趙榮秋,劉樂承 (長(zhǎng)江大學(xué)園藝園林學(xué)院,湖北 荊州434025)
成花轉(zhuǎn)變是植物生命周期中一個(gè)重要的發(fā)育過(guò)程。擬南芥染色質(zhì)機(jī)制通過(guò)調(diào)控成花關(guān)鍵基因表達(dá)在成花時(shí)間上起關(guān)鍵作用,各種保守的染色質(zhì)修飾因子、植物特異因子和長(zhǎng)的非編碼RNAs都參與到FLOWERING LOCUS C (FLC)基因染色質(zhì)調(diào)節(jié)過(guò)程中,F(xiàn)LC是植物成花的負(fù)調(diào)控因子。FLC調(diào)控機(jī)制的研究已為以染色質(zhì)調(diào)控為基礎(chǔ)的其他發(fā)育基因的研究提供了一個(gè)范本。同時(shí),染色質(zhì)修飾在FLOWERING LOCUS T (FT)的表達(dá)調(diào)控中也同樣起著重要作用;FT是編碼植物成花素的基因,在被子植物中高度保守。此外,其他植物中與FT相關(guān)的基因也可能具有與FT基因相同的調(diào)控機(jī)制從而影響植物成花時(shí)間。在此主要對(duì)擬南芥成花調(diào)控及其以染色質(zhì)修飾為基礎(chǔ)的調(diào)節(jié)機(jī)制進(jìn)行綜述。
從營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)階段轉(zhuǎn)變的時(shí)間是被子植物獲得生殖成功的關(guān)鍵,許多物種已進(jìn)化出多條途徑響應(yīng)環(huán)境信號(hào)和內(nèi)源因子的變化,從而調(diào)控其在正確時(shí)間開花。長(zhǎng)日照植物擬南芥春化作用、光周期、寒冷的冬天、環(huán)境溫度和長(zhǎng)日照等外因分別響應(yīng)體內(nèi)內(nèi)源因子如苗齡和赤霉素水平共同作用形成復(fù)雜的成花調(diào)控網(wǎng)絡(luò)。目前,已分離出成花網(wǎng)絡(luò)中的關(guān)鍵成花基因,其表達(dá)調(diào)控機(jī)制已被深入研究。
擬南芥FLC基因是一個(gè)主要的開花抑制因子,其表達(dá)機(jī)制復(fù)雜[1-2],F(xiàn)RIGIDA (FRI)可以激活或者上調(diào)FLC基因的表達(dá)至較高水平從而抑制開花,然而春化作用、長(zhǎng)時(shí)間低溫誘導(dǎo)可以抵消FRI對(duì)FLC激活作用,關(guān)閉FLC的表達(dá),促進(jìn)植物開花[3-4]。有春化響應(yīng)的冬性一年生植物和無(wú)春化需求的早花植物不同的成花習(xí)性主要由FLC的表達(dá)水平不同所決定,冬性一年生植物具有顯性等位基因FRI和FLC,而無(wú)春化需求的早花植物缺乏有功能的FRI,F(xiàn)LC的表達(dá)被自主途徑基因或FLC自身抑制,不依賴于環(huán)境輸入信號(hào)所抑制[5-6]。
FT基因是另外一個(gè)調(diào)控植物開花時(shí)間的關(guān)鍵基因,F(xiàn)T蛋白是植物開花素[7-10],其表達(dá)可被長(zhǎng)日照下CONSTANS(CO)基因所激活,被FLC基因直接抑制[11-13]。FT在維管組織特異表達(dá),尤其在葉的韌皮部,F(xiàn)T蛋白由韌皮部被輸送到莖尖分生組織,在莖尖分生組織與具有bZIP結(jié)構(gòu)的鋅指蛋白FD結(jié)合形成復(fù)合體,激活花分生組織基因LEAFY和APETALA1(AP1)的表達(dá),導(dǎo)致花原基形成[14-15]。
染色質(zhì)修飾參與到植物發(fā)育基因的調(diào)控中,這些修飾調(diào)控染色質(zhì)結(jié)構(gòu)和基因表達(dá),包括核小體重塑、DNA甲基化和各種組蛋白修飾[16]??偟膩?lái)說(shuō),組蛋白乙酰化、組蛋白H3K4三甲基化、組蛋白H2B單泛素化、組蛋白H3K36的二甲基化和三基化與基因表達(dá)活性有關(guān);而組蛋白去乙酰化、H3K9甲基化、H3K27三基化、H2A單泛素化抑制基因的表達(dá)[17]。擬南芥染色質(zhì)調(diào)節(jié)FLC表達(dá)已被深入研究,表明各種修飾因子調(diào)節(jié)FLC表達(dá)與其成花有關(guān)[3-4,17]。如ATX1H3K4甲基轉(zhuǎn)移酶和EFS H3K36甲基轉(zhuǎn)移酶分別調(diào)節(jié)FLC染色質(zhì)H3K4和H3K36的甲基化,兩者都是FLC基因表達(dá)必須的,其表達(dá)抑制成花[18–20];與此相反,PRC2-like復(fù)合體使FLC染色質(zhì)H3K27三甲基化水平升高從而關(guān)閉FLC的表達(dá)[21-22]。FLC的調(diào)控機(jī)制已成為認(rèn)識(shí)植物其他發(fā)育基因表達(dá)調(diào)控的范例。
FLC表達(dá)調(diào)控的最新進(jìn)展表明FRI是植物體內(nèi)特異的支架蛋白,是募集染色質(zhì)修飾因子至FLC位點(diǎn)復(fù)合體的一部分,可以激活FLC。另外,最近研究表明長(zhǎng)的非編碼RNAs(lncRNAs)不僅可以導(dǎo)致非春化需求型植物FLC表達(dá)抑制,而且可以通過(guò)春化調(diào)節(jié)使一年生冬性植物FLC沉默。另外,近年來(lái)的研究表明染色質(zhì)修飾也部分調(diào)控FT基因表達(dá)。
FRI編碼植物特異的支架蛋白,是決定擬南芥成花時(shí)間的關(guān)鍵因子[6],許多參與到FRI依賴途徑的FLC表達(dá)的激活因子,已在以FRI為背景的抑制FLC表達(dá)的突變體遺傳檢測(cè)中被驗(yàn)證,包括保守的染色質(zhì)修飾因子和植物特異組分[3,5],這些組分功能缺失的突變體抑制FLC表達(dá),所以導(dǎo)致FRI為背景的植物早花。另外,其中一些因子如染色質(zhì)修飾因子調(diào)控?cái)M南芥基因組很多基因表達(dá)。
第一個(gè)被證實(shí)的FRI行使功能的保守成分是PAF1c復(fù)合體[23-25],它在酵母、植物和人體內(nèi)均高度保守,在轉(zhuǎn)錄過(guò)程中與Pol II結(jié)合。擬南芥PAF1c有6個(gè)亞單位,其功能缺失導(dǎo)致FLC染色質(zhì)組蛋白H3K4三甲基化、H3K36二甲基化和H3K36三甲基化水平降低,并在FRI背景下抑制FLC的表達(dá)[19,23]。另外,PAF1c也是全基因組組蛋白H2B單泛素化所需要的組分[26]。PAF1c本身不具有組蛋白修飾活性,但它為轉(zhuǎn)錄激活和延伸過(guò)程中組蛋白修飾酶活動(dòng)提供平臺(tái)。
COMPASS-like H3K4甲基轉(zhuǎn)移酶復(fù)合體使FLC染色質(zhì)H3K4三甲基化水平升高,從而 激活其表達(dá)。擬南芥COMPASS包含4個(gè)保守的核心亞單位,即含有SET結(jié)構(gòu)域的H3K4甲基轉(zhuǎn)移酶和3個(gè)結(jié)構(gòu)性核心組分 (WDR5a、RBL和ASH2R),它們組成一個(gè)穩(wěn)定的核心亞復(fù)合體,為H3K4的甲基化提供結(jié)構(gòu)平臺(tái)[27-28]。2個(gè)H3K4的甲基轉(zhuǎn)移酶ATX1和ATXR3(或者SDG2)和2個(gè)推定的稱做ATX2和 ATXR7的酶使FLC組蛋白H3K4的三甲基化[18,29-32]。ATX1已被證實(shí)與 WDR5亞單位結(jié)合[27],很可能ATX2、ATXR3和ATXR7在FLC染色質(zhì)H3K4的三甲基化過(guò)程中也是以COMPASS為背景而行使其功能。H3K4的三甲基化主要集中在FLC的轉(zhuǎn)錄起始部位[23],這個(gè)過(guò)程需要COMPASS組分的直接參與,并且激活FLC的表達(dá)[27-28]。此外,超表達(dá)ASH2R導(dǎo)致FLC染色質(zhì)H3K4三甲基化水平升高激活FLC轉(zhuǎn)錄[28],這一結(jié)果表明H3K4的三甲基化水平升高足以激活FLC表達(dá)從而抑制植物成花。
除了組蛋白H3K4三甲基化外,依賴FRI途徑的FLC表達(dá)還分別需要EFS催化下的H3K36甲基化和H2B單泛素化復(fù)合體HUB–UBC作用下H2B單泛素化。EFS催化FLC組蛋白H3K36二甲基化和三甲基化[19-20],HUB–UBC復(fù)合體包含E3泛素連接酶HUB1和HUB2、E2泛素結(jié)合酶UBC1和UBC2,其催化全基因組組蛋白H2B的單泛素化,包括FLC位點(diǎn)[33–35]。利用重組的人類染色質(zhì)裝配系統(tǒng),證實(shí)H2B單泛素化通過(guò)組蛋白分子伴侶FACT調(diào)節(jié)H2A-H2B間更換和核小體重組,可以使Pol II聚合酶在基因核小體上順暢移動(dòng)[36]。基因組蛋白H2B單泛素化可能與保守的FACT協(xié)同作用,從而促使FLC轉(zhuǎn)錄延伸,因?yàn)镕ACT組分的突變體SPT16和SSRP1使FLC表達(dá)受到抑制[37]。另外,H2B單泛素化在FLC位點(diǎn)的內(nèi)穩(wěn)定對(duì)FLC的表達(dá)是關(guān)鍵的[26]。FLC染色質(zhì)上H2B在UBP26去泛素化酶作用下的脫泛素對(duì)其表達(dá)也是必需的,表明要么維持組蛋白H2B單泛素化在一個(gè)恰當(dāng)?shù)钠胶馑?,要么其脫泛素化?duì)FLC的轉(zhuǎn)錄都起著決定性的作用。
FRI依賴途徑的FLC激活也需要FLC位點(diǎn)上保守SWR1復(fù)合體 (SWR1c)作用下的組蛋白變體H2A.Z的沉積[38-39]。SWR1c功能缺失阻止FLC染色質(zhì)上 H2A.Z的沉積,抑制其表達(dá)導(dǎo)致早花。SWR1c是ATP酶染色質(zhì)重塑復(fù)合體,其功能是使H2A.Z代替正常的H2A提高擬南芥體內(nèi)FLC的轉(zhuǎn)錄能力[40]。研究結(jié)果顯示進(jìn)一步乙?;揎椀慕M蛋白變體H2A.Z核小體不穩(wěn)定解體促進(jìn)FLC的轉(zhuǎn)錄[41-42]。FLC起始位點(diǎn)H2A.Z的沉積可能是通過(guò)這種機(jī)制促進(jìn)FLC的轉(zhuǎn)錄。
除了染色質(zhì)修飾因子,F(xiàn)RI依賴途徑的FLC激活需要FRL1、FES1 2個(gè)植物特異因子和SUF4、FLX 2個(gè)組分[43–47],這些蛋白與FRI結(jié)合形成一個(gè)假定的轉(zhuǎn)錄增強(qiáng)復(fù)合體FRIc,其中SUF4識(shí)別FLC的近端啟動(dòng)子順式元件[48]。任一FRIc亞單位功能缺失可以抑制FLC表達(dá),導(dǎo)致沒有任何明顯表型變化的早花,表明這一復(fù)合體是FLC特異增強(qiáng)子;FRIc復(fù)合體直接與染色質(zhì)修飾因子EFS和SWR1c結(jié)合[20,48]。另外,F(xiàn)LC位點(diǎn)上WDR5積累需要有功能的FRI,表明FRIc募集COMPASS使之參與到FLC染色質(zhì)H3K4甲基化過(guò)程中[27],同時(shí)這些結(jié)果表明FRIc募集或者吸引很多FLC染色質(zhì)修飾因子至基因位點(diǎn)并激活其表達(dá)。FRI依賴途徑的FLC激活需要許多有效的染色質(zhì)修飾,包括組蛋白變體H2A.Z的沉積、組白乙?;?、組白H3K4三甲基化、H2B單泛素化和H3K36二甲基化和三甲基化。這些FLC的染色質(zhì)修飾存在功能上的相互依賴,如EFS缺失不僅導(dǎo)致以FRI為背景H3K36三甲基化水平的降低,而且也降低了H3K4三甲基化水平[20,49]??傊?,結(jié)合到FLC近端啟動(dòng)子后FRIc募集或吸引很多有活性染色質(zhì)修飾因子,在FLC位點(diǎn)形成有利于FLC表達(dá)的微環(huán)境,從而形成冬性一年生植物的開花習(xí)性。
如上所述,F(xiàn)RIc復(fù)合體功能依賴于PAF1c,酵母中保守的Paf1c與PolⅡ和很多染色質(zhì)修飾因子結(jié)合,包括COMPASS、1個(gè)H3K36甲基轉(zhuǎn)移酶和H2B單泛素化復(fù)合體[50]。在FLC位點(diǎn),PAF1c可能與FRIc直接結(jié)合行使功能,導(dǎo)致其募集或吸引有活性的染色質(zhì)修飾因子,從而提高FLC轉(zhuǎn)錄水平。
FT被長(zhǎng)日照和外界環(huán)境溫度升高誘導(dǎo)在維管組織中特異表達(dá);各種染色質(zhì)修飾因子,包括SWR1c、PRC2、LHP1、REF6H3K27的去甲基化酶和PKDM7BH3K4的去甲基化酶,參與到FT的表達(dá)調(diào)控中。
FT不管在長(zhǎng)日照還是在短日條件下均可被PcG抑制,CLF纏繞在FT染色質(zhì)上,促進(jìn)FT染色質(zhì)的組蛋白H3K27三甲基化積累抑制FT表達(dá)[51]。另外,其他PRC2組分,包括SWN、EMF2和FIE也會(huì)抑制FT的表達(dá)[51-52],表明PRC2-like復(fù)合體使FT染色質(zhì)H3K27積累而抑制其在維管組織中表達(dá)。H3K27三甲基化水平被H3K27去甲基轉(zhuǎn)移酶動(dòng)力調(diào)控,REF6、含JmjC結(jié)構(gòu)域的H3K27去甲基轉(zhuǎn)移酶參與FT染色質(zhì)H3K27去甲基化是其表達(dá)必須的[53]。因此,F(xiàn)T染色質(zhì)的H3K27的三甲基化水平被PRC2和REF6動(dòng)態(tài)控制。如上所述,H3K27三甲基化標(biāo)記已被LHP1所識(shí)別。事實(shí)上,LHP1直接纏繞在FT染色質(zhì)上抑制其在維管組織中表達(dá)[54]。另外,另一個(gè)假定的PRC1-like組分EMF1也抑制FT的表達(dá)[55-56],同時(shí)PRC1-like復(fù)合體與PRC2協(xié)同作用抑制FT表達(dá)從而抑制植物成花。
FT染色質(zhì)有一個(gè)二價(jià)結(jié)構(gòu),自發(fā)攜帶有活性H3K4三甲基化標(biāo)記和抑制態(tài)的H3K27三甲基化標(biāo)記[51],PRC2依賴途徑的H3K27三甲基化被抑制但沒有消除,F(xiàn)T染色質(zhì)的H3K4三甲基化處于活化狀態(tài),反之亦然。PRC2功能缺失不僅消除H3K27三甲基化,而且導(dǎo)致FT染色質(zhì)H3K4三甲基化水平增加[51]。組蛋白H3K4二甲基化和三甲基化去甲基轉(zhuǎn)移酶PKDM7B與FT染色質(zhì)結(jié)合,使FT染色質(zhì)H3K4去甲基化抑制其表達(dá)[57–59],PKDM7B功能缺失導(dǎo)致H3K4三甲基化水平升高而H3K27三甲基化水平降低[57-58],因此FT染色質(zhì)上H3K4和H3K27三甲基化具有拮抗作用,它們的相對(duì)水平在FT的表達(dá)調(diào)控中起著關(guān)鍵的作用。
FT的表達(dá)通過(guò)溫感途徑被環(huán)境溫度升高所誘導(dǎo),F(xiàn)T染色質(zhì)上含有H2A.Z的核小體調(diào)節(jié)這一反應(yīng)[60-61],SWR1c作用使組蛋白變體H2A.Z堆積,H2A.Z核小體位于FT起始位點(diǎn)區(qū)域,研究已表明環(huán)境溫度從178℃升高到278℃引起H2A.Z核小體解體,使FT被PolⅡ誘導(dǎo)表達(dá)[61],SWR1c的功能破壞導(dǎo)致溫度不敏感FT表達(dá)增強(qiáng)和早花。
FT在維管組織中特異表達(dá),這一空間調(diào)節(jié)不涉及上述的染色質(zhì)修飾因子,如PcG活性在大多數(shù)組織中普遍存在,其缺失導(dǎo)致FT僅在維管中脫抑制,表明它是FT表達(dá)必須的維管特異因子[52]。因此,F(xiàn)T表達(dá)的空間和環(huán)境調(diào)節(jié)不僅涉及到保守的通用染色質(zhì)修飾因子,也涉及到與FT基因的順式調(diào)節(jié)元件共同行使功能的維管特異因子。這些因素共同調(diào)控FT的表達(dá),導(dǎo)致植物開花。
擬南芥染色質(zhì)修飾調(diào)控成花關(guān)鍵基因FLC和FT的表達(dá),在成花時(shí)間決定中起著決定性的作用,F(xiàn)LC染色質(zhì)修飾涉及到多種保守的染色質(zhì)修飾因子、植物特異因子和lncRNAs,其他發(fā)育基因的調(diào)節(jié)也涉及到染色質(zhì)的修飾。FLC基因在十字花科植物中高度保守,而FT基因在被子植物中作為成花誘導(dǎo)因子其結(jié)構(gòu)和功能均高度保守,在擬南芥中參與FT染色質(zhì)修飾的因子在其他開花植物中也是保守的。因此以擬南芥FT基因調(diào)控為基礎(chǔ)的染色質(zhì)修飾機(jī)制也可能參與到FT相關(guān)基因的調(diào)節(jié)和其他植物的開花時(shí)間控制中,開花時(shí)間對(duì)環(huán)境信號(hào)如溫度和光周期非常敏感,如何使內(nèi)在的染色質(zhì)修飾與外在的環(huán)境條件刺激FLC和FT表達(dá)最終導(dǎo)致成花轉(zhuǎn)變,是一個(gè)值得探討的有趣的領(lǐng)域。
[1]Michaels SD,Amasino R M.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization [J].Plant Cell,2001,13:935-941.
[2]Sheldon C C,Rouse D T,F(xiàn)innegan E,et al.The molecular basis of vernalization:the central role of FLOWERING LOCUS C [J].PNAS,2000,97:3753-3758.
[3]Crevillen P,Dean C.Regulation of the floral repressor gene FLC:the complexity of transcription in a chromatin context[J].Curr Opin Plant Biol,2011,14:38-44.
[4]Kim D H,Doyle M R,Sung S,et al.Vernalization:winter and the timing of flowering in plants[J].Annu Rev Cell Dev Biol,2009,25:277-299.
[5]Amasino R.Seasonal and developmental timing of flowering [J].Plant J,2010,61:1001-1013.
[6]Johanson U,West J,Lister C,et al.Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time[J].Science,2010,290:344-347.
[7]Corbesier L,Vincent C,Jang S,et al.FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis[J].Science,2007,316:1030-1033.
[8]Tamaki S,Matsuo S,Wong H L,et al.Hd3aprotein is a mobile flowering signal in rice[J].Science,2007,316:1033-1036.
[9]Jaeger K E,Wigge P A.FT protein acts as a long-range signal in Arabidopsis [J].Curr Biol,2007,17:1050-1054.
[10]Mathieu J,Warthmann N,Küttner F,et al.Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis[J].Curr Biol,2007,17:1055-1060.
[11]Searle I,He Y,Turck F,et al.The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J].Genes Dev,2006,20:898-912.
[12]Helliwell C A,Wood C C,Robertson M,et al.The Arabidopsis FLC protein interacts directly in vivo with SOC1and FT chromatin and is part of a high-molecular-weight protein complex [J].Plant J,2006,46:183-192.
[13]Li D,Liu C,Shen L,et al.A repressor complex governs the integration of flowering signals in Arabidopsis [J].Dev Cell,2008,15:110-120.
[14]Wigge P A,Kim M C,Jaeger K E,et al.Integration of spatial and temporal information during floral induction in Arabidopsis [J].Science,2005,309:1056-1059.
[15]Abe M,Kobayashi Y,Yamamoto S,et al.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].Science,2005,309:1052-1056.
[16]Henikoff S,Shilatifard A.Histone modification:cause or cog?[J].Trends Genet,2011,27:389-396.
[17]He Y.Control of the transition to flowering by chromatin modifications[J].Mol Plant,2009,2:554-564.
[18]Pien S,F(xiàn)leury D,Mylne J S,et al.ARABIDOPSIS TRITHORAX1dynamically regulates FLOWERING LOCUS C activation via histone H3lysine-4trimethylation [J].Plant Cell,2008,20:580-588.
[19]Xu L,Zhao Z,Dong A,et al.Di-and trimethylation on histone H3lysine 36marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana [J].Mol Cell Biol,2008,28:1348-1360.
[20]Ko J H,Mitina I,Tamada Y,et al.Growth habit determination by the balance of histone methylation activities in Arabidopsis[J].EMBO J,2010,29:3208-3215.
[21]De Lucia F,Crevillen P,Jones A M,et al.A PHD-Polycomb repressive complex 2triggers the epigenetic silencing of FLC during vernalization [J].PNAS,2008,105:16831-16836.
[22]Wood C C,Robertson M,Tanner G,et al.The Arabidopsis thaliana vernalization response requires a Polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3 [J].PNAS,2006,103:14631-14636.
[23]He Y,Doyle M R,Amasino R M,et al.PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive,winter-annual habit in Arabidopsis [J].Genes Dev,2004,18:2774-2784.
[24]Oh S,Zhang H,Ludwig P,et al.A mechanism related to the yeast transcriptional regulator Paf1cis required for expression of the Arabidopsis FLC/MAF MADS box gene family [J].Plant Cell,2004,16:2940-2953.
[25]Yu X,Michaels S D.The Arabidopsis Paf1ccomplex component CDC73participates in the modification of FLOWERING LOCUS C chromatin [J].Plant Physiol,2010,153:1074-1084.
[26]Schmitz R J,Tamada Y,Doyle M R,et al.Histone H2Bdeubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis [J].Plant Physiol,2009,149:1196-1204.
[27]Jiang D,Gu X,He Y,et al.Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis [J].Plant Cell,2009,21:1733-1746.
[28]Jiang D,Kong NC,Gu X,et al.Arabidopsis COMPASS-like complexes mediate histone H3lysine-4trimethylation to control floral transition and plant development[J].PLoS Genet,2011,7:e1001330.
[29]Tamada Y,Yun J Y,Woo S C,et al.ARABIDOPSIS TRITHORAX-RELATED7is required for methylation of lysine 4of histone H3and for transcriptional activation of FLOWERING LOCUS C [J].Plant Cell,2009,21:3257-3269.
[30]Berr A,McCallum E J,Ménard R,et al.Arabidopsis SET DOMAIN GROUP2is required for H3K4trimethylation and is crucial for both sporophyte and gametophyte development[J].Plant Cell,2010,22:3232-3248.
[31]Yun J Y,Tamada Y,Kang Y E,et al.ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2is required for the winter-annual habit of Arabidopsis thaliana [J].Plant Cell Physiol,2012,53:834-846.
[32]Guo L,Yu Y,Law J A,et al.SET DOMAIN GROUP2is the major histone H3lysine 4trimethyltransferase in Arabidopsis [J].PNAS,2010,107:18557-18562.
[33]Xu L,Ménard R,Berr A,et al.The E2ubiquitin-conjugating enzymes,AtUBC1and AtUBC2,play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana [J].Plant J,2008,57:279-288.
[34]Gu X,Jiang D,Wang Y,et al.Repression of the floral transition via histone H2Bmonoubiquitination [J].Plant J,2009,57:522-533.
[35]Cao Y,Dai Y,Cui S,et al.Histone H2Bmonoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis[J].Plant Cell,2008,20:2586-2602.
[36]Pavri R,Zhu B,Li G,et al.Histone H2Bmonoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II[J].Cell,2006,125:703-717.
[37]Lolas I B,Himanen K,Gr?nlund J T,et al.The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2 [J].Plant J,2009,61:686-697.
[38]Deal R B,Topp C N,McKinney E C,et al.Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z [J].Plant Cell,2007,19:74-83.
[39]Choi K,Park C,Lee J,et al.Arabidopsis homologs of components of the SWR1complex regulate flowering and plant development[J].Development,2007,134:1931-1941.
[40]Zilberman D,Coleman-Derr D,Ballinger T,et al.Histone H2A.Z.and DNA methylation are mutually antagonistic chromatin marks[J].Nature,2008,456:125-129.
[41]Millar C B,Xu F,Zhang K,et al.Acetylation of H2A.Z.Lys 14is associated with genome-wide gene activity in yeast [J].Genes Dev,2006,20:711-722.
[42]Billon P,Cote J.Precise deposition of histone H2A.Z.in chromatin for genome expression and maintenance[J].Biochim Biophys Acta,2012,1819:290-302.
[43]Michaels S D,Bezerra I C,Amasino R M,et al.FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis[J].PNAS,2004,101:3281-3285.
[44]Schmitz RJ,Hong L,Michaels S,et al.FRIGIDA-ESSENTIAL 1interacts genetically with FRIGIDA and FRIGIDA-LIKE 1to promote the winter-annual habit of Arabidopsis thaliana [J].Development,2005,132:5471-5478.
[45]Kim S,Choi K,Park C,et al.SUPPRESSOR OF FRIGIDA 4,encoding a C2H2-type zinc finger protein,represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C [J].Plant Cell,2006,18:2985-2998.
[46]Kim S Y,Michaels S D.SUPPRESSOR OF FRI 4encodes a nuclear-localized protein that is required for delayed flowering in winterannual Arabidopsis [J].Development,2006,133:4699-4707.
[47]Andersson C R,Helliwell C A,Bagnall D J,et al.The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression [J].Plant Cell Physiol,2008,49:191-200.
[48]Choi K,Kim J,Hwang H J,et al.The FRIGIDA complex activates transcription of FLC,a strong flowering repressor in Arabidopsis,by recruiting chromatin modification factors[J].Plant Cell,2011,23:289-303.
[49]Kim SY,He Y,Jacob Y,et al.Establishment of the vernalization-responsive,winter-annual habit in Arabidopsis requires a putative histone H3methyl transferase[J].Plant Cell,2005,17:3301-3310.
[50]Jaehning J A.The Paf1complex:platform or player in RNA polymerase II transcription?[J].Biochim Biophys Acta,2010,1799:379-388.
[51]Jiang D,Wang Y,Wang Y,et al.Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2components[J].PLoS ONE,2008,3:e3404.
[52]Farrona S,Thorpe F L,Engelhorn J,et al.Tissue-specific expression of FLOWERING LOCUS T in Arabidopsisis maintained independently of Polycomb group protein repression [J].Plant Cell,2011,23:3204-3214.
[53]Lu F,Cui X,Zhang S,et al.Arabidopsis REF6is a histone H3lysine 27demethylase[J].Nat Genet,2011,43:715-719.
[54]Turck F,Roudier F,F(xiàn)arrona S,et al.Arabidopsis TFL2/LHP1specifically associates with genes marked by trimethylation of histone H3lysine 27 [J].PLoS Genet,2007,3:e86.
[55]Moon Y H,Chen L,Pan R L,et al.EMF genes maintain vegetative development by repressing the flower program in Arabidopsis[J].Plant Cell,2003,15:681-693.
[56]Bratzel F,López-Torrejón G,Koch M,et al.Keeping cell identity in Arabidopsis requires PRC1RING-finger homologs that catalyze H2Amonoubiquitination [J].Curr Biol,2010,20:1853-1859.
[57]Yang W,Jiang D,Jiang J,et al.A plant-specific histone H3lysine 4demethylase represses the floral transition in Arabidopsis[J].Plant J,2010,62:663-673.
[58]Jeong J H,Song H R,Ko J H,et al.Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3lysine 4demethylases in Arabidopsis[J].PLoS ONE,2009,4:e8033.
[59]Lu F,Cui X,Zhang S,et al.JMJ14is an H3K4demethylase regulating flowering time in Arabidopsis [J].Cell Res,2010,20:387-390.
[60]Blázquez M A,Ahn J H,Weigel D,et al.A thermosensory pathway controlling flowering time in Arabidopsis thaliana [J].Nat Genet,2003,33:168-171.
[61]Kumar S V,Wigge P A.H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J].Cell,2010,140:136-147.