盧艷敏
(1.衡水學院生命科學系,衡水 053000;2.中國農(nóng)業(yè)科學院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)
納米(nm)是一種長度單位,1 nm=10-9m。納米顆粒是指尺寸在0.1 nm-100 nm的超微粒子,由它們作為基本單元組成的材料稱為納米材料。納米技術(shù)(nanotechnology)概念起源于物理學家R.Feynman,是研究納米材料性質(zhì)和應用的技術(shù),它直接操縱單個原子、分子,用單個原子、分子制造物質(zhì),并研究其運動規(guī)律及特性的技術(shù)[1,2]。納米生物技術(shù)是在納米水平上研究生命現(xiàn)象的技術(shù),它是納米技術(shù)和生物學相結(jié)合的產(chǎn)物,研究內(nèi)容包括:利用新興的納米技術(shù)來研究和解決生物學問題,利用生物大分子制造分子器件、模仿和制造類似生物大分子的分子機器。細胞的尺寸為微米量級,生物大分子的尺寸為納米量級,納米微粒的尺寸一般比生物體內(nèi)的細胞小得多,這為生物學研究提供了一個新的途徑[3]。目前,納米技術(shù)是生物技術(shù)領(lǐng)域的研究熱點之一,主要應用于藥物的定向運輸與可控釋放[4-6],細胞與核酸、蛋白質(zhì)等生物大分子的富集和分離[7],單個活體細胞的實時監(jiān)測[8-11],作為基因載體用于基因治療等[12,13]。
表面效應是指隨著顆粒粒徑的變小其比表面積急劇增大,從而使納米顆粒的表面原子數(shù)與總原子數(shù)之比顯著增大,導致表面原子的配位數(shù)不足,有許多懸空鍵,具有不飽和性和高的表面能,使納米顆粒表面原子變得極其不穩(wěn)定,易于與其他原子相結(jié)合而穩(wěn)定下來,因此納米粒子表現(xiàn)出很高的化學活性[14]。
小尺寸效應是指當顆粒的尺寸與光波的波長、電子的德布羅意波長以及超導態(tài)的相干長度或透射深度等物理特征尺寸相當或更小時,晶體周期性的邊界條件將被破壞,納米粒子表面原子密度減少,導致顆粒宏觀物理性質(zhì)發(fā)生變化,呈現(xiàn)特殊的光學性質(zhì)、熱學性質(zhì)、磁學性質(zhì)、力學性質(zhì)及電學性質(zhì)。
當微觀粒子的總能量小于勢壘高度時,該粒子仍能穿越這一勢壘。微觀粒子具有的這種貫穿勢壘的能力稱為隧道效應。近年來,人們發(fā)現(xiàn)納米粒子的一些宏觀量,如納米顆粒的磁化強度,量子相干器件中的磁通量及電荷等也有隧道效應,它們可以穿越宏觀系統(tǒng)的勢壘而發(fā)生變化,因此稱為宏觀的量子隧道效應[15]。
量子尺寸效應是指當顆粒尺寸下降到某一值時,費米能級附近的電子能級由準連續(xù)能級變?yōu)殡x散能級的現(xiàn)象[16]。當熱能、磁能、靜磁能、靜電能、光子能量或超導態(tài)的凝聚能比能級間距還小時,會導致納米顆粒的磁、光、聲、熱、電,以及超導電性與宏觀物質(zhì)截然不同[17],如導電的金屬在顆粒尺寸下降到某一值時會變成絕緣體。
理想的基因載體要具有高安全性和低免疫原性,能夠保護DNA不被核酸酶降解,可以運載不同大小的基因片段。選用高效、安全的基因載體是基因治療的一個關(guān)鍵問題,病毒載體是基因治療中較為常用的DNA運載工具[18],其運載效率高,但該系統(tǒng)具有免疫原性和病毒性,裝載容量有限等缺點,限制了病毒載體的廣泛使用[19]。非病毒載體主要包括脂質(zhì)體[20],陽離子多聚體[21-25]和納米顆粒[26],它們具有高的安全性、良好的生物相容性、易于生產(chǎn)、可以運載不同大小的DNA片段,保護DNA免受核酸酶的降解作用等優(yōu)點[27-29]。因此,非病毒載體的研究日益受到人們的重視。隨著納米技術(shù)的興起,納米顆粒作為非病毒載體在基因治療上的應用成為研究熱點。
納米顆粒能與DNA結(jié)合形成復合物,納米載體與DNA分子的偶聯(lián)可以通過靜電吸附,也可以通過化學鍵結(jié)合。這種結(jié)合能夠有效地保護與納米顆粒結(jié)合的外源DNA,使之免受各種酶的消化,提高了轉(zhuǎn)染效率。納米顆粒在生物體及細胞內(nèi)外具有高的穩(wěn)定性,不易被降解[30],且因其亞細胞的尺寸效應容易被細胞吞噬,通過細胞的吞噬作用可攜帶核酸進入細胞,納米顆粒進入細胞后可以快速地從溶酶體中逃逸出來進入細胞質(zhì)。納米顆??山閷NA在細胞核染色體基因組上整合,獲得外源基因的穩(wěn)定表達。
理想的納米載體基因復合物是帶有大量正電荷,這樣更容易通過靜電作用吸附到帶負電的細胞膜,從而引發(fā)細胞的內(nèi)吞作用。納米載體基因復合物進入細胞到發(fā)揮作用需要克服一系列屏障[26,31,32]。首先,納米載體基因復合物與細胞膜等形成內(nèi)含體,溶酶體迅速將內(nèi)含體吞噬,在溶酶體內(nèi)如果納米顆粒不能有效地保護基因,并且基因不能及時有效地被釋放,則會被溶酶體酶降解,外源基因能否及時有效地從溶酶體中逃逸是影響轉(zhuǎn)染效率的關(guān)鍵步驟。當發(fā)生內(nèi)吞作用后,內(nèi)含體膜上的ATP酶激活,利用ATP水解的能量將胞質(zhì)中H+泵入,從而降低了內(nèi)含體內(nèi)的pH,使溶酶體酶發(fā)揮分解作用。如果納米載體表面含有能在生理pH條件下發(fā)生質(zhì)子化的氮原子(如PEI中的N),它就會結(jié)合累積的質(zhì)子從而抑制內(nèi)含體pH的降低。質(zhì)子不斷泵入內(nèi)含體內(nèi),并伴隨著氯離子的被動流入使得內(nèi)含體內(nèi)的pH不斷升高,這不僅可以抑制溶酶體內(nèi)酶對外源DNA的降解作用,同時可引起內(nèi)含體腫脹、崩解,從而釋放出納米載體基因復合物。納米載體基因復合物進入細胞后,為盡快地讓基因從溶酶體內(nèi)逃逸,也可以使用溶酶體釋放劑,如氯喹、聚乙烯吡咯酮、蔗糖等[33]。當外源基因從內(nèi)含體進入細胞質(zhì)內(nèi),它是否不被胞質(zhì)內(nèi)酶降解,并順利進入核內(nèi)也影響著基因功能的發(fā)揮。基因進入核內(nèi)有兩個途徑,一是細胞分裂時,核膜破裂;另一是經(jīng)核孔進入,具體機制目前仍不清楚。
納米基因載體通常是由生物兼容性材料制備而成的納米微囊或納米粒子,可以通過包裹或吸附外源DNA等核酸分子形成納米載體基因復合物。納米載體粒徑通常在10-100 nm之間,其巨大的比表面積所產(chǎn)生的化學活性,使其具有很高的吸附、濃縮和保護DNA的能力,這是納米基因載體對外源基因發(fā)揮吸附、運轉(zhuǎn)功能的主要原因之一。納米顆粒因其粒徑小可以通過細胞內(nèi)吞作用攜帶外源基因進入細胞,隨后釋放基因分子發(fā)揮功能[34]。納米基因載體采用的材料分為有機材料和無機材料兩類,有機材料主要是高分子聚合物,包括樹枝狀聚合物、多聚賴氨酸、聚乙烯亞胺和殼聚糖;無機材料主要包括二氧化硅、氧化鐵和量子點等。
4.1.1 PAMAM樹枝狀大分子(poly-amidoamine dendrimer) 樹枝狀大分子是一類球形、高度支化的高分子,這類分子結(jié)構(gòu)復雜,從中心原子或中心環(huán)上輻射出很多分支。PAMAM(Poly-amidoamine)樹枝狀大分子是1985年由Tomalia等合成的,可通過表面所帶的陽離子和DNA通過靜電作用結(jié)合,可攜帶不同大小的DNA片段,所形成的體系穩(wěn)定。另外,它具有很好的分散性,良好的生物相容性,較高的轉(zhuǎn)染效率,較低的細胞毒性,可以轉(zhuǎn)染多種原代細胞,其轉(zhuǎn)染效率與代數(shù)及其支化程度密切相關(guān)[35,36]。PAMAM樹狀分子表面含有大量官能團易于進行修飾改性,從而進一步降低細胞毒性,提高轉(zhuǎn)染效率[37,38]。Liu等[39]以三羥乙基胺為核合成了PAMAM樹狀大分子,該樹狀大分子能攜帶綠色熒光蛋白基因進入細胞和鼠的胸腺中進行表達。PAMAM可攜帶SiRNA進入癌細胞干擾靶基因的表達[40,41]。
4.1.2 多聚賴氨酸(poly-L-Lysine,PLL) 多聚賴氨酸是一種陽離子多肽,是較早用于轉(zhuǎn)運基因的高分子聚合物納米材料。目前,多聚賴氨酸作為非病毒基因載體得到廣泛的應用[42]。多聚賴氨酸具有生物可降解性,有助于體內(nèi)基因的轉(zhuǎn)導。由于多聚賴氨酸/DNA復合物不能快速的從內(nèi)含體中釋放,導致轉(zhuǎn)染效率較低,并且細胞毒性大,但它易于進行表面修飾,如連接親水聚合物、配體及融膜多肽,從而降低毒性,提高轉(zhuǎn)染效率。聚乙二醇(PEG)是一類親水的、具有生物相容性的聚合物,具有較好的穩(wěn)定性,以PEG制成納米顆粒表面修飾PLL作為基因載體,可以降低細胞的毒性,很好的結(jié)合DNA,增加納米顆粒/DNA復合物的水溶性,提高轉(zhuǎn)染效率[43]。
4.1.3 聚乙烯亞胺(polyethyleneimine,PEI) PEI是應用最廣泛和最有效的非病毒載體之一[44],聚乙烯亞胺表面帶有較高的正電荷,可以吸附DNA分子,濃縮DNA分子,保護DNA免受酶解,實現(xiàn)DNA分子的細胞內(nèi)轉(zhuǎn)運。由于PEI具有“質(zhì)子海綿”效應,使得其介導的基因轉(zhuǎn)染效率較高。聚乙烯亞胺可以結(jié)合泵入核內(nèi)體的H+,具有很強的H+緩沖能力,避免溶酶體酶對DNA的降解作用,對DNA具有很好的保護作用,同時會伴隨著Cl-的大量內(nèi)流,造成核內(nèi)體腫脹破裂,使基因快速進入細胞質(zhì),并進一步轉(zhuǎn)移至細胞核內(nèi)發(fā)揮作用[45,46]。由于PEI與病毒載體相比,具有相對低的轉(zhuǎn)染效率,并且缺乏組織靶向性,限制了PEI的使用,尤其是體內(nèi)基因的轉(zhuǎn)運,因此目前的研究集中在提高基因轉(zhuǎn)染效率和載體的靶向性[47],可在PEI表面修飾抗體[48]、肽[49]、乳鐵蛋白[50]、甘露糖醛酸[51]及葉酸[52]等配體。這些修飾既可以提高基因的轉(zhuǎn)染效率,又可以增強轉(zhuǎn)染復合物的靶向性,同時可以降低對其他組織細胞的副作用。
4.1.4 殼聚糖(chitosan,CS) 殼聚糖是一種天然高分子聚合物,由甲殼素經(jīng)過部分脫乙酰作用形成的氨基多糖,具有很好的生物相容性,在體內(nèi)可被降解,且分解產(chǎn)物對人體無害。作為基因載體進行細胞轉(zhuǎn)染時,可以增強DNA的穩(wěn)定性,有效地保護DNA免受酶的降解作用[53,54]。
無機納米材料穩(wěn)定,分散性好,制備方便,粒徑容易控制,裝載量大,無免疫原性,細胞毒性小,易于在表面偶聯(lián)特異性分子而實現(xiàn)靶向運輸,提高轉(zhuǎn)染效率。目前應用較多的有硅納米顆粒[55],氧化鐵顆粒[56],硫酸鈣顆粒[57]和納米金顆粒[58]等。
為了提高納米顆粒/DNA的轉(zhuǎn)染效率,可以對納米顆粒進行表面修飾以改善顆粒的表面結(jié)構(gòu)和性能。DNA磷酸骨架在生理pH下帶負電,可以與帶正電的基因載體有效結(jié)合。因此,在納米顆粒表面修飾攜帶陽性電荷的物質(zhì),如多聚賴氨酸、PEI,更有利于納米顆粒/DNA復合物的形成。納米顆粒作為基因載體進行基因治療時的靶向性比較差,可在其表面偶聯(lián)特異性的靶向分子,并通過靶向分子與細胞表面特異性受體結(jié)合,實現(xiàn)靶向運輸[59]。
[1] Fishlock TW, Oral A, Egdell RG, et al. Manipulation of atoms across a surface at room temperature[J]. Nature, 2000, 404(6779):743-745.
[2] Pascal A, Franklin AH, Eric W, et al. Halogen bonds in biological molecules[J]. Proc Natl Acad Sci USA, 2004, 101(48):16789-16794.
[3] 張陽德. 納米生物技術(shù)學[M]. 北京:科學出版社, 2005:62.
[4] Chilkoti A, Dreher MR, Meyer DE. Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery[J].Adv Drug Deliv Rev, 2002, 54(8):1093-1111.
[5] Maillard S, Ameller T, Gauduchon J, et al. Innovative drug delivery nanosystems improve the anti-tumor activity in vitro and in vivo of anti-estrogens in human breast cancer and multiple myeloma[J]. J Steroid Biochem Mol Biol, 2005, 94(1-3):111-121.
[6] Yin WK, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials, 2005, 26(15):2713-2722.
[7] Mari T, Masanori U, Noritada K, et al. Nanospheres for DNA separation chips[J]. Nat Biotech, 2004, 22(3):337-340.
[8] Gao XH, Cui YY, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotech, 2004, 22(8):969-976.
[9] James JS, Adam DL, Viswanadham G, et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes[J]. Nat Biotech, 2002, 22(7):883-887.
[10] Medintz IL, Konnert JH, Clapp AR, et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly[J]. Proc Natl Acad Sci USA, 2004, 101(26):9612-9617.
[11] Zhao XJ, Hilliard LR, Mechery SJ, et al. From the cover:A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles[J].Proc Natl Acad Sci USA, 2004, 101(42):15027-15032.
[12] 肖蘇堯, 劉選明, 童春義, 等. 多聚賴氨酸淀粉納米顆?;蜉d體的研制及應用[J]. 中國科學B輯, 2004, 34(6):473-477.
[13] Indrajit R, Tymish YO, Dhruba JB, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:A nonviral, nanomedicine approach for gene delivery[J]. Proc Natl Acad Sci USA, 2005, 102(2):279-284.
[14] Klabunde KJ, Stark J, Koper O, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry[J]. J Phys Chem, 1996, 100(30):12142-12153.
[15] Golabi SM, Nozad A. Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly(o-phenylenediamine)film[J]. J Joumal of Electroanalytical Chemistry, 2002, 521(1-2):161-167.
[16] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271:933-937.
[17] Jiang P, Liu ZF, Cai SM. In situ CdS nanocluster formation on scanning tunneling microscopy tips for reliable single-electron tunneling at room temperature[J]. Applied Physics Letters, 1999, 75(19):3023-3025.
[18] Luo D, Saltzman WM. Synethetic DNA delivery systems[J].Nat Biotech, 2000, 18:33-37.
[19] Lehrman S. Virus treatment questioned after gene therapy death[J]. Nature, 1999, 401(6753):517- 518.
[20] Van Craynest N, Santaella C, Boussif O, Vierling P. Polycationic telomers and cotelomers for gene transfer:synthesis and evaluation of their an vitro transfection efficiency[J]. Bioconjug Chem, 2002, 13(1):59-75.
[21] Junghans M, Kreuter J, Zimmer A. Antisense delivery using protamine-oligonucleotide particles[J]. Nucleic Acids Res, 2000, 28(10):e45.
[22] Jeong JH, Park TG. Poly(L-lysine)-g-poly(D, L-lactic-co-glycolic acid)micelles for low cytotoxic biodegradable gene delivery carriers[J]. J Control Release, 2002, 82(1):159-166.
[23] Ogirs M, Wagner E. Targeting tumors with non-viral gene delivery systems[J]. Drug Discovery Today, 2002, 7(8):479-485.
[24] Chan CK, Senden T, Jans DA. Supramolecular structure and nuclear targeting efficieney determine the enhancement of transfection by modified polylysines[J]. Gene Therapy, 2000, 7:1690-1697.
[25] Kneuer C, Sameti M, Haltner EG, et al. Silica nanoParticles modified with aminosilanes as carriers for plasmid DNA[J].International Journal of Pharmaceutics, 2000, 196(2):257-261.
[26] Fenske DB, Maclachlan I, Cullis PR, et al. Long-circulating vecots for the systemic delivery of genes[J].Curr Opin Mol Ther, 2000, 3(2):153-158.
[27] Schatzlein AG. Targeting of synthetic gene delivery systems[J]. J Biomed Biotechnol, 2003(2):149-158.
[28] Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression[J].Mol Ther, 2006, 14(5):613-626.
[29] Pack DW, Hoffman AS, Pun S, et al. Design and development of polymers for gene delivery[J]. Nat Rev Drug Discov, 2005, 4(7):581-593.
[30] Truong-Le VL, August JT, Leong KW. Controlled gene delivery by DNA-gelatin nanospheres[J]. Hum GeneTher, 1998, 9:1709-1717.
[31] Ma H, Diamond SL. Nonviral gene therapy and its deliverysystems[J]. Curr Pharm Biotechn, 2001, 2(1):1-17.
[32] Moghimi SM, Hunter AC, Murray JC. Long-circulating and targetspecific nanoparticles:theory to practices[J]. Pharmacol Rev, 2001, 53(3):283-318.
[33] Ciftci K, Levy RJ. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts[J]. Inter J Pharm, 2001, 218(1-2):81-92.
[34] Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides[J]. Advanced Drug Delivery Reviews, 2001, 47(1)99-112.
[35] Braun CS, Vetro JA, Tomalia DA, et al. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles[J]. J Pharm Sci, 2005, 94(2):423-436.
[36] El-Sayed M, Ginski M, Rhodes C, et al. Transepithelial transport of poly(amidoamine)dendrimers across Caco-2 cell monolayers[J]. J Control Release, 2002, 81(3):355-365.
[37] Kihara F, Arima H, Tsutsumi T, et al. Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with alpha-cyclodextrin[J]. Bioconjug Chem, 2002, 13(6):1211-1219.
[38] Luo D, Haverstick K, Belcheva N, et al. Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery[J]. Macromolecules, 2002, 35(9):3456-3462.
[39] Liu Y, Jia S, Wu Q, et al. Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization[J]. Catalysis Communications, 2011, 12(8):717-720.
[40] Waite C, Sparks S, Uhrich K, et al. Acetylation of PAMAM dendrimers for cellular delivery of siRNA[J].BMC Biotechnology, 2009, 9:38.
[41] Patil ML, Zhang M, Taratula O, et al. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery:effect of the degree of quaternization and cancer targeting[J]. Biomacromolecules, 2009, 10(2):258-266.
[42] Zhang X, Oulad-Abdelghani M, Zelkin AN, et al. Poly(l-lysine)nanostructured particles for gene delivery and hormone stimulation[J]. Biomaterials, 2010, 31(7):1699-1706.
[43] Cho KC, Kim SH, Jeong JH, et al. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine)conjugate[J]. Macromol Biosci, 2005, 5(6):512-519.
[44] Deng R, Yue Y, Jin F, et al. Revisit the complexation of PEI and DNA-How to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure?[J]. Journal of Controlled Release, 2009, 140(1):40-46.
[45] Tagawa T, Manvell M, Brown N, et al. Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide mu and plasmid DNA[J]. Gene Ther, 2002, 9(9):564-576.
[46] Verkman AS, Sonawane ND, Szoka FC. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes[J]. J Biol Chem, 2003, 278(45):44826-44831.
[47] Elfinger M, Geiger J, Hasenpusch G, et al. Targeting of the β2-adrenoceptor increases nonviral gene delivery to pulmonary epithelial cells in vitro and lungs in vivo[J]. Journal of Controlled Release, 2009, 135:234-241.
[48] Jeong JH, Lee M, Kim WJ, et al. Anti-GAD antibody targeted nonviral gene delivery to islet beta cells[J]. J Control Release, 2005, 107(3):562-570.
[49] Kunath K, Merdan T, Hegener O, et al. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer[J]. J Gene Med, 2003, 5(7):588-599.
[50] Elfinger M, Maucksch C, Rudolph C. Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells[J]. Biomaterials, 2007, 28(23):3448-3455.
[51] Weiss SI, Sieverling N, Niclasen M, et al. Uronic acids functionalized polyethy- leneimine(PEI)-polyethyleneglycol(PEG)-graftcopolymers as novel synthetic gene carriers[J]. Biomaterials, 2006, 27(10):2302-2312.
[52] Chul Cho K, Hoon Jeong J, Jung Chung H, et al. Folate receptormediated intracellular delivery of recombinant caspase-3 for inducing apoptosis[J]. J Control Release, 2005, 108(1):121-131.
[53] Liu WG, Yao KD. Chitosan and its derivatives-a promising nonviral vector forgene transfection[J]. J Control Release, 2002, 83(1):1-11.
[54] Mansouri S, Lavigne P, Corsi K, et al. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy:strategies to improve transfection efficacy[J]. Eur J Pharm Biopharm, 2004, 57(1):1-8.
[55] Qin F, Zhou Y, Shi J, et al. A DNA transporter based on mesoporous sili-ca nanospheres mediated with polycation poly(allylaminehydrochloride)coating on mesopore surface[J]. Biomed Mater Res, 2009, 90A:333.
[56] Mahmoudi M, Simchi A, Imani M, et al. Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery[J]. J Phys Chem, 2009, 113(19):8124-8131.
[57] Qureshi HY, Ahmad R, Zafarullah M. High-efficiency transfection of nucleic acids by the modified calcium phosphate precipitation method in chondrocytes[J]. Anal Biochem, 2008, 382(2):138-140.
[58] Sandhu KK, McIntosh CM, Simard JM, et al. Gold nanoparticles mediated transfection of mammalian cells[J]. Bioconjugate Chem, 2002, 13(1):3-6.
[59] Saccardo P, Villaverde A, González-Montalbán N. Peptide-mediated DNA condensation for non-viral gene therapy[J]. Biotechnology Advances, 2009, 27(4):432-438.