李素貞 陳景堂
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 國(guó)家玉米改良中心河北分中心,保定 071001)
鋅和鐵是生物體所必需的微量元素,在植物的生長(zhǎng)發(fā)育過程中有著重要作用[1]。鋅是生物體300多種酶和重要蛋白質(zhì)的結(jié)構(gòu)輔助因子[2]。鋅不僅參與機(jī)體的各種代謝,在生物膜穩(wěn)定和基因表達(dá)調(diào)控等生理機(jī)能中也擔(dān)負(fù)著重要的角色[3]。適量增加植物體內(nèi)鋅的含量可提高作物產(chǎn)量,而鋅的缺乏會(huì)導(dǎo)致葉綠素、脂質(zhì)、蛋白、質(zhì)膜的氧化破壞。植物體內(nèi)鋅離子的過度積累又會(huì)對(duì)植物產(chǎn)生毒害。
鐵在細(xì)胞呼吸、光合作用和金屬蛋白的催化反應(yīng)過程中發(fā)揮重要作用,是重要的電子傳遞體。因此,鐵元素在原核和真核生物的生命活動(dòng)中具有不可替代的功能。另外,細(xì)胞內(nèi)過高的Fe3+/Fe2+氧化還原勢(shì)會(huì)導(dǎo)致超氧化合物的產(chǎn)生,對(duì)細(xì)胞造成傷害[4]。因此,嚴(yán)格控制植物體內(nèi)金屬離子的平衡是至關(guān)重要的,這依賴于各種轉(zhuǎn)運(yùn)體的協(xié)同作用,包括鋅、鐵轉(zhuǎn)運(yùn)體蛋白家族(Zinc-regulated transporters,Ironregulated transporter-like proteins,ZIP)、自然抗性相關(guān)巨噬蛋白家族(The natural resistance associated macrophage protein,NRAMP)、陽(yáng)離子擴(kuò)散輔助蛋白家族(Cation diffusion facilitator proteins,CDF)、植物重金屬ATP酶家族P1B-ATPase(Heavy metal ATPases,HMA)、黃色條紋蛋白家族(yellow stripe-like,YSL)和三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporter)。這些運(yùn)輸?shù)鞍讓?duì)于植物鋅鐵吸收、體內(nèi)分配以及維持細(xì)胞內(nèi)鋅鐵離子的平衡具有重要作用[5,6]。
參與鋅鐵吸收的蛋白主要有3類,都是以蛋白家族形式存在的.包括ZIP即鋅調(diào)控轉(zhuǎn)運(yùn)體(Zincregulated transporter,ZRT)和鐵調(diào)控轉(zhuǎn)運(yùn)體(Ironregulated transporter,IRT),黃色條紋蛋白家族家族(yellow stripe-like)和自然抗性相關(guān)巨噬蛋白家族(NRAMP)等蛋白定位于質(zhì)膜上,其主要參與重金屬離子從質(zhì)外體或細(xì)胞器中轉(zhuǎn)運(yùn)至細(xì)胞質(zhì)的過程[5]。
ZIP即鋅調(diào)控轉(zhuǎn)運(yùn)體(Zinc-regulated transporter,ZRT)和鐵調(diào)控轉(zhuǎn)運(yùn)體(Iron-regulated transporter,IRT)。酵母功能互補(bǔ)試驗(yàn)顯示ZIP家族基因能夠轉(zhuǎn)運(yùn)包括Zn2+、Fe2+、Cu2+、Cd2+在內(nèi)的多種金屬離子[7]。ZIP一般由309-476個(gè)氨基酸殘基組成,有8個(gè)潛在的跨膜結(jié)構(gòu)域和相似的拓?fù)浣Y(jié)構(gòu),第3和第4跨膜區(qū)之間有一長(zhǎng)的可變區(qū),可變區(qū)位于胞內(nèi),其C、N-末端位于胞外,該區(qū)富含組氨酸殘基,可能與金屬的結(jié)合、轉(zhuǎn)運(yùn)有關(guān)[7]。
目前在擬南芥、水稻、蒺藜苜蓿、大豆、野生型二粒小麥、葡萄等植物中鑒定出ZIP基因并對(duì)其功能進(jìn)行了研究。在擬南芥中發(fā)現(xiàn)16個(gè)ZIP家族基因,AtIRT1是通過酵母互補(bǔ)試驗(yàn)分離得到的第一個(gè)ZIP功能基因,其主要在根部表達(dá),且該基因的過表達(dá)可導(dǎo)致鎳的過度積累[8-12]。AtIRT2主要在根部表達(dá),定位在囊泡,推測(cè)具有細(xì)胞內(nèi)過量金屬元素的解毒功能[13,14]。AtIRT3能互補(bǔ)鋅、鐵轉(zhuǎn)運(yùn)雙突變體,過表達(dá)AtIRT3會(huì)使鋅在地上部、鐵在地下部積累[15]。表達(dá)分析顯示,AtZIP1、AtZIP5、AtZIP9、AtZIP12和AtIRT3受缺鋅誘導(dǎo),由此可推測(cè),這些基因在缺鋅條件下可能增強(qiáng)鋅的吸收能力[16]。
ZIP家族基因在水稻中也有研究報(bào)道[17-22],OsIRT1為鐵轉(zhuǎn)運(yùn)體,在缺鐵條件下負(fù)責(zé)從土壤中吸收鐵[11],其過表達(dá)可使地上部、地下部和成熟種子中的鋅鐵含量提高[22]。OsZIP1和OsZIP3受缺鋅誘導(dǎo)于地上部和地下部中表達(dá)量升高,而OsZIP2主要在地下部表達(dá)升高[17]。原位雜交試驗(yàn)顯示OsZIP1和OsZIP3主要在根和莖的維管束和根部韌皮部細(xì)胞中表達(dá)[17],而OsZIP4則主要在韌皮部和分生組織表達(dá)[18]。過表達(dá)OsZIP5或OsZIP8會(huì)使水稻地上部的鋅含量降低,而地下部中鋅過量積累[20,21]。
野生二粒小麥中克隆的TdZIP1為缺鋅誘導(dǎo)的鋅轉(zhuǎn)運(yùn)體,其定位在內(nèi)質(zhì)網(wǎng),過表達(dá)TdZIP1導(dǎo)致鋅在細(xì)胞內(nèi)的積累產(chǎn)生細(xì)胞毒性[23]。Northern分析發(fā)現(xiàn)GmZIP1在缺鋅23 d的大豆根、莖和葉中不表達(dá),但在缺鋅大豆的根瘤中表達(dá),且隨著缺失天數(shù)增加至35 d時(shí),表達(dá)量達(dá)到最高,推測(cè)GmZIP1可能在植株與根瘤菌的共生中發(fā)揮作用[24]。在模式豆科植物蒺藜苜蓿中MtZIP1、MtZIP5和MtZIP6互補(bǔ)鋅缺陷酵母突變株,MtZIP4和MtZIP7互補(bǔ)錳缺陷酵母突變株,而MtZIP3、MtZIP5和MtZIP6互補(bǔ)鐵缺陷酵母突變株[25],說明ZIP家族基因具有一定的金屬元素選擇性。ZmZLP1是從玉米花粉cDNA文庫(kù)中分離得到的ZIP-like家族基因,其編碼蛋白定位在內(nèi)質(zhì)網(wǎng)中,可能負(fù)責(zé)鋅從內(nèi)質(zhì)網(wǎng)到細(xì)胞質(zhì)的轉(zhuǎn)運(yùn),參與未折疊蛋白反應(yīng),并且提高酵母細(xì)胞的耐熱性[26]。
ZmYSL1是最早從缺鐵脅迫玉米根系cDNA文庫(kù)中分離得到的基因,它是多肽轉(zhuǎn)運(yùn)蛋白家族的一個(gè)成員,能夠轉(zhuǎn)運(yùn)麥根酸類物質(zhì)[Muginetic acids,Mas與鐵離子螯合物(Mas-Fe3+)的功能],其酵母互補(bǔ)試驗(yàn)也證明了YSL1的鐵轉(zhuǎn)運(yùn)載體功能[27,28]。從玉米中共預(yù)測(cè)出15個(gè)YSL基因,跨膜結(jié)構(gòu)域6-17個(gè),編碼序列891-2 088 bp。另有研究表明ZmYSL1定位在側(cè)根和根冠的表皮細(xì)胞及葉肉細(xì)胞,主要參與鐵及其他多種金屬離子的吸收與胞內(nèi)運(yùn)輸[29]。玉米YSL1突變體由于不能轉(zhuǎn)運(yùn)Fe3+-植物載體復(fù)合物(PS)而使玉米葉脈間失綠,呈現(xiàn)黃色條紋狀,因此被命名為yellow stripe(YS)[30]。水稻基因組中具有15個(gè)YSL成員,在缺鐵條件下OsYSL2在葉片中的表達(dá)量升高,且證明OsYSL2可轉(zhuǎn)運(yùn)尼克煙酰胺(NA)-Fe和NA-Mn螯合物。這些結(jié)果表明,OsYSL2負(fù)責(zé)NA-Fe和NA-Mn在韌皮部的運(yùn)輸,并且具有將鐵和錳轉(zhuǎn)運(yùn)至籽粒中的作用[31]。OsYSL16則在維管束MA-Fe3+的分配中起重要作用[32]。
AtYSL1、AtYSL2和AtYSL3是擬南芥中的YSL家族成員。AtYSL1基因特異存在于幼芽和花粉中,高鐵條件下,AtYSL1在幼芽中的轉(zhuǎn)錄水平會(huì)增高。ysl1突變體地上部積累大量NA,而種子中的鐵和NA含量明顯比野生型的含量低[33]。這些結(jié)果表明,AtYSL1可能具有將鐵從莖和葉轉(zhuǎn)移至種子中的作用[33]。此外,AtYSL2轉(zhuǎn)運(yùn)NA-Fe和NA-Cu螯合物,在根部和地上部都有表達(dá),并且AtYSL2的轉(zhuǎn)錄水平受鐵和銅的調(diào)節(jié),表明AtYSL2可能參與金屬離子在維管束中的橫向運(yùn)輸[5,34]。AtYSL3可能在維管束細(xì)胞中起到轉(zhuǎn)運(yùn)金屬-NA復(fù)合物的作用[35]。HvYSL5主要在大麥的根中表達(dá)(成熟根區(qū)表達(dá),根尖不表達(dá)),并且受缺鐵誘導(dǎo),時(shí)空表達(dá)分析發(fā)現(xiàn)HvYSL5呈現(xiàn)出晝夜節(jié)律,基因敲除后植物沒有表現(xiàn)出明顯的表型,推測(cè)HvYSL5可能具有瞬時(shí)儲(chǔ)存鐵或者植物鐵載體的功能[36]。
自然抗性巨噬蛋白(NRAMP)主要參與多種二價(jià)金屬陽(yáng)離子的轉(zhuǎn)運(yùn),如Zn2+、Fe2+、Cu2+、Mn2+等[37]。NRAMP家族基因編碼多肽分子,其氨基酸序列具有高度的同源性和相似的二級(jí)結(jié)構(gòu),包括10-12個(gè)跨膜結(jié)構(gòu)域,1-2個(gè)糖基化的胞質(zhì)外環(huán)狀結(jié)構(gòu)和一個(gè)胞質(zhì)內(nèi)的轉(zhuǎn)運(yùn)蛋白結(jié)構(gòu)域[5,38]。
在擬南芥中和水稻中分別克隆了5個(gè)AtNRAMP基因和3個(gè)OsNRAMP基因,AtNRAMP1、3、4與水稻OsNRAMP1和OsNRAMP3屬于一類。AtNRAMP2-5和水稻OsNRAMP2代表另一類蛋白[39]。AtNRAMP1、2在根和芽中表達(dá),過表達(dá)AtNRAMP1的番茄對(duì)鐵脅迫的耐受力增強(qiáng)[40]。另有研究表明,AtNRAMP3和AtNRAMP4定位到液泡膜上,負(fù)責(zé)將Fe2+從液泡運(yùn)到胞質(zhì),其轉(zhuǎn)錄水平受到細(xì)胞內(nèi)鐵離子濃度的調(diào)節(jié)。低鐵條件下,nramp3和nramp4導(dǎo)致種子萌發(fā)晚于野生型,AtNRAMP1、3、4能互補(bǔ)酵母缺陷型雙突變株對(duì)錳或鐵的吸收功能。AtNRAMP3和AtNRAMP4能夠提高酵母對(duì)鎘的敏感性,并導(dǎo)致鎘的積累。該結(jié)果表明AtNRAMP編碼多種底物特異性的金屬轉(zhuǎn)運(yùn)蛋白[41,42]。在水稻中,微陣列分析發(fā)現(xiàn)OsNRAMP1在缺鐵條件下表達(dá)上調(diào),OsNRAMP1蛋白定位在質(zhì)膜上,可轉(zhuǎn)運(yùn)Fe和Cd,主要在根中表達(dá),參與細(xì)胞中鎘的吸收與積累[43]。OsNRAMP2主要在葉中表達(dá),OsNRAMP3在所有組織都表達(dá)。Sperotto等[44]發(fā)現(xiàn),OsNRAMP7和OsNRAMP8與水稻籽粒中鋅、鐵的濃度呈現(xiàn)出負(fù)相關(guān)性。說明這兩個(gè)基因?qū)ψ蚜V袖\、鐵離子濃度的積累不利。
參與鋅鐵排出的蛋白主要有3類,包括陽(yáng)離子擴(kuò)散協(xié)助家族蛋白(CDF)、P1B型ATPases、三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette transporter)具有將重金屬運(yùn)載出細(xì)胞質(zhì)或進(jìn)入特定的細(xì)胞器的功能,因此可能具有解毒功能[5,6]。
CDF(cation diffusion facilitator)蛋白可將胞質(zhì)內(nèi)過量的Zn2+轉(zhuǎn)運(yùn)至胞外,或區(qū)室化胞內(nèi)過量的Zn2+,以起到解毒或儲(chǔ)存的作用[45]。大部分的CDF家族成員具有6個(gè)跨膜結(jié)構(gòu)域,并有相似的拓?fù)浣Y(jié)構(gòu)。CDF家族最保守的序列為第Ⅰ、Ⅱ、Ⅴ跨膜區(qū),具有極保守的極性或帶電氨基酸,可能與底物的轉(zhuǎn)運(yùn)有關(guān)[46]。在植物中第一個(gè)鑒定出的CDF家族成員是ZAT,后被更名為AtMTP1,其編碼蛋白定位在葉片和根部細(xì)胞的液泡膜上,可能具有將Zn2+運(yùn)載至液泡的作用[47]。過表達(dá)AtMTP1可提高植物對(duì)高鋅脅迫的耐受性,并且會(huì)提高植株根部鋅含量[48]。AtMTP3定位在液泡膜上,在zrc1cot1雙突變的芽殖酵母中能夠提高對(duì)鋅和鈷的耐受性,過表達(dá)AtMTP3可增加擬南芥根和蓮座葉中鋅的含量和提高耐受性。野生型擬南芥在高鋅、高鈷濃度且無(wú)毒害條件下,能使AtMTP3在根毛區(qū)的表皮細(xì)胞中表達(dá)增強(qiáng)。RNA干擾AtMTP3會(huì)導(dǎo)致植物細(xì)胞對(duì)高鋅脅迫比較敏感[49]。HvMTP1是大麥中的一個(gè)CDF成員,與AtMTP1高度相似,但不像AtMTP1高度選擇Zn2+,而是對(duì)Zn2+和Co2+高度親和,其定位在液泡膜上[50]。
水稻中也有CDF家族蛋白的研究,OsMTP1是一個(gè)二價(jià)陽(yáng)離子轉(zhuǎn)運(yùn)蛋白,其定位在細(xì)胞膜上,可轉(zhuǎn)移Zn2+和Cd2+以及其他重金屬離子,并且保持金屬離子的體內(nèi)平衡[51]。OZT1是在水稻中發(fā)現(xiàn)的一個(gè)定位到液泡中的CDF家族蛋白,其在各種組織中均有表達(dá),并且在高Zn2+和Cd2+脅迫條件下表達(dá)上調(diào),OZT1在酵母中表達(dá)能夠增強(qiáng)酵母對(duì)Zn2+和Cd2+的耐受性,這些試驗(yàn)表明,OZT1能夠轉(zhuǎn)運(yùn)和保持植物體中Zn、Cd和其他重金屬的平衡[52]。
P型ATPases超級(jí)家族包括多個(gè)重金屬ATPases(HMA),P1B型ATPases是其中的一個(gè)亞族。Zn2+、Cd2+、Pb2+和Co2+等離子利用水解ATP釋放的能量進(jìn)行跨膜運(yùn)輸。P-ATPase的合成包括一個(gè)磷酸化介導(dǎo)的酶促反應(yīng),故稱之為P-ATPases[53]。ATPase一般含8個(gè)跨膜結(jié)構(gòu)域,在第Ⅵ與第Ⅶ跨膜結(jié)構(gòu)域之間有一個(gè)大的胞質(zhì)環(huán),環(huán)上有磷酸化結(jié)構(gòu)域。膜內(nèi)有Cys-pro-Cys/His/Ser基序,在金屬元素轉(zhuǎn)運(yùn)過程中起作用[1,54-56]。
在擬南芥中發(fā)現(xiàn)了8個(gè)HMA成員,其中HMA1-4是二價(jià)陽(yáng)離子載體,參與Cd2+/Pb2+/Zn2+/Co2+的運(yùn)輸,HMA5-8是單價(jià)陽(yáng)離子載體,參與Ag+/Cu+的運(yùn)輸[53,57]。擬南芥中AtHMA2和AtHMA4是Zn2+和Cd2+的高親和性質(zhì)膜轉(zhuǎn)運(yùn)蛋白定位在質(zhì)膜上,主要在根、莖和葉片的微管組織表達(dá),通過向胞外排出過量的Zn2+和Cd2+,提高植物對(duì)Zn和Cd的耐受性[58]。hma2和hma4雙突變體導(dǎo)致地上部鋅的含量降低,hma4單突變使鋅的含量也比野生型低,HMA2是依賴于Zn2+的ATPase,雖然也能被Cd2+等離子所激活,但激活程度比Zn2+低,過表達(dá)AtHMA4能夠改善根在高濃度Zn2+和Cd2+條件下的生長(zhǎng)狀況,并且地上部鋅和鎘的含量增加。這些結(jié)果表明,HMA2和HMA4對(duì)于調(diào)節(jié)植物體內(nèi)鋅離子的平衡有重要作用,HMA4可能參與金屬離子咋木質(zhì)部的裝載[59-62]。在煙草中表達(dá)AtHMA4可以改變Zn和Cd在根和地上部的分配,并且增加植株對(duì)Zn和Cd的耐受性[63]。
三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白包含4-6個(gè)跨膜疏水區(qū)域、ATP結(jié)合區(qū)域和核苷酸結(jié)合區(qū)域。三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白利用水解ATP釋放的能量使多種重金屬離子進(jìn)行跨膜運(yùn)輸。MRP與PDR是目前了解得最為詳細(xì)的三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白亞族,與重金屬的解毒有關(guān)。參與鋅鐵轉(zhuǎn)運(yùn)的三磷酸結(jié)合盒蛋白,目前在水稻中有OsPDR9,鋅和鎘可誘導(dǎo)OsPDR9在水稻幼苗的根中表達(dá)[63]在擬南芥中發(fā)現(xiàn)了120個(gè)三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白,但目前研究得還很少。
增加糧食作物籽粒中的鋅鐵含量,對(duì)滿足人類鋅鐵營(yíng)養(yǎng)具有重要意義,研究作物籽粒富集鋅和鐵的生理機(jī)制,利用現(xiàn)代分子生物技術(shù)生物強(qiáng)化籽粒中鋅鐵的含量是增加籽粒中鋅鐵含量的一種途徑。目前,已知許多轉(zhuǎn)運(yùn)蛋白參與了植物體內(nèi)鋅鐵離子平衡網(wǎng)絡(luò)系統(tǒng),一些蛋白也被應(yīng)用到植物的轉(zhuǎn)基因研究中,如在大麥中過表達(dá)AtZIP1基因能夠增加鋅和鐵在種子中的含量。同樣,過表達(dá)OsIRT1基因,水稻中鋅和鐵的含量在地上部、地下部和種子中都有所提高。但在水稻中過表達(dá)OsZIP4、OsZIP5、OsZIP8和OsZIP9,結(jié)果導(dǎo)致過量的鋅聚集于根部,降低了植株地上部分的鋅含量,沒有達(dá)到在籽粒中增加鋅含量的目的。因此,這些基因的過表達(dá)對(duì)水稻籽粒中鋅的富集不利。這些結(jié)果表明,異位過表達(dá)對(duì)于鋅鐵的積累與分布可能會(huì)起到一定的作用。然而,有關(guān)鋅鐵轉(zhuǎn)運(yùn)蛋白在籽粒中的研究還很少。所以,可以先研究籽粒中某些基因的表達(dá)模式,鑒定出其中對(duì)于轉(zhuǎn)運(yùn)或儲(chǔ)藏鋅鐵起關(guān)鍵作用的基因,然后進(jìn)行過表達(dá)或者組織特異性表達(dá)這些基因,以提高籽粒中鋅鐵含量的目的。
[1] Wintz H, Fox T, Wu YY, et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. The Journal of Biological Chemistry, 2003, 278(48):47644-47653.
[2] Haydon MJ, Cobbett CS. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis[J]. Plant Physiology, 2007, 143(4):1705-1719.
[3] Mathews WR, Wang F, Eide DJ, Van Doren M. Drosophila fear of intimacy encodes a Zrt/IRT-like protein(ZIP)family zinc transporter functionally related to mammalian ZIP proteins[J]. The Journal of Biological Chemistry, 2005, 280(1):787-795.
[4] Briat JF, Lebrun M. Plant responses to metal toxicity[J]. Comptes Rendus de l’Academie des Sciences Serie III, Sciences de la Vie, 1999, 322(1):43-54.
[5] Colangelo EP, Guerinot ML. Put the metal to the petal:metal uptake and transport throughout plants[J]. Current Opinion in Plant Biology, 2006, 9(3):322-330.
[6] Yang X, Feng Y, He Z, Stoffella PJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation[J]. J Trace Elem Med Biol, 2005, 18(4):339-353.
[7] Guerinot ML. The ZIP family of metal transporters[J]. Biochim Biophys Acta, 2000, 1465(1-2):190-198.
[8] Eide D, Broderius M, Fett J, Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(11):5624-5628.
[9] Henriques R, Jasik J, Klein M, et al. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50(4-5):587-597.
[10] Varotto C, Maiwald D, Pesaresi P, et al. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana[J]. The Plant journal:for Cell and Molecular Biology, 2002, 31(5):589-599.
[11] Vert G, Grotz N, Dedaldechamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6):1223-1233.
[12] Nishida S, Tsuzuki C, Kato A, et al. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana[J]. Plant & cell Physiology, 2011, 52(8):1433-1442.
[13] Vert G, Briat JF, Curie C. ArabidopsisIRT2 gene encodes a rootperiphery iron transporter[J]. The Plant Journal:for Cell and Molecular Biology, 2001, 26(2):181-189.
[14] Vert G, Barberon M, Zelazny E, et al. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells[J]. Planta, 2009, 229(6):1171-1179.
[15] Lin YF, Liang HM, Yang SY, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. The New Phytologist, 2009, 182(2):392-404.
[16] Kramer U, Talke IN, Hanikenne M. Transition metal transport[J]. FEBS Lett, 2007, 581(12):2263-2272.
[17] Ramesh SA, Shin R, Eide DJ, Schachtman DP. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol, 2003, 133(1):126-134.
[18] Ishimaru Y, Suzuki M, Kobayashi T, et al. OsZIP4, a novel zincregulated zinc transporter in rice[J]. Journal of Experimental Botany, 2005, 56(422):3207-3214.
[19] Yang X, Huang J, Jiang Y, Zhang HS. Cloning and functional identification of two members of the ZIP(Zrt, Irt-like protein)gene family in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2009, 36(2):281-287.
[20] Lee S, Kim SA, Lee J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6):551-558.
[21] Lee S, Jeong HJ, Kim SA, et al. OsZIP5 is a plasma membrane zinc transporter in rice[J]. Plant Molecular Biology, 2010, 73(4-5):507-517.
[22] Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell & Environment, 2009, 32(4):408-416.
[23] Durmaz E, Coruh C, Dinler G, et al. Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat[J]. Plant Molecular Biology Reporter, 2011, 29(3):582-596.
[24] Moreau S, Thomson RM, Kaiser BN, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean[J]. J Biol Chem, 2002, 277(7):4738-4746.
[25] Lopez-Millan AF, Ellis DR, Grusak MA. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula[J]. Plant Molecular Biology, 2004, 54(4):583-596.
[26] Xu Y, Wang B, Yu J, et al. Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays[J]. Functional Plant Biology, 2010, 37(3):194-205.
[27] Curie C, Panaviene Z, Loulergue C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III)uptake[J]. Nature, 2001, 409(6818):346-349.
[28] Schaaf G, Ludewig U, Erenoglu BE, et al. ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianaminechelated metals[J]. The Journal of Biological Chemistry, 2004, 279(10):9091-9096.
[29] Ueno D, Yamaji N, Ma JF. Further characterization of ferricphytosiderophore transporters ZmYS1 and HvYS1 in maize and barley[J]. Journal of Experimental Botany, 2009, 60(12):3513-3520.
[30] von Wiren N, Klair S, Bansal S, et al. Nicotianamine chelates both FeIIIand FeII. Implications for metal transport in plants[J]. Plant Physiology, 1999, 119(3):1107-1114.
[31] Koike S, Inoue H, Mizuno D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem[J]. Plant J, 2004, 39(3):415-424.
[32] Kakei Y, Ishimaru Y, Kobayashi T, et al. OsYSL16 plays a role in the allocation of iron[J]. Plant Molecular Biology, 2012, 79(6):583-594.
[33] Le Jean M, Schikora A, Mari S, et al. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading[J]. Plant J, 2005, 44(5):769-782.
[34] DiDonato RJ Jr, Roberts LA, Sanderson T, et al. Arabidopsis Yellow Stripe-Like2(YSL2):a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. Plant J, 2004, 39(3):403-414.
[35] Waters BM, Chu HH, Didonato RJ, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4):1446-1458.
[36] Zheng L, Fujii M, Yamaji N, et al. Isolation and characterization of a barley yellow stripe-like gene, HvYSL5[J]. Plant & Cell Physiology, 2011, 52(5):765-774.
[37] Nevo Y, Nelson N. The NRAMP family of metal-ion transporters[J]. Biochimica et Biophysica Acta, 2006, 1763(7):609-620.
[38] Cellier M, Prive G, Belouchi A, et al. Nramp defines a family of membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(22):10089-10093.
[39] Curie C, Alonso JM, Le Jean M, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. The Biochemical Journal, 2000, 347(Pt 3):749-755.
[40] Bereczky Z, Wang HY, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato[J]. The Journal of Biological Chemistry, 2003, 278(27):24697-24704.
[41] Thomine S, Lelievre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal:for Cell and Molecular Biology, 2003, 34(5):685-695.
[42] Lanquar V, Lelievre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. The EMBO Journal, 2005, 24(23):4041-4051.
[43] Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 2011, 6(11):1813-1816.
[44] Sperotto RA, Boff T, Duarte GL, et al. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains[J]. Journal of Plant Physiology 2010, 167(17):1500-1506.
[45] Gaither LA, Eide DJ. Eukaryotic zinc transporters and their regulation[J]. Biometals, 2001, 14(3-4):251-270.
[46] Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters[J]. Cellular and Molecular Life Sciences:CMLS, 2004, 61(1):49-68.
[47] Kobae Y, Uemura T, Sato MH, et al. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis[J]. Plant & Cell Physiology, 2004, 45(12):1749-1758.
[48] van der Zaal BJ, Neuteboom LW, Pinas JE, et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation[J]. Plant Physiology, 1999, 119(3):1047-1055.
[49] Arrivault S, Senger T, Kramer U. The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply[J]. The Plant Journal:for Cell and Molecular Biology, 2006, 46(5):861-879.
[50] Podar D, Scherer J, Noordally Z, et al. Metal selectivity determinants in a family of transition metal transporters[J]. The Journal of Biological Chemistry, 2012, 287(5):3185-3196.
[51] Yuan L, Yang S, Liu B, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1[J]. Plant Cell Reports, 2012, 31(1):67-79.
[52] Lan HX, Wang ZF, Wang QH, et al. Characterization of a vacuolar zinc transporter OZT1 in rice(Oryza sativa L.)[J]. Molecular Biology Reports, 2013, 40(2):1201-1210.
[53] Baxter I, Tchieu J, Sussman MR, et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice[J]. Plant Physiology, 2003, 132(2):618-628.
[54] Hall JL, Williams LE. Transition metal transporters in plants[J]. Journal of Experimental Botany, 2003, 54(393):2601-2613.
[55] Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants[J]. Biochimica et Biophysica Acta, 2000, 1465(1-2):104-126.
[56] Axelsen KB, Palmgren MG. Inventory of the superfamily of P-type ion pumps in Arabidopsis[J]. Plant Physiology, 2001, 126(2):696-706.
[57] Woeste KE, Kieber JJ. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype[J]. The Plant Cell, 2000, 12(3):443-455.
[58] Papoyan A, Kochian LV. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase[J]. Plant Physiology, 2004, 136(3):3814-3823.
[59] Eren E, Arguello JM. Arabidopsis HMA2, a divalent heavy metaltransporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+homeostasis[J]. Plant Physiology, 2004, 136(3):3712-3723.
[60] Verret F, Gravot A, Auroy P, et al. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance[J]. FEBS Letters, 2004, 576(3):306-312.
[61] Verret F, Gravot A, Auroy P, et al. Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch[J]. FEBS Letters, 2005, 579(6):1515-1522.
[62] Hussain D, Haydon MJ, Wang Y, et al. P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis[J]. The Plant Cell, 2004, 16(5):1327-1339.
[63] Siemianowski O, Mills RF, Williams LE, Antosiewicz DM. Expression of the P((1)B)-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance[J]. Plant Biotechnology Journal, 2011, 9(1):64-74.
[64] Moons A. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots[J]. FEBS Letters, 2003, 553(3):370-376.