 784.
[31] Gladding P, Webster M, Zeng I,. The pharmacogenetics and pharmacodynamics of clopidogrel response: an analysis from the PRINC (Plavix Response in Coronary Intervention) trial[J]. JACC Cardiovasc Interv, 2008, 1(6): 620?627.
[32] Collet JP, Hulot JS, Anzaha G,. High doses of clopidogrel to overcome genetic resistance: the randomized crossover CLOVIS-2 (Clopidogrel and Response Variability Investigation Study 2)[J]. JACC Cardiovasc Interv, 2011, 4(4): 392?402.
[33] Mega JL, Hochholzer W, Frelinger AL 3rd,. Dosing clopidogrel based on CYP2C19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease[J]. JAMA, 2011, 306(20): 2221?2228.
[34] Cuisset T, Quilici J, Cohen W,. Usefulness of high clopidogrel maintenance dose according to CYP2C19 genotypes in clopidogrel low responders undergoing coronary stenting for non ST elevation acute coronary syndrome[J]. Am J Cardiol, 2011, 108(6): 760?765.
[35] Jeong YH, Kim IS, Park Y,. Carriage of cytochrome 2C19 polymorphism is associated with risk of high post-treatment platelet reactivity on high maintenance-dose clopidogrel of 150 mg/day: results of the ACCEL-DOUBLE (Accelerated Platelet Inhibition by a Double Aose of Clopidogrel According to Gene Polymorphism) study[J]. JACC Cardiovasc Interv, 2010, 3(7): 731?741.
(編輯: 張青山)
Clopidogrel pharmacogenomics and individualized therapy: evidence and perspectives
ZHANG Lan-Ning, LU Cai-Yi*, YIN Tong*
(Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China)
Dual antiplatelet therapy with aspirin and clopidogrel is the standard care to prevent stent thrombosis and recurrent ischemic events after acute coronary syndrome or stent placement. However, there is a large inter-individual variability in biological anti-platelet responsiveness and clinical outcomes in patients after clopidogrel treatment. Apart from clinical and environmental factors, recently accumulated evidence strongly confirms the pivotal role of genetic factors for the variability of clopidogrel responsiveness. Several large-scale pharmacogenomic studies found that the loss-of-function alleles of CYP2C19 and the key enzyme in clopidogrel metabolism are the predominant genetic mediators of low clopidogrel responsiveness and recurrent cardiovascular events. Other genetic polymorphisms related with clopidogrel metabolism may also contribute to the variability of clopidogrel efficacy. On the basis of these observations, it is still in controversy whether CYP2C19-genotype-guided individualized clopidogrel therapy could overcome the high on-treatment platelet reactivity to clopidogrel. In the future, it is necessary to combine genotyping and platelet function testing to guide the individualized clopidogrel therapy.
clopidogrel; pharmacogenetics; CYP2C19; platelet function; cardiovascular ischemic events; individualized medicine
(30971259, 30570736/C03030201)(2012FC-TSYS-3042).
R541.4
A
10.3724/SP.J.1264.2013.00239
2013?06?18;
2013?07?18
國家自然科學(xué)基金面上項目(30971259,30570736/C03030201); 解放軍總醫(yī)院臨床扶持基金(2012FC-TSYS-3042)
盧才義, E-mail: cylu2000@sina.com; 尹 彤, E-mail: yintong2000@sina.com