(湖州市中心醫(yī)院神經(jīng)內(nèi)科,浙江 湖州 313000)
左乙拉西坦基礎(chǔ)研究進(jìn)展
晏玉奎,王莊*(湖州市中心醫(yī)院神經(jīng)內(nèi)科,浙江 湖州 313000)
目的 介紹新型抗癲癇藥物左乙拉西坦(LEV)基礎(chǔ)動(dòng)物實(shí)驗(yàn)研究方面的進(jìn)展。方法 通過(guò)查閱近年來(lái)的報(bào)道,概括了LEV作用于癲癇動(dòng)物模型的機(jī)制、以及與癲癇耐藥相關(guān)蛋白、腦保護(hù)的關(guān)系。結(jié)果 LEV具有與既往抗癲癇藥物不同的作用機(jī)制,不僅有抗癲癇作用,還具有抑制癲癇源產(chǎn)生和發(fā)展的作用。多數(shù)報(bào)道LEV不是常見(jiàn)耐藥蛋白如P-gp和MRP1/2,MDR1的底物,在難治性癲癇的治療中具有理論基礎(chǔ),同時(shí)LEV在神經(jīng)保護(hù)方面急性期多具積極作用,而在慢性期效果不明顯。結(jié)論 大量動(dòng)物實(shí)驗(yàn)證明LEV具有全新的作用機(jī)制,對(duì)于臨床癲癇的治療具有重要指導(dǎo)意義,但在不同癲癇模型及組織中結(jié)果不盡相同,值得進(jìn)一步探討,為開(kāi)發(fā)新的抗癲癇藥物提供借鑒。
癲癇;左乙拉西坦;基礎(chǔ)實(shí)驗(yàn)
左乙拉西坦(levetiracetam,LEV) 是吡拉西坦的類(lèi)似物,屬于第二代乙酰膽堿激動(dòng)劑[1]。吡拉西坦是臨床常用的改善記憶和認(rèn)知功能的藥物,動(dòng)物實(shí)驗(yàn)證明有微弱的抗抽搐效應(yīng)[2],1992年比利時(shí)UCB公司研究者Gower觀察到吡拉西坦的(S)-乙基對(duì)映異構(gòu)體對(duì)聽(tīng)源性癲癇動(dòng)物模型的抗抽搐效果強(qiáng)于吡拉西坦[3],之后在多種癲癇動(dòng)物模型中也證實(shí)有較強(qiáng)的抗癲癇作用[4],新的抗癲癇藥物L(fēng)EV由此誕生,其化學(xué)名稱(chēng)為(S)-α-乙基-2-氧代-1-吡咯烷乙酰胺。LEV上市后,臨床治療癲癇,因具有廣譜抗癲癇藥(AEDs)的特點(diǎn),其適應(yīng)證及使用人群逐漸擴(kuò)大,目前在全球范圍內(nèi),LEV成功運(yùn)用于添加治療成人及兒童的癲癇部分性發(fā)作或繼發(fā)全面發(fā)作,還可以單藥治療癲癇的部分性發(fā)作或繼發(fā)全面發(fā)作,包括肌陣攣癲癇、青少年肌陣攣癲癇以及其他全面發(fā)作性癲癇[5],特別是在難治性局灶性癲癇發(fā)作方面,近期的一項(xiàng)薈萃分析總結(jié)了11個(gè)臨床試驗(yàn)結(jié)果,共1 861例患者納入研究,受試的成人日劑量在1 000~4 000 mg之間,兒童為60 mg·kg-1·d-1,以發(fā)作頻率減少≥50%為目標(biāo),結(jié)果成人及兒童分別有39%和52%的患者達(dá)標(biāo),而安慰劑組分別為25%和16%,顯示出LEV處理難治性癲癇的優(yōu)勢(shì)[6]。
LEV具有較高的水溶性,具有較理想的藥代動(dòng)力學(xué),口服易吸收,3 h后達(dá)血藥濃度峰值,生物利用度>95%,呈線性藥代動(dòng)力學(xué),增加口服劑量則血藥濃度呈比例增加,其蛋白結(jié)合率小于10%,主要由腎原形排出(93%在48 h內(nèi)排出),成人半衰期為(7±1) h,故2次·d-1服藥,2 d達(dá)到血藥穩(wěn)態(tài)濃度。老年人由于腎臟清除率弱故半衰期增加40%,兒童半衰期為5~6 h。因LEV和代謝產(chǎn)物不抑制肝細(xì)胞色素P450酶系統(tǒng)和葡萄糖醛基轉(zhuǎn)移酶,故與其他藥物相互作用弱[7],這一結(jié)果在癲癇動(dòng)物模型中得到證實(shí),Luszczki[8]處理難治性癲癇時(shí),用LEV分別聯(lián)合卡馬西平,丙戊酸鈉,苯妥英鈉,苯巴比妥,托吡酯,奧卡西平,拉莫三嗪,觀察其抗癲癇效應(yīng),并通過(guò)高效液相色譜法(HPLC)測(cè)定腦內(nèi)各AEDs的濃度,發(fā)現(xiàn)彼此的濃度不受影響。同樣的結(jié)果也在癲癇患者中得到證實(shí),Otoul觀察了187例兒童癲癇,LEV分別聯(lián)合卡馬西平,丙戊酸鈉,托吡酯,拉莫三嗪,LEV添加治療前后分別測(cè)定AEDs的血清濃度,卡馬西平為8.4,8.1 μg·mL-1(變異系數(shù)CV=30%;90% CI:0.909~1.00,n=35),丙戊酸鈉83.8 μg·mL-1,82.5 μg·mL-1(變異系數(shù)CV=38%;90% CI:0.917~ 1.007,n=23),托吡酯7.3 μg·mL-1,7.2 μg·mL-1(變異系數(shù)CV=82%;90% CI:0.900~1.041,n=28),拉莫三嗪8.2 μg·mL-1,7.7 μg·mL-1(變異系數(shù)CV= 62%;90% CI:0.872~1.081,n=22)[9]。
2.1LEV對(duì)癲癇動(dòng)物模型的干預(yù)作用
LEV首先是在聽(tīng)源性癲癇發(fā)現(xiàn)其具有抗抽搐效應(yīng),但后來(lái)發(fā)現(xiàn)對(duì)最大電休克和最大劑量戊四氮所致的急性癲癇模型,LEV缺乏抗抽搐效果,卻對(duì)電點(diǎn)燃和戊四氮點(diǎn)燃的慢性模型有保護(hù)作用,而其他新型AEDs對(duì)急性和慢性模型都具有很顯著的效果[10]。Gibbs[11]等通過(guò)電刺激大鼠穿通纖維-海馬通路2 h,建立急性循環(huán)癲癇持續(xù)狀態(tài)模型self-sustaining status epilepticus(SSSE),模型成功后,分別給予LEV 200,1 000 mg·kg-1以及生理鹽水腹腔注射,在急性期44 h內(nèi)監(jiān)測(cè)皮層腦電圖和發(fā)作行為學(xué)變化,發(fā)現(xiàn)低劑量和高劑量均不能抑制尖棘波的發(fā)放頻率,而且低劑量不能改善發(fā)作行為Racine評(píng)分,但高劑量(1 000 mg·kg-1)則可以顯著減少發(fā)作的程度和頻率,同樣Mazarati[12]的實(shí)驗(yàn)關(guān)于急性癲癇持續(xù)狀態(tài)模型,預(yù)先靜脈用LEV 10 mg·kg-1不能減少發(fā)作,30 mg·kg-1能減輕發(fā)作,50~1 000 mg·kg-1能阻止癲癇持續(xù)狀態(tài)的發(fā)展,在典型的癲癇持續(xù)狀態(tài)時(shí)LEV 200~1 000 mg·kg-1均能終止發(fā)作。而Smedt等建立快速點(diǎn)燃海馬循環(huán)發(fā)作模型(rapid kindling with recurrent hippocampal seizures,RKRHS)[13],腹腔注射LEV(54 mg·kg-1), 1 h后發(fā)現(xiàn)癇樣發(fā)作Racine評(píng)分等級(jí)顯著少于對(duì)照組[(1.67±1.03) s vs (5.0±0) s,P<0.05],電生理指標(biāo)后發(fā)放持續(xù)時(shí)間(after discharge duration,ADD)也顯著少于對(duì)照組[(21.16±5.03) s vs (57.24± 8.16) s,P<0.05],但這種差異隨著時(shí)間的延長(zhǎng)逐漸減弱,2.5 h后LEV組與對(duì)照組沒(méi)有差異(P>0.05),也就是說(shuō)隨著時(shí)間的延長(zhǎng)LEV出現(xiàn)耐藥現(xiàn)象,但是L?scher[14]的研究,關(guān)于杏仁核點(diǎn)燃慢性顳葉癲癇模型,對(duì)于LEV長(zhǎng)期腹腔給藥13,27或54 mg·kg-1,結(jié)果抑制發(fā)作的程度和時(shí)間呈劑量依耐性,而且還發(fā)現(xiàn)在缺乏LEV的情況下持續(xù)刺激杏仁核,大鼠發(fā)作行為學(xué)變化和電生理指標(biāo)仍然顯著低于對(duì)照組,由此提出LEV不僅有抗抽搐效應(yīng),還具有抑制癲癇源產(chǎn)生和發(fā)展的作用,同樣的結(jié)果也被日本學(xué)者Yan所證實(shí)[15],LEV較長(zhǎng)時(shí)間給藥于一種出生后先天自發(fā)性癇樣發(fā)作幼鼠(SER),在出生后的5到8周,LEV腹腔注射每天80 mg·kg-1,發(fā)現(xiàn)在停藥5周后,發(fā)作仍被抑制,在第12周時(shí)發(fā)作也顯著減少,作者認(rèn)為L(zhǎng)EV在鼠體內(nèi)的t1/2只有2~3 h,停藥后所具有的抑制效果表明,LEV不僅有抗抽搐效應(yīng),還具有抑制癲癇源產(chǎn)生和發(fā)展的作用。Glien[16]用匹魯卡品點(diǎn)燃慢性自發(fā)性顳葉癲癇大鼠模型,皮下植入微滲透泵,在開(kāi)始2周注入生理鹽水(給藥前期),第3到4周注入LEV 200 mg·kg-1(給藥期),第5到6周換用皮下非藥物微滲透泵(給藥后期),整個(gè)過(guò)程用視頻監(jiān)測(cè)系統(tǒng)觀察,同時(shí)給藥期間監(jiān)測(cè)血藥濃度均在臨床有效范圍內(nèi),結(jié)果發(fā)作頻次給藥前期為21.1 ±12.4,給藥期為8.1±6.4,給藥后期為24.8±9.7,差異有統(tǒng)計(jì)學(xué)意義,說(shuō)明LEV對(duì)自發(fā)性慢性癲癇大鼠模型也有較好的抗抽搐效果。以上報(bào)道關(guān)于LEV干預(yù)各種急慢性癲癇模型的不同結(jié)果,可能與使用LEV的劑量不同或不同動(dòng)物模型有關(guān),需要進(jìn)一步動(dòng)物實(shí)驗(yàn)研究論證。
2.2LEV的腦保護(hù)作用
癲癇治療目標(biāo)不僅是控制發(fā)作,而且還需要不影響生活質(zhì)量,甚至提高患者的生活質(zhì)量,所以合理選擇AEDs應(yīng)是在控制發(fā)作的基礎(chǔ)上,不影響神經(jīng)心理社會(huì)功能,尤其是對(duì)腦生長(zhǎng)發(fā)育階段的患者?;A(chǔ)與臨床研究顯示許多AEDs根據(jù)自身作用機(jī)制不同具有或多或少的腦保護(hù)作用[17]。Kim[18]以出生后5~7 h的幼鼠為研究對(duì)象,發(fā)現(xiàn)苯巴比妥,苯妥英鈉,丙戊酸鈉誘導(dǎo)幼鼠腦局部神經(jīng)元細(xì)胞程序性死亡,而大劑量的LEV(1 500 mg·kg-1)不會(huì)出現(xiàn)上述情況。Pavone[19]通過(guò)體外實(shí)驗(yàn),觀察AEDs各種濃度對(duì)培養(yǎng)12 d的星型膠質(zhì)細(xì)胞的毒性作用,觀察指標(biāo)主要為L(zhǎng)DH、谷氨酰胺合成酶(GS)、細(xì)胞內(nèi)活性氧成份(ROS)、丙二醛(MDA)、誘導(dǎo)型一氧化氮(iNOS)的濃度變化以及DNA損傷水平、熱休克蛋白70表達(dá),48 h后發(fā)現(xiàn)卡馬西平、奧卡西平、托吡酯無(wú)論高濃度還是低濃度都對(duì)星型膠質(zhì)細(xì)胞有誘導(dǎo)應(yīng)激反應(yīng)作用,而LEV無(wú)論高或低濃度(1,10,50,100 μg·mL-1)都不改變細(xì)胞的代謝水平和誘導(dǎo)細(xì)胞毒性作用。Marini[20]將海人酸(KA)10 mg·kg-1腹腔注射致大鼠顳葉癲癇模型,LEV 50 mg·kg-1干預(yù),通過(guò)測(cè)定腦組織丙二醛、谷胱甘肽水平及IL-1 mRNA含量,發(fā)現(xiàn)急性期24 h內(nèi)LEV可以減少KA介導(dǎo)的組織過(guò)氧化損傷作用,并顯著減少KA介導(dǎo)的海馬CA1區(qū)神經(jīng)元的丟失,說(shuō)明LEV具有腦保護(hù)作用。但是Brandt[21]通過(guò)對(duì)基底節(jié)杏仁核持續(xù)電刺激,建立自發(fā)性再發(fā)作(SRS)大鼠癲癇模型,較長(zhǎng)時(shí)間給藥(8周),發(fā)現(xiàn)癲癇持續(xù)狀態(tài)所致海馬損傷,LEV無(wú)神經(jīng)保護(hù)作用,說(shuō)明不能減少腦損傷后病變的遠(yuǎn)期進(jìn)展。在血管源性損傷的研究中,實(shí)驗(yàn)性蛛網(wǎng)膜下腔出血及閉合性腦損傷的動(dòng)物模型,LEV顯示出神經(jīng)保護(hù)作用[22],而非在體大鼠皮質(zhì)紋狀體缺血性腦片的實(shí)驗(yàn)中,卡馬西平、丙戊酸鈉、托吡酯具有腦保護(hù)作用,而LEV則沒(méi)有[23]。對(duì)于LEV神經(jīng)保護(hù)在急性期報(bào)道多具積極作用,但在慢性期效果不明顯,而且在體與非在體實(shí)驗(yàn)結(jié)果也不盡相同,故需要進(jìn)一步探討。
2.3LEV的作用機(jī)制
LEV與傳統(tǒng)AEDs相比具有全新的抗癲癇機(jī)制。LEV類(lèi)似物[3H]ucb 30889,具有和LEV結(jié)合位點(diǎn)較高的親和力,F(xiàn)uks等[24]用光親和標(biāo)記方法,用放射性自顯影技術(shù)顯示[3H]ucb 30889腦內(nèi)的分布,發(fā)現(xiàn)海馬齒狀回,上丘腦及丘腦核團(tuán),小腦皮層密度較高,而大腦皮層,紋狀體,下丘腦則相對(duì)較少,細(xì)胞、亞細(xì)胞水平研究發(fā)現(xiàn)突觸囊泡密度較高,而神經(jīng)元?jiǎng)t相對(duì)較少,也就是說(shuō)LEV的作用靶點(diǎn)主要是海馬和中樞神經(jīng)系統(tǒng)突觸間隙,而位于突觸間隙的突觸囊泡蛋白SV2A (synaptic vesicle protein 2A)是其發(fā)揮抗癲癇作用的獨(dú)特靶點(diǎn)。Lynch[25]實(shí)驗(yàn)表明腦膜及缺乏SV2A的突觸囊泡不與氚標(biāo)記的LEV衍生物相結(jié)合,即SV2A的存在是LEV與之結(jié)合的必須條件,正常突觸囊泡融合過(guò)程是由可溶性的N-乙基馬來(lái)酰亞胺敏感因子連接物復(fù)合體(Soluble N-ethylmaleimide sensitive fusion protein attachment protein receptors,SNARE)介導(dǎo)的,并激活突觸胞膜以調(diào)節(jié)神經(jīng)遞質(zhì)釋放。Matveeva等[26]在杏仁核點(diǎn)燃大鼠癲癇模型的研究中,發(fā)現(xiàn)海馬部位有7SSNARE復(fù)合物(7SC)持續(xù)性的沉積,這一過(guò)程伴隨著N-乙基馬來(lái)酰亞胺敏感因子(NSF)的消耗和SNARE調(diào)節(jié)器Tomosyn蛋白沉積的增加以及SV2沉積的增加,這和癲癇的產(chǎn)生和發(fā)展相關(guān),同樣的結(jié)果在癲癇患者中被揭示,van Vliet[27]在人類(lèi)難治性顳葉癲癇海馬硬化切除標(biāo)本中,發(fā)現(xiàn)SV2的表達(dá)明顯少于非難治性癲癇患者顳葉和正常顳葉組織,而LEV可以阻止7SC的沉積,增加突觸SV2的含量,糾正神經(jīng)遞質(zhì)釋放,從而達(dá)到抗癲癇的作用,但LEV不影響NSF和Tomosyn,也不影響正常突觸神經(jīng)遞質(zhì)的釋放。LEV其他抗癲癇機(jī)制還包括:治療濃度時(shí)抑制海馬CA1區(qū)錐體細(xì)胞高電壓激活的N型鈣通道[28];阻抑電壓門(mén)控鉀通道延遲興奮性電位的觸發(fā)[29];通過(guò)PKA介導(dǎo)的蛋白磷酸化激活ROMK1通道(鉀通道)促進(jìn)神經(jīng)元靜息膜電位的恢復(fù),抑制興奮性擴(kuò)散[30];同時(shí)還可以部分抑制谷氨酸鹽的興奮性和增加GABA能的抑制效果[31],也有研究發(fā)現(xiàn)LEV作用于GABAA和鈉通道受體發(fā)揮抗抽搐效應(yīng)[32-33]。
耐藥問(wèn)題是臨床治療癲癇的核心問(wèn)題,LEV單藥治療新發(fā)癲癇在中等治療劑量(1 000 mg·d-1)時(shí),發(fā)現(xiàn)有近50%的患者需要更換或添加其他AEDs[34],即有藥物抵抗現(xiàn)象,研究證實(shí)癲癇耐藥與AEDs作用靶區(qū)多藥轉(zhuǎn)運(yùn)蛋白高表達(dá)或其功能增強(qiáng)有關(guān)[35],而傳統(tǒng)AEDs苯巴比妥,苯妥英鈉,卡馬西平,丙戊酸鈉,新型AEDs拉莫三嗪,奧卡西平,非氨酯均為耐藥蛋白的底物[36-38]。基礎(chǔ)研究LEV是否為多藥耐藥蛋白底物各家報(bào)道不一。LEV處理慢性癲癇動(dòng)物模型時(shí),有報(bào)道[15]長(zhǎng)期給藥可以出現(xiàn)耐藥現(xiàn)象。L?scher[39]建立杏仁核點(diǎn)燃大鼠顳葉癲癇模型,在成功后的慢性期,連續(xù)3周給予腹腔注射LEV 108 mg·kg-1(每日3次),在治療早期階段可以顯著提高后發(fā)放電位閾值,從而減少抽搐的頻率及程度,但是隨著治療時(shí)間的延長(zhǎng),LEV抗抽搐效能逐漸降低,說(shuō)明LEV在處理慢性顳葉癲癇模型時(shí),仍有耐藥現(xiàn)象的發(fā)生,為了證明這種推測(cè),Potschka[40]通過(guò)對(duì)大鼠皮質(zhì)層植入微透析探針,腹腔注射LEV(50 mg·kg-1),在先于LEV腹腔注射的30 min,用微透析探針在皮質(zhì)層分別注射P-gp抑制劑維拉帕米和MRP1/2 抑制劑丙磺舒,對(duì)照組局部注射等體積腦脊液,然后透析液取于LEV腹腔注射后30~120 min,各時(shí)間點(diǎn)測(cè)定腦脊液和血漿LEV濃度,發(fā)現(xiàn)實(shí)驗(yàn)組和對(duì)照組沒(méi)有變化,即使用P-gp和MRP1/2抑制劑后,細(xì)胞外液的LEV濃度并沒(méi)有增加,說(shuō)明LEV的濃度不會(huì)被P-gp或MRP抑制,不是耐藥轉(zhuǎn)運(yùn)體的底物而被轉(zhuǎn)運(yùn)。同樣,van Vliet[41]在電刺激致癲癇持續(xù)狀態(tài)大鼠模型5~6個(gè)月后,應(yīng)用連續(xù)微滲透泵法,在慢性階段LEV重復(fù)間斷給藥(2周間隔),然后用氣相色譜法測(cè)定血漿和腦組織勻漿液LEV濃度,結(jié)果LEV能夠完全進(jìn)入腦組織中,并出現(xiàn)劑量依耐性的抑制慢性階段癇性發(fā)作3~4 d,但是爾后抽搐的頻率再次增加,而測(cè)定的LEV血漿濃度和腦內(nèi)LEV水平并未改變,在停止2周給藥后,再次給藥,所有大鼠模型對(duì)LEV又顯示出作用。由此筆者認(rèn)為L(zhǎng)EV起初對(duì)抑制抽搐有效果,但出現(xiàn)耐藥后腦內(nèi)LEV水平正常,這點(diǎn)支持LEV不是多藥耐藥轉(zhuǎn)運(yùn)體的底物,但對(duì)于不能較長(zhǎng)時(shí)間控制癲癇發(fā)作的耐藥性,可能是LEV對(duì)腦組織的一種適應(yīng)而非發(fā)生在血腦屏障這一滲透層面。但是Baltes[42]通過(guò)體外細(xì)胞轉(zhuǎn)染技術(shù),用狗腎臟單層MDCKⅡ細(xì)胞株和豬腎臟LLC-PK1細(xì)胞株轉(zhuǎn)染含有人類(lèi)MDR1、MRP2及鼠mdr1a和mdr1b的cDNA序列,進(jìn)而檢測(cè)AEDs轉(zhuǎn)運(yùn)體的效率,發(fā)現(xiàn)LEV能被鼠P-gp轉(zhuǎn)運(yùn)而不被人類(lèi)P-gp轉(zhuǎn)運(yùn),而且均不被鼠和人類(lèi)MRP2轉(zhuǎn)運(yùn),即LEV不是人類(lèi)MRP2和P-gp的底物,由此提出由于物種不同,多藥轉(zhuǎn)運(yùn)體在難治性癲癇患者血腦屏障過(guò)表達(dá)的說(shuō)法存在質(zhì)疑,這是第一個(gè)直接關(guān)于非在體人類(lèi)多藥轉(zhuǎn)運(yùn)體介導(dǎo)AEDs的研究,但由于存在方法學(xué)的差別,Luna-Tortos認(rèn)為大多數(shù)AEDs由于脂溶性存在高膜通透性,一側(cè)給藥易形成梯度濃度差,造成被動(dòng)擴(kuò)散轉(zhuǎn)運(yùn)而影響轉(zhuǎn)運(yùn)體的研究結(jié)果,通過(guò)技術(shù)改良,用一種膜兩側(cè)平衡溶液傳輸系統(tǒng)(CETA)作為研究平臺(tái),以人類(lèi)MDR1轉(zhuǎn)染LLCPK1單細(xì)胞層作為研究載體,在使用MRPs特異抑制劑MK571后,發(fā)現(xiàn)膜對(duì)側(cè)LEV濃度較對(duì)照組(未使用MK571)有所提高,推斷LEV是人類(lèi)MRPs的底物[43]。以上研究結(jié)果不同,至少說(shuō)明耐藥蛋白—AEDs底物識(shí)別和轉(zhuǎn)運(yùn)系統(tǒng)可能存在物種和不同組織的差別,是否在人類(lèi)難治性癲癇中也存在這種現(xiàn)象尚不能確定,人類(lèi)在體研究多藥轉(zhuǎn)運(yùn)體對(duì)LEV的作用尚未見(jiàn)報(bào)道,也未見(jiàn)到長(zhǎng)期使用LEV的難治性癲癇患者腦內(nèi)多藥轉(zhuǎn)運(yùn)體表達(dá)水平及功能的研究。
綜上所述,LEV由于具有較好的耐受性,有較理想的藥代動(dòng)力學(xué)以及與其他藥物相互作用少等特點(diǎn),廣泛運(yùn)用于癲癇的臨床單藥或多藥聯(lián)合治療。近年來(lái),新型抗癲癇藥物研發(fā)有逐漸增多的趨勢(shì),與傳統(tǒng)抗癲癇藥物比較,在耐受性方面具有較多優(yōu)勢(shì),隨著生物-心理-社會(huì)模式理念的重視,癲癇的治療不僅需要考慮療效,更需要關(guān)注患者的長(zhǎng)期生活質(zhì)量及生存狀態(tài)。諸多的基礎(chǔ)實(shí)驗(yàn)研究表明LEV和其他型抗癲癇藥物有不同的腦內(nèi)作用靶點(diǎn),在難以處理的癲癇以及腦保護(hù)等方面獲益更多。隨著以LEV為代表的新型抗癲癇藥物的研發(fā)使用,總結(jié)新型抗癲癇藥物動(dòng)物基礎(chǔ)實(shí)驗(yàn)的新成果,有利于開(kāi)發(fā)更多不同機(jī)制的抗癲癇藥物投入臨床使用,如提高GABA 能、降低GLU能神經(jīng)傳遞、抑制電壓門(mén)控離子通道和改變細(xì)胞信號(hào)傳導(dǎo)通路等,新型抗癲癇藥物的研發(fā)主要針對(duì)上述靶向蛋白,還可以利用癲癇動(dòng)物模型篩選出新的具有抗驚厥作用的化合物而進(jìn)一步驗(yàn)證,優(yōu)化現(xiàn)有抗癲癇藥物的結(jié)構(gòu),使其具有更好的療效或耐受性,如LEV類(lèi)似物Seletracetam已經(jīng)取得較好的臨床前期試驗(yàn)結(jié)果[44]。
REFERENCES
[1] L?SCHER W, RICHTER A. Piracetam and levetiracetam, two pyrrolidone derivatives, exert antidystonic activity in a hamster model of paroxysmal dystonia [J]. Eur J Pharmacol, 2000, 391(3): 251-254.
[2] L?SCHER W, HONACK D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats [J]. Eur J Pharmacol, 1993, 232(2-3): 147-158.
[3] ROGAWSKI M A. Brivaracetam: a rational drug discovery success story [J]. Br J Pharmacol, 2008, 154(8): 1555–1557.
[4] MATAGNE A, MARGINEANU DG, KENDA B, et al. Anti-convulsive and anti-epileptic properties of brivaracetam (ucb34714), a high-affinity ligand for the synaptic vesicle protein, SV2A [J]. Br J Pharmacol, 2008 , 154(8): 1662-1671.
[5] LYSENG-WILLIAMSON K A. Levetiracetam: a review of its use in epilepsy [J]. Drugs, 2011, 71(4): 489-514.
[6] MBIZVO G K, DIXON P, HUTTON J L, et al. Levetiracetam add-on for drug-resistant focal epilepsy: an updated cochranereview [J]. Cochrane Database Syst Rev, 2012, 9(12): CD001901.
[7] GRUNEWALD R. Levetiracetam in the treatment of idiopathic generalized epilepsies [J]. Epilepsia, 2005, 46(Suppl 9): 154-160.
[8] LUSZCZKI J, ANDRES M, CZUCZWAR P, et al. Pharmacodynamic and pharmacokinetic characterization of interactions between levetiracetam and numerous antiepileptic drugs in the mouse maximal electroshock seizure model: an isobolographic analysis [J]. Epilepsia, 2006, 47(1): 10-20.
[9] OTOUL C, DE SMEDT H, STOCKIS A. Lack of pharmacokinetic interaction of levetiracetam on carbamazepine, valproic acid, topiramate, and lamotrigine in children with epilepsy [J]. Epilepsia, 2007, 48(11): 2111-2115.
[10] KLITGAARD H, MATAGNE A, GOBERT J, et al. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy [J]. Eur J Pharmacol, 1998, 353(2-3): 191-206.
[11] GIBBS J E, WALKER M C, COCK H R. Levetiracetam: antiepileptic properties and protective effects on mitochondrial dysfunction in experimental status epilepticus [J]. Epilepsia, 2006, 47(3): 469-478.
[12] MAZARATI A M, BALDWIN R, KLITGAARD H, et al. Anticonvulsant effects of levetiracetam and levetiracetam–diazepam combinations in experimental status epilepticus [J]. Epilepsy Res, 2004, 58(2-3): 167-174.
[13] SMEDT T D, VONCK K, RAEDT R, et al. Rapid kindling in preclinical anti-epileptic drug development: the effect of levetiracetam [J]. Epilepsy Res, 2005, 67(3): 109-116.
[14] L?SCHER W, HONACK D, RUNDFELDT C. Antiepileptogenic effects of the novel anticonvulsant levetiracetam(ucb l059)in the kindling model of temporal lobe epilepsy [J]. Pharmacol EXP Ther, 1998, 284(2): 474-479.
[15] YAN H D, JI-QUN C, ISHIHARA K, et al. Separation of antiepileptogenic and antiseizure effects of levetiracetam in the spontaneously epileptic rat (SER) [J]. Epilepsia, 2005, 46(8): 1170-1177.
[16] GLIEN M, BRANDT C, POTSCHKA H, et al. Effects of the novel antiepileptic drug levetiracetam on spontaneous recurrent seizures in the rat pilocarpine model of temporal lobe epilepsy [J]. Epilepsia, 2002, 43(4): 350-357.
[17] STêPIE? K, TOMASZEWSKI M, CZUCZWAR S J. Profile of anticonvulsant activity and neuroprotective effects of novel and potential antiepileptic drugs - an update [J]. Pharm Reports, 2005, 57(6): 719-733.
[18] KIM J S, KONDRATYEV A, TOMITA Y, et al. Neurodevelopmental impact of antiepileptic drugs and seizures in the immature brain [J]. Epilepsia, 2007, 48(Suppl 5): 19-26.
[19] PAVONE A, CARDILE V. An in vitro study of new antiepileptic drugs and astrocytes [J]. Epilepsia, 2003, 44(Suppl. 10): 34-39.
[20] MARINI H, COSTA C, PASSANITI M, et al. Levetiracetam protects against kainic acid-induced toxicity [J]. Life Sciences, 2004, 74(10): 1253-1264.
[21] BRANDT C, GLIEN M, GASTENS A M, et al. Prophylactic treatment with levetiracetam after status epilepticus: lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats [J]. Neuropharmacology, 2007, 53(2): 207-221.
[22] WANG H, GAO J, LASSITER T F, et al. Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage [J]. Neurocrit Care, 2006, 5(1): 71-78.
[23] COSTA C, MARTELLA G, PICCONI B, et al. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia [J]. Stroke, 2006, 37(5): 1319-1326.
[24] FUKS B, GILLARD M, MICHEL P, et al. Localization and photoaffinity labelling of the levetiracetam binding site in rat brain and certain cell lines [J]. Eur J Pharmacol, 2003, 478(1): 11-19.
[25] LYNCH B A, LAMBANG N, NOCKA K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam [J]. Proc Natl Acad Sci USA, 2004, 101(26): 9861-9866.
[26] MATVEEVA E A, VANAMAN T C, WHITEHEART S W, et al. Levetiracetam prevents kindling-induced asymmetric accumulation of hippocampal 7S SNARE complexes [J]. Epilepsia, 2008, 9(10): 1749-1758.
[27] VAN VLIET E A, ARONICA E, REDEKER S, et al. Decreased expression of synaptic vesicle protein 2A,the binding site for levetiracetam, during epileptogenesis and chronic epilepsy [J]. Epilepsia, 2009, 50(3): 422-433.
[28] LUKYANETZ E A, SHKRYL V M, KOSTYUK P G. Selective blockade of N-type calcium channels by levetiracetam [J]. Epilepsia, 2002, 43(1): 9-18.
[29] HUANG C W, TSAI J J, HUANG C C, et al. Experimental and simulation studies on the mechanisms of levetiracetam-mediated inhibition of delayed-rectifier potassium current (KV3.1): contribution to the firing of action potentials [J]. J Physiol Pharmacol, 2009, 60(4): 37-47.
[30] LEE C H, LEE C Y, TSAI T S, et al. PKA-mediated phosphorylation is a novel mechanism for levetiracetam, an antiepileptic drug, activating ROMK1 channels [J]. Biochem Pharmacol, 2008, 76(2): 225-235.
[31] UEDA Y, DOI T, NAGATOMO K, et al. Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3injection [J]. Brain Res, 2007, 1151(7): 55-61.
[32] PALMA E, RAGOZZINO D, ANGELANTONIO S D, et al. The antiepileptic drug levetiracetam stabilizes the human epileptic gabaareceptors upon repetitive activation [J]. Epilepsia, 2007, 48(10): 1842-1849.
[33] HANAYA R, KIURA Y, SERIKAWA T, et al. Modulation of abnormal synaptic transmission in hippocampal CA3 neurons of spontaneously epileptic rats (SERs) by levetiracetam [J]. Brain Res Bull, 2011, 86(5-6): 334-339.
[34] STEPHEN L J, KELLY K, PARKER P, et al. Levetiracetam monotherapy-outcomes from an epilepsy clinic [J]. Seizure, 2011, 20(7): 554-557.
[35] REMY S, BECK H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy [J]. Brain, 2006, 129(Pt 1): 18-35.
[36] CLINCKERS R, SMOLDERS I, MEURS A, et al. Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity [J]. J Pharmacol Exp Ther, 2005, 314(2): 725-731.
[37] CERVENY L, PAVEK P, MALAKOVA J, et al. Lack of interactions between breast cancer resistance protein (BCRP/ABCG2) and selected antiepileptic agents [J]. Epilepsia, 2006, 47(3): 461-468.
[38] ANDERSON G D, SHEN D D. Where is the evidence that p-glycoprotein limits brain uptake of antiepileptic drug andcontributes to drug resistance in epilepsy [J]. Epilepsia, 2007, 48(12): 2369-70.
[39] L?SCHER W, HONACK D. Development of tolerance during chronic treatment of kindled rats with the novel antiepileptic drug levetiracetam [J]. Epilepsia, 2000, 41(12): 1499-1506.
[40] POTSCHKA H, BALTES S, LOSCHER W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats [J]. Epilepsy Res, 2004, 58(2-3): 85-91.
[41] VAN VLIET E A, VAN SCHAIK R, EDELBROEK P M, et al. Development of tolerance to levetiracetam in rats with chronic epilepsy [J]. Epilepsia, 2008, 49(7): 1151-1159.
[42] BALTES S, GASTENS A M, FEDROWITZ M, et al. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein [J]. Neuropharmacology, 2007, 52(2): 333-346.
[43] LUNA-TORTOS, FEDROWITZ M, L?SCHER W. Several major antiepileptic drugs are substrates for human P-glycoprotein [J]. Neuropharmacology, 2008, 55(8): 1364-1375.
[44] MATAGNE A, MARGINEANU D G, POTSCHKA H, et al. Profile of the new pyrrolidone derivative seletracetam (ucb 44212) in animal models of epilepsy [J]. Eur J Pharmacol, 2009, 614(1-3): 30-37.
Progress of Levetiracetam Basic Research
YAN Yukui, WANG Zhuang*(Huzhou Central Hospital, Department of Neurology, Huzhou 313000, China)
OBJECTIVE To introduce the progress study of the new antiepileptic drug of levetiracetam in basic animal experiments. METHODS By investigating the international literatures in recent years, we summed up the role of levetiracetam mechanism in epilepsy animal models, and the relationship with epilepsy drug resistance protein, brain protection. RESULTS LEV has different mechanisms with previously antiepileptic drugs, which not only has antiepileptic effects, also has the role of suppressing the generation and development of epilepsy. According to the most reports that LEV is not a substrate of common drug resistance proteins such as P-gp, MRP1/2 and MDR1, in treatment of refractory epilepsy has a theoretical foundation, meanwhile LEV has more neuroprotective in acute phase of epilepsy model, not in the chronic period. COCLUSION A large number of animal experiments show that LEV has a completely new mechanism, for the clinical treatment of epilepsy has important guiding significance, but the results are different in different epilepsy models or organization which needs to be further investigated, to provide a reference for the development of new anti-epileptic drugs.
epilepsy; levetiracetam; basic research
R971.6
A
1007-7693(2013)05-0565-06
2012-09-18
晏玉奎,男,碩士,主治醫(yī)師 Tel: (0572)2023301-2141 E-mail: yanyukuimedical@163.com*
王莊,女,主任醫(yī)師 Tel: (0572)2023301-2131 E-mail: pxnwz@163.com