李元城(綜述),張衛(wèi)國(guó)(審校)
·綜 述·
關(guān)節(jié)軟骨損傷治療進(jìn)展
李元城(綜述),張衛(wèi)國(guó)(審校)
軟骨是一種無(wú)血管、無(wú)神經(jīng)的終末分化組織,一旦受損很難自主修復(fù)。近年來(lái)在軟骨損傷治療方面開(kāi)展了大量研究,以期恢復(fù)受損關(guān)節(jié)的結(jié)構(gòu)及功能。本文就軟骨損傷的傳統(tǒng)治療方法如關(guān)節(jié)鏡下關(guān)節(jié)腔灌洗、關(guān)節(jié)軟骨磨削成形術(shù)、激光磨蝕與軟骨成形術(shù)及軟骨下骨鉆孔術(shù)等進(jìn)行綜述,并對(duì)利用組織工程學(xué)方法治療軟骨損傷的研究進(jìn)行總結(jié)和展望。
軟骨,關(guān)節(jié);創(chuàng)傷和損傷;矯形外科手術(shù);組織工程
軟骨是一種無(wú)血管、無(wú)神經(jīng)的終末分化組織,一旦受損很難自主修復(fù)。近年來(lái)相關(guān)研究者在軟骨損傷治療方面開(kāi)展了大量研究,以期恢復(fù)受損關(guān)節(jié)的結(jié)構(gòu)及功能。本文就軟骨損傷的傳統(tǒng)及組織工程學(xué)治療研究進(jìn)展進(jìn)行綜述。
1.1關(guān)節(jié)鏡下關(guān)節(jié)腔灌洗 在關(guān)節(jié)鏡檢查同時(shí)進(jìn)行關(guān)節(jié)腔灌洗(生理鹽水、林格液、乳酸鹽溶液等)被認(rèn)為可有效緩解骨關(guān)節(jié)炎和創(chuàng)傷患者的關(guān)節(jié)疼痛(主要是膝關(guān)節(jié))[1],但目前其產(chǎn)生療效的確切機(jī)制尚不明確[2]。有學(xué)者認(rèn)為可能是由于關(guān)節(jié)腔沖洗去除了關(guān)節(jié)內(nèi)的活性致痛因子或疼痛介質(zhì),以及清除了關(guān)節(jié)表面黏附的蛋白多糖和聚蛋白多糖,從而有利于修復(fù)細(xì)胞的黏附[3],但沒(méi)有任何生物學(xué)證據(jù)證實(shí)其對(duì)軟骨損傷有修復(fù)作用[4]。有學(xué)者采用盲法進(jìn)行臨床隨機(jī)對(duì)照試驗(yàn)發(fā)現(xiàn),灌洗組與非灌洗組疼痛緩解情況并無(wú)明顯差別,認(rèn)為關(guān)節(jié)腔灌洗并未實(shí)際解決患者的疼痛,而更多的是作為一種安慰劑來(lái)對(duì)患者進(jìn)行干預(yù)[5]。
1.2關(guān)節(jié)軟骨磨削成形術(shù) 以往關(guān)節(jié)鏡手術(shù)中通常對(duì)受損的軟骨組織進(jìn)行機(jī)械切削,但目前僅提倡對(duì)髕骨軟化及髕股關(guān)節(jié)痛的患者進(jìn)行此干預(yù)[6]。關(guān)節(jié)軟骨磨削成形術(shù)的原理尚不明確,很多外科醫(yī)生只是在關(guān)節(jié)鏡手術(shù)中自然地去除病變的軟骨,使關(guān)節(jié)面顯得更加平滑,以減少可能的摩擦,但是從生物力學(xué)角度而言軟骨磨削似乎沒(méi)有任何意義[7]。Kim等[8]的研究顯示,對(duì)兔進(jìn)行軟骨切削術(shù)后12周內(nèi)未發(fā)現(xiàn)明顯的軟骨組織修復(fù),反而可引起周?chē)浌峭嘶?,其機(jī)制可能與細(xì)胞凋亡有關(guān)[9-10]。Ogilvie-Harris等[6]認(rèn)為切削手術(shù)只對(duì)特定患者(特別是創(chuàng)傷后關(guān)節(jié)痛的患者)產(chǎn)生作用,對(duì)此之外的患者療效甚微。由于目前尚無(wú)前瞻性的臨床隨機(jī)對(duì)照研究,此術(shù)式的有效性還不確定,且并未被多數(shù)學(xué)者所認(rèn)可。
1.3關(guān)節(jié)清創(chuàng)術(shù) 關(guān)節(jié)清創(chuàng)術(shù)是一種更徹底的軟骨切削術(shù)。它除了切削軟骨外,還切除受損的半月板、部分骨贅并取除關(guān)節(jié)內(nèi)游離體[11]。與軟骨切削手術(shù)相似,它缺乏合理的科學(xué)依據(jù),且動(dòng)物實(shí)驗(yàn)和臨床研究均未發(fā)現(xiàn)其對(duì)軟骨損傷修復(fù)及再生有促進(jìn)作用。半月板切除會(huì)導(dǎo)致骨骼軸線以及力學(xué)傳導(dǎo)的改變,從關(guān)節(jié)生物學(xué)角度分析無(wú)疑破壞了關(guān)節(jié)的結(jié)構(gòu)及功能,除此之外,軟骨切削和切除會(huì)導(dǎo)致周?chē)浌羌?xì)胞的凋亡及壞死,從長(zhǎng)遠(yuǎn)來(lái)看可加重骨關(guān)節(jié)炎的發(fā)展[12]。臨床采用的關(guān)節(jié)清創(chuàng)術(shù)對(duì)骨關(guān)節(jié)炎患者僅是一種止痛的對(duì)癥治療方法,由于缺乏可靠的生物學(xué)依據(jù)和動(dòng)物實(shí)驗(yàn)研究結(jié)果支持,其臨床應(yīng)用尚存在很大爭(zhēng)議[13]。
1.4激光磨蝕與軟骨成形術(shù) 激光磨蝕與軟骨成形術(shù)目前被作為機(jī)械切除病損組織的替代方法,其主要優(yōu)點(diǎn)是避免了電消融手術(shù)產(chǎn)生的高溫(最高溫度可達(dá)250℃,極易造成周?chē)M織損傷,并引起關(guān)節(jié)充填液沸騰),并且可進(jìn)行有效的止血及組織熔接[14]。另外柔軟可變形的導(dǎo)管可將激光輸送到關(guān)節(jié)內(nèi)隱蔽的角落,有利于手術(shù)進(jìn)行。激光軟骨成形術(shù)的生物學(xué)基礎(chǔ)并不是軟骨修復(fù)而僅僅是一種溫和的軟骨切割方式。該術(shù)式的缺點(diǎn)包括組織的熱損傷、氣泡形成[15]、術(shù)后骨壞死[16]、反應(yīng)性滑膜炎以及加速關(guān)節(jié)軟骨退化等[17]。Torricelli等[18]在體外觀察了激光對(duì)去分化軟骨細(xì)胞的作用,但其對(duì)體內(nèi)軟骨細(xì)胞的影響尚不明確。另有研究顯示,激光切割后引起的組織熔接實(shí)際上非常脆弱,不足以耐受關(guān)節(jié)內(nèi)應(yīng)力的要求[19]。
1.5軟骨下骨鉆孔術(shù) 軟骨下骨鉆孔術(shù)的生物學(xué)基礎(chǔ)是軟骨的自主修復(fù)反應(yīng),其形成的修復(fù)組織結(jié)構(gòu)復(fù)雜,且耐磨性能較差[20]。該術(shù)式主要用于骨關(guān)節(jié)炎和剝脫性骨軟骨炎患者,通過(guò)在損傷處生成纖維軟骨樣組織來(lái)恢復(fù)關(guān)節(jié)的光滑度,從而改善癥狀和功能[21]。但該術(shù)式極易引起術(shù)后關(guān)節(jié)炎癥,有學(xué)者提出在關(guān)閉切口前通過(guò)充分灌洗去除組織碎屑可緩解急性或慢性術(shù)后炎癥[22]。臨床研究表明軟骨下骨鉆孔術(shù)預(yù)后良好[23],但是這種效果往往是短期的,術(shù)后遠(yuǎn)期效果同樣不甚理想[24]。
1.6微骨折術(shù) 微骨折技術(shù)同樣是基于軟骨損傷的自主修復(fù)反應(yīng)。它是軟骨下骨鉆孔術(shù)的改良手術(shù),動(dòng)物實(shí)驗(yàn)證實(shí)其同樣可形成纖維軟骨樣修復(fù)組織[25]。該手術(shù)是在受損軟骨下鉆一列微孔(直徑3~4mm,深度小于4mm,每平方厘米3~4個(gè)孔),這些微孔遠(yuǎn)小于軟骨下骨鉆孔術(shù)要求的尺寸,可有效降低軟骨下骨的應(yīng)力丟失[26]。微骨折術(shù)的主要優(yōu)點(diǎn)在于可借助關(guān)節(jié)鏡實(shí)現(xiàn),費(fèi)用低且可避免軟骨下骨的過(guò)度損傷,主要適用于年輕人群,尤其是年輕運(yùn)動(dòng)員。有研究顯示該術(shù)式可使75%的患者(年輕人群、運(yùn)動(dòng)員)疼痛緩解并恢復(fù)功能[27]。但也有學(xué)者質(zhì)疑這一方法的有效性,因?yàn)槟贻p患者自我修復(fù)能力強(qiáng),軟骨一旦受損,可通過(guò)骨髓間充質(zhì)干細(xì)胞進(jìn)行有效修復(fù),而對(duì)于自主修復(fù)反應(yīng)弱的人群如老年骨關(guān)節(jié)炎患者該術(shù)式在理論上沒(méi)有優(yōu)勢(shì)[28]。
1.7自體軟骨膜及骨膜移植 該方法的生物學(xué)基礎(chǔ)是軟骨膜及骨膜組織生發(fā)層內(nèi)存在成軟骨細(xì)胞和成骨細(xì)胞[29]。20世紀(jì)70年代,人們開(kāi)始運(yùn)用這一原理進(jìn)行自體骨膜及軟骨膜移植來(lái)修復(fù)軟骨損傷[30]。在體內(nèi)試驗(yàn)中,缺損處形成了類(lèi)軟骨組織,但生發(fā)層內(nèi)的成軟骨細(xì)胞增殖非常緩慢,而且生成的組織不足以完全充填缺損[31]。為此有學(xué)者在后續(xù)研究中采用生長(zhǎng)因子及趨化因子如TGF-β[32],以及生物力學(xué)刺激例如持續(xù)被動(dòng)運(yùn)動(dòng)(CPM)以刺激生發(fā)層內(nèi)成軟骨細(xì)胞的增殖與分化[33],但這些措施并沒(méi)有達(dá)到預(yù)期目的。另外一些具體問(wèn)題同樣阻礙了該方法的推廣,如縫合或者有機(jī)膠水粘貼始終無(wú)法有效固定移植物。近年來(lái)大量臨床研究和動(dòng)物實(shí)驗(yàn)結(jié)果引起了人們對(duì)該治療方法的思考,如在制造全層缺損模型時(shí),同時(shí)會(huì)引起軟骨下骨出血,由骨髓間充質(zhì)干細(xì)胞引起的修復(fù)勢(shì)必參與其中,所以與其說(shuō)這是一種新方法,不如說(shuō)是一種由間充質(zhì)干細(xì)胞介導(dǎo)的自主修復(fù)和軟骨膜內(nèi)成軟骨的混合方法。
1.8自體骨軟骨移植(馬賽克成形術(shù)) 通過(guò)植入骨軟骨組織來(lái)修復(fù)軟骨缺損雖已被應(yīng)用于臨床,但相關(guān)動(dòng)物實(shí)驗(yàn)研究(尤其是自體骨軟骨移植)較少[34]。Bodo等[35]和Wohl等[34]的動(dòng)物實(shí)驗(yàn)研究?jī)H觀察了移植后的近期療效。Hurtig等[36]的研究發(fā)現(xiàn)移植物的軟骨部分只能維持6個(gè)月左右,而骨部分則可很好地與軟骨下骨融合,起到良好的固定作用。Aeschlimann等[37]研究發(fā)現(xiàn)對(duì)羊施行馬賽克成形術(shù)后,不但移植物的軟骨部分快速退化,而且移植物周?chē)恼\浌且泊罅拷到?,并認(rèn)為這種周?chē)浌菗p傷是缺乏側(cè)方應(yīng)力引起的,因?yàn)轳R賽克成形術(shù)本身就是一種關(guān)節(jié)損傷,只不過(guò)是用一種損傷來(lái)治療另一種損傷,骨軟骨移植物從低應(yīng)力區(qū)被移植到高應(yīng)力區(qū),勢(shì)必造成骨軟骨應(yīng)力改變,從而導(dǎo)致移植軟骨的退化。有研究認(rèn)為,由于術(shù)中采用嵌插方式進(jìn)行牢固固定,使骨軟骨移植物本身也承受了非生理性的有害擠壓[38]。另外,由于移植后生理環(huán)境的改變,缺損處對(duì)應(yīng)的另一側(cè)軟骨組織可能產(chǎn)生嚴(yán)重退化[8,39]。總而言之,馬賽克成形術(shù)存在大量潛在的副損傷,尚需進(jìn)一步的基礎(chǔ)和動(dòng)物研究探索其合理性。
2.1單純種子細(xì)胞移植治療關(guān)節(jié)軟骨損傷 單純自體軟骨細(xì)胞移植(低密度軟骨細(xì)胞懸液移植)由Grande等[40]提出并由Brittberg等[41]首次應(yīng)用于臨床。這種新方法并不具備足夠的基礎(chǔ)實(shí)驗(yàn)的證據(jù)支持,因?yàn)橐浦睬笆斋@的大量軟骨細(xì)胞已發(fā)生去分化,因而已不具備成軟骨能力,移植后這些細(xì)胞在缺損處無(wú)三維支架材料支撐的條件下并沒(méi)有能力發(fā)生反分化反應(yīng)。為防止自體軟骨細(xì)胞在關(guān)節(jié)內(nèi)的流失,經(jīng)典的方法是將骨膜縫合在周?chē)浌侵幸员3秩睋p處軟骨細(xì)胞的數(shù)量。
研究顯示,通過(guò)自體軟骨細(xì)胞移植,可在兔關(guān)節(jié)軟骨缺損處形成纖維軟骨樣修復(fù)組織[42]。但該方法內(nèi)在的一系列問(wèn)題使其合理性備受質(zhì)疑,如用于覆蓋缺損的骨膜(厚250μm)幾乎占了缺損厚度的85%(兔軟骨全層缺損深度約300μm),也就是說(shuō)整個(gè)缺損幾乎都被骨膜所填充,這種“異物”的填充勢(shì)必會(huì)影響軟骨修復(fù)組織的生成[43]。Grande等[40]在其研究中檢測(cè)了移植細(xì)胞的演化,結(jié)果表明在新生組織中這些細(xì)胞僅占細(xì)胞總數(shù)的8%,修復(fù)組織的真正來(lái)源尚不清楚。根據(jù)已有的經(jīng)驗(yàn)推斷,骨髓來(lái)源的自體修復(fù)反應(yīng)最有可能主導(dǎo)性地參與了修復(fù)組織的形成。Breinan等[44]的研究表明,雖然這些去分化的軟骨細(xì)胞理論可以黏附在缺損底部及周壁,但它們并不具備生成軟骨的能力,且無(wú)法參與修復(fù)組織的生成。在Driesang等[45]研究發(fā)現(xiàn),如果術(shù)后不進(jìn)行關(guān)節(jié)制動(dòng),覆蓋缺損的骨膜和其他瓣膜將隨關(guān)節(jié)的活動(dòng)在幾天內(nèi)脫落。Breinan等[44]研究發(fā)現(xiàn),在動(dòng)物模型中采用自體軟骨細(xì)胞移植后,其修復(fù)反應(yīng)與對(duì)照組比較沒(méi)有明顯差異。這些研究結(jié)果表明,移植的軟骨細(xì)胞和骨膜等很可能并沒(méi)有參與最終的組織修復(fù)。
盡管沒(méi)有足夠基礎(chǔ)實(shí)驗(yàn)和生物學(xué)原理支持,自體軟骨細(xì)胞移植術(shù)目前已被應(yīng)用于臨床治療中。Brittberg等[41]報(bào)道該方法的臨床效果較理想,60%~90%的患者疼痛得到緩解,關(guān)節(jié)功能明顯改善。Peterson等[46]的臨床回顧性研究顯示,該方法的有效率為65%~90%。但遺憾的是,目前尚缺乏前瞻性、雙盲臨床隨機(jī)對(duì)照研究最終證實(shí)該方法的有效性。
2.2種子細(xì)胞-支架系統(tǒng)修復(fù)關(guān)節(jié)軟骨損傷 在成年哺乳動(dòng)物體內(nèi)存在大量的可以分化成軟骨細(xì)胞繼而形成軟骨組織的軟骨前體細(xì)胞,包括骨膜和軟骨膜生發(fā)層內(nèi)的干細(xì)胞、透明軟骨本身的軟骨細(xì)胞、骨髓內(nèi)的骨髓間充質(zhì)干細(xì)胞和滑膜內(nèi)的前體細(xì)胞。胚胎內(nèi)的胚胎干細(xì)胞和成軟骨細(xì)胞同樣適用于軟骨組織工程的需要。過(guò)去30年,這些細(xì)胞與支架材料復(fù)合修復(fù)全層軟骨缺損已被廣泛報(bào)道[47],但這些研究中不可避免地存在自體軟骨修復(fù)反應(yīng)的參與,來(lái)源于軟骨下骨髓腔的復(fù)雜生理過(guò)程干擾了單純的軟骨修復(fù)過(guò)程,所以細(xì)胞-支架策略的成功實(shí)施必須克服這些干擾因素。
2.3種子細(xì)胞-支架-信號(hào)分子系統(tǒng)修復(fù)關(guān)節(jié)軟骨損傷 目前軟骨組織工程研究的新策略是將種子細(xì)胞、支架材料和信號(hào)分子(生長(zhǎng)因子、激素等)相結(jié)合,以介導(dǎo)種子細(xì)胞向成軟骨方向特異性分化。提出該策略的原因在于研究者們意識(shí)到如果想得到高質(zhì)量、透明軟骨樣的修復(fù)組織,必須克服軟骨下骨髓內(nèi)來(lái)源的自體修復(fù)反應(yīng),因自體修復(fù)反應(yīng)夾雜著多種不可控的細(xì)胞和信號(hào)介導(dǎo)物質(zhì),這些“污染”因素導(dǎo)致了修復(fù)組織成分多樣化,影響了關(guān)節(jié)軟骨的修復(fù)效果。
基于該策略目前有兩種不同的技術(shù)路線。第一,體外構(gòu)建高質(zhì)量的透明軟骨后植入體內(nèi)缺損部位。它的優(yōu)點(diǎn)在于在通過(guò)生物反應(yīng)器、細(xì)胞因子等可以更好地介導(dǎo)移植物向軟骨組織分化。其缺點(diǎn)包括移植物植入缺損處時(shí)無(wú)法完全適應(yīng)關(guān)節(jié)表面曲線的要求,導(dǎo)致關(guān)節(jié)面不平整;移植物體內(nèi)植入與固定不確實(shí);體外無(wú)法完全模擬關(guān)節(jié)內(nèi)的生物力學(xué)環(huán)境,移植后無(wú)法適應(yīng)關(guān)節(jié)內(nèi)的力學(xué)要求;移植物植入體內(nèi)后生物相容性不佳,容易導(dǎo)致免疫排斥反應(yīng)。第二,體內(nèi)構(gòu)建軟骨組織。這種方法的基本思路是在軟骨缺損處植入自體來(lái)源的細(xì)胞-支架-信號(hào)分子復(fù)合體,通過(guò)信號(hào)分子的緩慢釋放和關(guān)節(jié)內(nèi)生物力學(xué)刺激介導(dǎo)移植物向軟骨方向分化。這種方案構(gòu)建的軟骨組織可以形成平滑的關(guān)節(jié)表面,且可與周?chē)M織很好地融合。它的缺點(diǎn)在于相比體外構(gòu)建,體內(nèi)介導(dǎo)更為困難,且無(wú)法控制軟骨下骨髓來(lái)源的自體修復(fù)對(duì)軟骨組織構(gòu)建的“污染”。
大量的體外和少量的體內(nèi)研究報(bào)道了不同干預(yù)因子(如生長(zhǎng)因子、轉(zhuǎn)化因子等)對(duì)軟骨組織形成的促進(jìn)作用。在體外,大量的支架材料-種子細(xì)胞-細(xì)胞因子體系正在研究之中,如膠原支架-骨髓基質(zhì)干細(xì)胞-TGF-β1[48]、瓊脂糖支架-自體軟骨細(xì)胞-FGF-2[49]、纖維素支架-異體軟骨細(xì)胞-IGF-1[50]、聚乳酸支架-軟骨膜細(xì)胞-TGF-β1[51]等。這些實(shí)驗(yàn)證實(shí)不同因子有著不同的促軟骨生成作用。而在體內(nèi)試驗(yàn)中目前只有TGF-β超家族成員的促軟骨生成作用得到證實(shí)[52]。
近年來(lái),基因治療與基因轉(zhuǎn)移技術(shù)在軟骨組織工程中的應(yīng)用逐漸受到關(guān)注。在體外,具有成軟骨信息的基因片段被成功轉(zhuǎn)染到軟骨前體細(xì)胞(骨髓基質(zhì)干細(xì)胞等)、軟骨細(xì)胞、軟骨膜細(xì)胞和骨膜細(xì)胞[53]。在體內(nèi),Gelse等[54]將BMP-2基因片段導(dǎo)入骨髓基質(zhì)干細(xì)胞和軟骨細(xì)胞中,發(fā)現(xiàn)轉(zhuǎn)基因細(xì)胞可以自分泌大量的BMP-2,從而促進(jìn)軟骨組織的形成。
綜上所述,組織工程技術(shù)在軟骨修復(fù)中的應(yīng)用目前還僅停留在起始階段,這種新的策略如想取得進(jìn)一步發(fā)展,還必須從分子、細(xì)胞及生理水平上進(jìn)行更深入的研究。
[1] Chang RW, Falconer J, Stulberg SD, et al. A randomized, controlled trial of arthroscopic surgery versus closed-needle joint lavage for patients with osteoarthritis of the knee[J]. Arthritis Rheum, 1993, 36(3): 289-296.
[2] Ike RW, Arnold WJ. Arthroscopic lavage of osteoarthritic knees[J]. J Bone Joint Surg Br, 1992, 74(5): 788-789.
[3] Hunziker EB, Kapfinger E. Removal of proteoglycans from the surface of defects in articular cartilage transiently enhances coverage by repair cells[J]. J Bone Joint Surg Br, 1998, 80(1): 144-150.
[4] Reading AD, Rooney P, Taylor GJ. Quantitative assessment of the effect of 0.05% chlorhexidine on rat articular cartilage metabolism in vitro and in vivo[J]. J Orthop Res, 2000, 18(5): 762-767.
[5] Roos H, Roos E, Ryd L. On the art of measuring[J]. Acta Orthop Scand, 1997, 68(1): 3-5.
[6] Ogilvie-Harris DJ, Jackson RW. The arthroscopic treatment of chondromalacia patellae[J]. J Bone Joint Surg Br, 1984, 66(5): 660-665.
[7] Clark JM, Norman AG, Kaab MJ, et al. The surface contour of articular cartilage in an intact, loaded joint[J]. J Anat, 1999, 195 (Pt 1): 45-56.
[8] Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits[J]. J Bone Joint Surg Am, 1991, 73(9): 1301-1315.
[9] Tew SR, Kwan AP, Hann A, et al. The reactions of articular cartilage to experimental wounding: role of apoptosis[J]. Arthritis Rheum, 2000, 43(1): 215-225.
[10] Hunziker EB, Quinn TM. Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge[J]. J Bone Joint Surg Am, 2003, 85-A Suppl 2: 85-92.
[11] McLaren AC, Blokker CP, Fowler PJ, et al. Arthroscopic debridement of the knee for osteoarthrosis[J]. Can J Surg, 1991, 34(6): 595-598.
[12] Neyret P, Donell ST, Dejour H. Osteoarthritis of the knee following meniscectomy[J]. Br J Rheumatol, 1994, 33(3): 267-268.
[13] Kruger T, Wohlrab D, Reichel H, et al. The effect of arthroscopic joint debridement in advanced arthrosis of the knee joint[J]. Zentralbl Chir, 2000, 125(6): 490-493.
[14] Wei N, Delauter SK, Erlichman MS. The holmium YAG laser in office based arthroscopy of the knee: comparison with standard interventional instruments in patients with arthritis[J]. J Rheumatol, 1997, 24(9): 1806-1808.
[15] Mainil-Varlet P, Monin D, Weiler C, et al. Quantification of laserinduced cartilage injury by confocal microscopy in an ex vivo model[J]. J Bone Joint Surg Am, 2001, 83-A(4): 566-571.
[16] Thal R, Danziger MB, Kelly A. Delayed articular cartilage slough: two cases resulting from holmium: YAG laser damage to normal articular cartilage and a review of the literature[J]. Arthroscopy, 1996, 12(1): 92-94.
[17] Tabib W, Beaufils P, Blin JL, et al. Arthroscopic meniscectomy with Ho-Yag laser versus mechanical meniscectomy. Midterm results of a randomized prospective study of 80 meniscectomies[J]. Rev Chir Orthop Reparatrice Appar Mot, 1999, 85(7): 713-721.
[18] Torricelli P, Giavaresi G, Fini M, et al. Laser biostimulation of cartilage: in vitro evaluation[J]. Biomed Pharmacother, 2001, 55(2): 117-120.
[19] Jurgensen K, Aeschlimann D, Cavin V, et al. A new biological glue for cartilage-cartilage interfaces: tissue transglutaminase[J]. J Bone Joint Surg Am, 1997, 79(2): 185-193.
[20] Insall J. The Pridie debridement operation for osteoarthritis of the knee[J]. Clin Orthop Relat Res, 1974, (101): 61-67.
[21] Beiser IH, Kanat IO. Subchondral bone drilling: a treatment for cartilage defects[J]. J Foot Surg, 2008, 29(6): 595-601.
[22] Hice G, Freedman D, Lemont H, et al. Scanning and light microscopic study of irrigated and non-irrigated joints following burr surgery performed through a small incision[J]. J Foot Surg, 1990, 29(4): 337-344.
[23] Pedersen MS, Moghaddam AZ, Bak K, et al. The effect of bone drilling on pain in gonarthrosis[J]. Int Orthop, 1995, 19(1): 12-15.
[24] Schmidt H, Hasse E. Arthroscopic surgical treatment of circumscribed cartilage damage with spongiolization or Pridie drilling[J]. Beitr Orthop Traumatol, 1989, 36(1-2): 35-37.
[25] Breinan HA, Minas T, Barone L, et al. Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes[J]. J Orthop Res, 2000, 18(5): 781-789.
[26] Steadman JR, Rodley WG, Briggs KK, et al. The microfracture technic in the management of complete cartilage defects in the knee joint[J]. Orthopade, 1999, 28(1): 26-32.
[27] Sledge SL. Microfracture techniques in the treatment of osteochondral injuries[J]. Clin Sports Med, 2001, 20(2): 365-377.
[28] Pittenger MF, Mosca JD, McIntosh KR. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma[J]. Curr Top Microbiol Immunol, 2000, 251: 3-11.
[29] Nakahara H, Goldberg VM, Caplan AI. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo[J]. J Orthop Res, 1991, 9(4): 465-476.
[30] Woo SL, Kwan MK, Lee TQ, et al. Perichondrial autograft for articular cartilage. Shear modulus of neocartilage studied in rabbits[J]. Acta Orthop Scand, 1987, 58(5): 510-515.
[31] Carranza-Bencano A, Garcia-Paino L, Armas Padron R, et al. Comparative study of the reconstruction of articular cartilage defects with free costal perichondrial grafts and free tibial periosteal grafts: an experimental study on rabbits[J]. Calcif Tissue Int, 1999, 65(5): 402-407.
[32] O'Driscoll SW, Recklies AD, Poole AR. Chondrogenesis in periosteal explants. An organ culture model for in vitro study[J]. J Bone Joint Surg Am, 1998, 76(7): 1042-1051.
[33] O'Driscoll SW. The healing and regeneration of articular cartilage[J]. J Bone Joint Surg Am, 1998, 80(12): 1795-1812.
[34] Wohl G, Goplen G, Ford J, et al. Mechanical integrity of subchondral bone in osteochondral autografts and allografts[J]. Can J Surg, 1998, 41(3): 228-233.
[35] Bodo G, Hangody L, Modis L, et al. Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse[J]. Acta Vet Hung, 2000, 48(3): 343-354.
[36] Hurtig M, Pearce S, Warren S, et al. Arthroscopic mosaicarthroplasty in the equine third carpal bone[J]. Vet Surg, 2001, 30(3): 228-239.
[37] Aeschlimann DL, Masterlark P, Hayashi T, et al. Repair of cartilage defects with autogenous osteochondral transplants (mosaicplasty) in a sheep model[C]. Orlando: 46th Annual Meeting, Orthopaedic Research Society, 2000.
[38] Quinn TM, Grodzinsky AJ, Hunziker EB, et al. Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants[J]. J Orthop Res, 1998, 16(4): 490-499.
[39] Mitchell N, Shepard N. Effect of patellar shaving in the rabbit[J]. J Orthop Res, 1987, 5(3): 388-392.
[40] Grande DA, Pitman MI, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation[J]. J Orthop Res, 1989, 7(2): 208-218.
[41] Brittberg M, Lindahl, A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. N Engl J Med, 1994, 331(14): 889-895.
[42] Brittberg M. Autologous chondrocyte transplantation[J]. Clin Orthop Relat Res, 1999, (367 Suppl): S147-S155.
[43] Hunziker EB. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements[J]. Clin Orthop Relat Res, 1999, (367 Suppl): S135-S146.
[44] Breinan HA, Minas T, Hsu HP, et al. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model[J]. J Bone Joint Surg Am, 1997, 79(10): 1439-1451.
[45] Driesang IM, Hunziker EB. Delamination rates of tissue flaps used in articular cartilage repair[J]. J Orthop Res, 2000, 18(6): 909-911.
[46] Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee[J]. Clin Orthop Relat Res, 2000, (374): 212-234.
[47] Kadiyala S, Young R, Thiede M, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential invivo and in-vitro[J]. Cell Transplant, 1997, 6(2): 125-134.
[48] Angele P, Kujat R, Nerlich M, et al. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge[J]. Tissue Eng, 1999, 5(6): 545-554.
[49] Weisser J, Rahfoth B, Timmermann A, et al. Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose[J]. Osteoarthritis Cartilage, 2001, 9 (Suppl A): S48-S54.
[50] Fortier LA, Mohammed HO, Lust G, et al. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I[J]. J Orthop Res, 1999, 17(4): 467-474.
[51] Dounchis JS, Goomer RS, Harwood FL, et al. Chondrogenic phenotype of perichondrium-derived chondroprogenitor cells is influenced by transforming growth factor-beta 1[J]. J Orthop Res, 1997, 15(6): 803-807.
[52] Andrades JA, Han B, Becerra J, et al. A recombinant human TGF-beta1 fusion protein with collagen-binding domain promotes migration, growth, and differentiation of bone marrow mesenchymal cells[J]. Exp Cell Res, 1999, 250(2): 485-498.
[53] Mosca J, Hendricks J, Buyaner D, et al. Mesenchymal stem cells as vehicles for gene delivery[J]. Clin Orthop, 2000, (379 Suppl): S71-S90.
[54] Gelse K, Jiang QJ, Aigner T, et al. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer[J]. Arthritis Rheum, 2001, 44(8): 1943-1953.
Advances in treatment of articular cartilage injuries
LI Yuan-cheng, ZHANG Wei-guo*
Department of Orthopedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116001, China
*Correspondent author, E-mail: zhxiao_2004@yahoo.com.cn
Cartilage is a kind of terminally differentiated tissue devoid of vessel or nerve, and it is difficult to repair by itself after damage. Many studies for the treatment of cartilage injuries were performed in recent years aiming at repair of the structure and restoration of its function for injured joint. This article reviews the traditional methods of treatment for cartilage injuries, such as joint lavage with the aid of arthroscope, abrasion chondroplasty, laser abrasion and chondroplasty, and drilling of the subchondral bone-marrow space. The research advances in treatment of articular cartilage injuries with tissue engineering were summarized.
cartilage, articular; wounds and injuries; orthopedic procedures; tissue engineering
R681.3
A
0577-7402(2013)05-0423-05
2013-01-14;
2013-03-21)
(責(zé)任編輯:胡全兵)
116001 遼寧大連 大連醫(yī)科大學(xué)附屬第一醫(yī)院骨科(李元城、張衛(wèi)國(guó))