陳晨,喬曉媛(綜述) 商廣喜,王金桃(審校)
腦卒中通常是指腦梗死等缺血性腦血管事件,其危險因素包括吸煙、酗酒、高血壓、糖尿病、肥胖、高脂血癥等。近年來,炎癥介質(zhì)作為腦卒中的危險因素逐漸為學(xué)界認(rèn)可。腦血管事件發(fā)生后,許多炎癥介質(zhì)參與到腦神經(jīng)元的損傷之中。白細(xì)胞介素(interleukin,IL)是在白細(xì)胞或免疫細(xì)胞間相互作用的淋巴因子,它與血細(xì)胞生長因子同屬細(xì)胞因子,兩者相互協(xié)調(diào)、相互作用,共同完成造血和免疫調(diào)節(jié)功能。IL在傳遞信息,激活與調(diào)節(jié)免疫細(xì)胞,介導(dǎo)T、B細(xì)胞的活化、增殖、分化及炎癥反應(yīng)中起重要作用。IL是炎癥介質(zhì)中較重要的一類[1-3],近10余年的研究表明,IL在腦血管事件中起著重要作用。本文就不同類型的IL及其基因多態(tài)性與腦卒中的關(guān)系進行綜述。
IL-1家族包括3個主要亞型,即IL-1α、IL-1β[2-4]和IL-1受體拮抗劑(receptor antagonist,IL-1Rα)[5-6]。IL-1家族的上述3種同源性蛋白質(zhì)依次由3種基因編碼,即IL-1A、IL-1B和IL-1RN。IL-1β及IL-1α均與腦卒中相關(guān),兩者都是促炎反應(yīng)的主要誘導(dǎo)劑,可改變內(nèi)皮的許多功能,如抑制內(nèi)皮細(xì)胞增殖,誘導(dǎo)內(nèi)皮細(xì)胞表達黏附分子,進而引起單核細(xì)胞和淋巴細(xì)胞的聚集、浸潤,并牢固黏附于內(nèi)皮,同時也刺激內(nèi)皮產(chǎn)生促凝活性物質(zhì)以促進血栓形成。
1.1 IL-1α Luheshi等[7]觀察了大鼠大腦中動脈梗死模型缺血4h后再灌注的IL-1α水平,發(fā)現(xiàn)IL-1α在腦梗死后的炎癥介質(zhì)反應(yīng)中占據(jù)重要地位。Zhao等[8]通過對682例動脈粥樣硬化性腦卒中患者及598例對照進行了單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)研究,發(fā)現(xiàn)IL-1α-889 C/T等位基因可增加動脈粥樣硬化性腦梗死的發(fā)病風(fēng)險(P=0.035)。Dzhulaǐ等[9]觀察了100例腦出血患者血清IL-1α的變化,發(fā)現(xiàn)IL-1α增加25~30倍時,可作為腦出血預(yù)后不良的早期預(yù)警因子。Belfer等[10]選擇了95例動脈粥樣硬化性腦卒中患者及113例對照進行SNP研究,結(jié)果發(fā)現(xiàn)在校正了性別、年齡、種族、高血壓、高膽固醇血癥、糖尿病、吸煙、心臟病等因素后,IL-1α rs2071373 (P=0.031)與降低動脈粥樣硬化性腦梗死相關(guān)。
1.2 IL-1β 大多數(shù)研究認(rèn)為IL-1β與腦卒中密切相關(guān)[7,11-12]。Touzani等[13]給大腦中動脈梗死模型大鼠的腦室注射IL-1β后,發(fā)現(xiàn)梗死體積明顯增大,損傷加重。IL-1β的腦缺血損傷機制可能與以下機制有關(guān):①增加缺血組織興奮性氨基酸的神經(jīng)毒性;②加重腦缺血神經(jīng)細(xì)胞Ca2+超載,加速腦神經(jīng)細(xì)胞損傷;③刺激內(nèi)皮細(xì)胞表達白細(xì)胞黏附因子1、IL-8,促使白細(xì)胞游出血管聚集于缺血腦組織,加重腦缺血損傷;④誘導(dǎo)神經(jīng)元凋亡基因的表達,促進細(xì)胞凋亡,造成缺血后梗死和神經(jīng)功能損害。
1.3 IL-1Rα Worrall等[14]發(fā)現(xiàn),IL-1Rα的2號等位基因是頸動脈粥樣硬化的易感因素,其純合子攜帶者的頸動脈粥樣硬化發(fā)生率遠(yuǎn)高于非攜帶者。Olsson等[15]對腦梗死患者進行了SNP研究,共納入844例患者和668例對照,結(jié)果發(fā)現(xiàn)IL1RN的rs380092位點與腦梗死高度相關(guān)。Pradillo等[16]對大腦中動脈梗死模型大鼠局部注射IL-1Rα,發(fā)現(xiàn)可明顯降低梗死范圍。Greenhalgh等[17]對蛛網(wǎng)膜下腔出血大鼠模型進行觀察發(fā)現(xiàn),IL-1Rα可降低由IL-1介導(dǎo)的炎癥反應(yīng),未來可能用于治療蛛網(wǎng)膜下腔出血。
IL-4是一種多效細(xì)胞因子。粥樣硬化斑塊中存在活化的淋巴細(xì)胞及巨噬細(xì)胞,可分泌IL-4,而后者又可促進脂蛋白代謝,從而加快動脈粥樣硬化的過程[18]。人IL-4基因中存在多個多態(tài)性位點。Zee等[19]報道,IL-4 C582T (即C590T)可作為美國白種人腦梗死的獨立預(yù)測因子。而韓國學(xué)者Park等[20]在腦梗死和腦出血韓國人群進行IL-4(rs2243250,rs2070874)的基因位點檢測,并按年齡進行匹配,發(fā)現(xiàn)韓國人群中IL-4與腦出血相關(guān),但與腦梗死無關(guān)。希臘學(xué)者Marousi等[21]對145例腦梗死患者分別進行了1、3、6個月的隨訪,檢測IL4-589C>T,并匹配了145例性別、年齡相似的健康對照,結(jié)果顯示IL4-589C>T與腦梗死無關(guān),但IL4-589C>T升高可預(yù)測腦卒中再發(fā)。此外,IL-4還可通過上調(diào)金屬蛋白酶-12導(dǎo)致動脈粥樣硬化的發(fā)生[22]。
IL-6主要參加機體的細(xì)胞免疫、炎性反應(yīng)、造血調(diào)控等[23]。IL-6能誘導(dǎo)纖維蛋白原啟動凝血因子,使血管炎癥部位成纖維細(xì)胞增殖,膠原沉積;具有較強的血小板活化因子特性,可通過激活血小板促進血小板聚集,導(dǎo)致血管內(nèi)皮細(xì)胞損害;同時還參與脂質(zhì)代謝,影響膽固醇、低密度脂蛋白的水平[24],與動脈粥樣硬化性疾病密切相關(guān)[25]。機體內(nèi)多種有核細(xì)胞都可產(chǎn)生IL-6,如單核細(xì)胞、B細(xì)胞、T細(xì)胞、成纖維細(xì)胞、內(nèi)皮細(xì)胞、星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞等。此外,多種細(xì)胞因子如IL-1、腫瘤壞死因子-α(TNF-α)、干擾素-?(INF-?)等可誘導(dǎo)IL-6合成。腦組織內(nèi)IL-6的主要生成細(xì)胞可能是星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞,在刺激和病毒感染后均能產(chǎn)生IL-6。IL-6基因位于第7號染色體短臂上,含5個外顯子和4個內(nèi)含子,在基因啟動子區(qū)存在多態(tài)性,這種基因多態(tài)性可影響IL-6基因轉(zhuǎn)錄和表達,并影響IL-6相關(guān)疾病的發(fā)生、發(fā)展和轉(zhuǎn)歸。Belfer等[10]認(rèn)為IL-6 rs1180243(P=0.024)的表達與降低腦卒中發(fā)病相關(guān)。
IL-6主要由神經(jīng)元和小膠質(zhì)細(xì)胞而非星形細(xì)胞表達,這也許與其抗腦缺血損傷及神經(jīng)保護作用有關(guān)。Hoshi等[26]研究表明,無癥狀性腦梗死時IL-6水平亦顯著升高。Chapman等[27]研究發(fā)現(xiàn),實驗大鼠腦梗死后IL-6明顯升高,卒中后4h開始升高,24h達高峰。Yan等[28]發(fā)現(xiàn)腦卒中3周內(nèi)IL-6持續(xù)升高,與卒中具有明顯的相關(guān)性。這些研究均提示我們針對卒中高危人群進行篩查時,可選擇IL-6作為觀測指標(biāo)。
IL-8是一種具有內(nèi)源性白細(xì)胞趨化及活化作用的堿基-肝素結(jié)合性蛋白質(zhì),它具有多細(xì)胞來源,單核細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞、淋巴細(xì)胞、血管內(nèi)皮細(xì)胞等在適當(dāng)因子的刺激后均能產(chǎn)生IL-8。IL-8是中性粒細(xì)胞移行、到達炎癥部位的重要趨化因子?;罨闹行粤<?xì)胞自身也產(chǎn)生IL-8,進一步引起中性粒細(xì)胞聚集,形成炎性反應(yīng)的正反饋。IL-8是否與腦卒中相關(guān)目前學(xué)界仍存在爭議。部分學(xué)者認(rèn)為,腦卒中后IL-8表達增加并促使神經(jīng)元炎性損傷。在缺血再灌注早期,腦脊液和血清中IL-8水平顯著增加,IL-8產(chǎn)生的時間早于腦水腫形成和白細(xì)胞浸潤的時間[29]。而Enquobahrie等[30]對368例腦梗死患者進行檢測,并未發(fā)現(xiàn)IL-8與腦卒中有明顯相關(guān)性。
IL-10又稱為細(xì)胞因子合成抑制因子,為抗炎性細(xì)胞因子之一,是由CD4+輔助性T2細(xì)胞分泌的一種能抑制CD4+輔助性T1細(xì)胞的細(xì)胞因子,具有多種抑制能力。IL-10一方面可抑制炎癥細(xì)胞(如單核細(xì)胞、淋巴細(xì)胞等)的黏附、浸潤,另一方面可抑制各種促炎因子(如IL-2、IL-1β、TNF-α等)的合成和分泌,還可促進IL-1Rα及可溶性IL-4受體(sIL-4R)等抗炎癥因子的表達[31]。IL-10腦缺血保護作用的可能機制是:①在轉(zhuǎn)錄水平抑制細(xì)胞因子和趨化因子的產(chǎn)生;②上調(diào)體內(nèi)細(xì)胞因子拮抗劑如IL-1RA及可溶性p55、p75TNFR的基因表達,從而拮抗IL-1、TNF的促炎作用;③抑制核因子κB、Ras等信號轉(zhuǎn)導(dǎo)通路,從而抑制多種相關(guān)炎性介質(zhì)的產(chǎn)生。
因此,目前認(rèn)為IL-10具有腦卒中后的神經(jīng)保護作用,其機制可能與IL-10的抗炎癥和抗凋亡作用有關(guān)[32]。Yan等[28]發(fā)現(xiàn)腦卒中后1周時IL-10明顯升高。Sultana等[33]對238例腦梗死患者進行了IL-10基因多態(tài)性研究,結(jié)果發(fā)現(xiàn)腦梗死組患者IL-10的-1082 G/G較對照組明顯升高,因此認(rèn)為其可作為腦梗死的獨立危險因素(OR=3.25)。Rodríguez-Yá?ez等[34]對臨床-彌散不匹配的腦卒中患者(NIHSS評分>8分,核磁彌散加權(quán)像<25ml)進行檢測,發(fā)現(xiàn)其IL-10水平明顯升高。Chang等[35]研究發(fā)現(xiàn)135例患者腦卒中后48h內(nèi)的IL-10水平明顯升高,認(rèn)為IL-10可作為預(yù)測腦梗死的獨立危險因素,用于預(yù)測卒中預(yù)后(NIHSS≥12分)及90d內(nèi)的復(fù)發(fā)情況。Nayak等[36]對17例急性腦梗死患者發(fā)病后24、48、72、144h的血清IL-10水平進行檢測,結(jié)果顯示均明顯升高。
IL-18是結(jié)構(gòu)上與IL-1β類似的促炎性細(xì)胞因子。與IL-8一樣,IL-18與腦卒中的相關(guān)性仍備受爭議。Jander等[37]研究發(fā)現(xiàn),大鼠腦缺血后48h采用RT-PCR可檢測到IL-18 mRNA的表達,7~14d達高峰,提示IL-18可能對腦缺血晚期的炎性反應(yīng)有一定調(diào)節(jié)作用,免疫細(xì)胞化學(xué)染色顯示IL-18主要在吞噬性的小膠質(zhì)細(xì)胞和巨噬細(xì)胞中表達。Yang等[38]研究表明,腦卒中7d后血清IL-18水平增高可預(yù)測卒中后6個月內(nèi)抑郁的發(fā)生,但該研究僅對100例住院患者進行了檢測和隨訪,結(jié)論的臨床可靠性尚需大樣本、長時間的流行病學(xué)資料予以佐證。Stott等[39]對266例70~82歲的高齡腦卒中患者進行了IL-18檢測,結(jié)果發(fā)現(xiàn)IL-18與老年卒中并無相關(guān)性,故認(rèn)為其并非腦卒中的危險因素。
綜上所述,IL與腦卒中密切相關(guān),其中一些小樣本試驗已經(jīng)表明,IL不同的基因位點可能預(yù)示卒中的加重或再發(fā)[8,10,15,19,21,28,33,35-36]。誠然,有些研究結(jié)果尚不成熟,尚待進一步研究驗證,比如同為IL-4的研究,美國學(xué)者認(rèn)為IL-4 C582T(即C590T)為獨立的預(yù)測因素[19],而希臘學(xué)者認(rèn)為IL4-589C>T與腦梗死無關(guān)[21],可能與研究方法、人群及病例樣本的差異有關(guān)。因此,進一步深入研究IL基因多態(tài)性與腦卒中的關(guān)系,有助于為腦卒中特別是缺血性腦血管病的防治提供新的思路和方法,有助于流行病學(xué)工作者在進行大樣本人群篩查時及時發(fā)現(xiàn)腦卒中的高危人群,同時也有助于神經(jīng)病學(xué)臨床工作者針對腦卒中的危險因素進行干預(yù)及隨訪。
[1]Denes A, Pinteaux E, Rothwell NJ, et al. Interleukin-1 and stroke:biomarker, harbinger of damage, and therapeutic target[J].Cerebrovasc Dis, 2011, 32(6): 517-527.
[2]An FX. Analysis on the relationship of coronnary heart disease with homocysteine,interleukin-6 and c-reactive protein[J]. Chin J Pract Intern Med, 2009, 29(Suppl 1): 70-74. [安鳳霞. 冠心病與同型半胱氨酸白介素-6 C-反應(yīng)蛋白相關(guān)性研究[J]. 中國實用內(nèi)科雜志, 2009, 29(Suppl 1): 70-74.]
[3]Ye SD, Zhang Y, Cai ZZ. An investigation of polymorphism of interleukin-12B gene +1188(A/C) in patients with chronic hepatitis B virus infection[J]. Med J Chin PLA, 2010, 35(10):1222-1225. [葉松道, 張陽, 蔡振寨. 慢性乙型肝炎患者白細(xì)胞介素12B+1188(A/C)位點基因多態(tài)性分析[J]. 解放軍醫(yī)學(xué)雜志, 2010, 35(10): 1222-1225.]
[4]Banwell V, Sena ES, Macleod MR. Systematic review and stratified meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke[J]. J Stroke Cerebrovasc Dis, 2009, 18(4): 269-276.
[5]Parry-Jones A, Boutin H, Denes A, et al. Interleukin-1 receptor antagonist in animal models of stroke: a fair summing up[J]? J Stroke Cerebrovasc Dis, 2010, 19(6): 512-513.
[6]Lu Q, Sun ZJ. The regulation role of Radix Salivae miltiorrhizae(Danshen) on tumor necrosis factor and interLeukins-1 secretion in ARDS rats alveolar macrophages[J]. Acta Acad Med CPAF,1998, 7(4): 218-221.[盧青, 孫中吉. 丹參對ARDS大鼠肺泡巨噬細(xì)胞分泌腫瘤壞死因子、白介素-1的調(diào)節(jié)作用[J]. 武警醫(yī)學(xué)院學(xué)報, 1998, 7(4): 218-221.]
[7]Luheshi NM, Kovács KJ, Lopez-Castejon G, et al. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues[J]. J Neuroinflammation, 2011, 8(186):1-5.
[8]Zhao J, Wang X, Xu J, et al.Association of inflammatory response gene polymorphism with atherothrombotic stroke in Northern Han Chinese[J]. Acta Biochim Biophys Sin (Shanghai), 2012.[Epub ahead of print]
[9]Dzhulaǐ GS, Pogorel'tseva OA, Sliusar' TA, et al. Stroke-induced nosocomial pneumonia in the acute period of cerebral hemorrhage: clinical pathogenic and age-associated aspects[J].Adv Gerontol, 2012, 25(1): 152-157.
[10]Belfer I, Wu T, Hipp H, et al. Linkage of large-vessel carotid atherosclerotic stroke to inflammatory genes via a systematic screen[J]. Int J Stroke, 2010, 5(3): 145-151.
[11]Ye F, Jin XQ, Chen GH, et al.Polymorphisms of interleukin-1 and interleukin-6 genes on the risk of ischemic stroke in a metaanalysis[J]. Gene, 2012, 499(1): 61-69.
[12]Sieber MW, Claus RA, Witte OW, et al. Attenuated inflammatory response in aged mice brains following stroke[J]. PLoS One,2011, 6(10): e26288.
[13]Touzani O, Boutin H, LeFeuvre RA, et al. Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor[J]. J Neurosci, 2002, 22(1): 38-43.
[14]Worrall BB, Azhar S, Nyquist PA, et al. Interleukin-1 receptor antagonist gene polymorphisms in carotid atherosclerosis[J].Stroke, 2003, 34(3): 790-793.
[15]Olsson S, Holmegaard L, Jood K, et al. Genetic variation within the interleukin-1 gene cluster and ischemic stroke[J]. Stroke,2012, 43(9): 2278-2282.
[16]Pradillo JM, Denes A, Greenhalgh AD, et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats[J]. J Cereb Blood Flow Metab, 2012, 32(9): 1810-1819.
[17]Greenhalgh AD, Brough D, Robinson EM, et al. Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology[J]. Dis Model Mech, 2012, 5(6): 823-833.
[18]Cornicelli JA, Butteiger D, Rateri DL, et al. Interleukin-4 augments acetylated LDL-induced cholesterol esterification in macrophages[J]. J Lipid Res, 2000, 41(3): 376-383.
[19]Zee RY, Cook NR, Cheng S, et al. Polymorphism in the P-selectin and interleukin-4 genes as determinants of stroke: a populationbased, prospective genetic analysis[J]. Hum Mol Genet, 2004,13(4): 389-396.
[20]Park HJ, Kim MJ, Kang SW, et al. Association between interleukin-4 gene polymorphisms and intracerebral haemorrhage in Korean population[J]. Int J Immunogenet,2011, 38(4): 321-325.
[21]Marousi S, Ellul J, Antonacopoulou A, et al. Functional polymorphisms of interleukin 4 and interleukin 10 may predict evolution and functional outcome of an ischaemic stroke[J]. Eur J Neurol, 2011, 18(4): 637-643.
[22]Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability[J]. Arterioscler Thromb Vasc Biol, 2008, 28(12):2108-2114.
[23]Yang MX, Feng K, Zhang HX, et al. Correlation between IL-6 gene polymorphisms and sepsis of Chinese Han population in Henan province[J]. Med J Chin PLA, 2011, 36(1): 71-72. [楊孟選, 馮凱,張紅星, 等. 白細(xì)胞介素6基因多態(tài)性與河南地區(qū)漢族人群膿毒癥的關(guān)系[J]. 解放軍醫(yī)學(xué)雜志, 2011, 36(1): 71-72.]
[24]Alvaro-González LC, Freijo-Guerrero MM, Sádaba-Garay F.Inflammatory mechanisms, arteriosclerosis and ischemic stroke:clinical data and perspectives [J]. Rev Neurol, 2002, 35(5): 452-462.
[25]Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways[J]. Physiol Rev, 2006, 86(2): 515-581.
[26]Hoshi T, Kitagawa K, Yamagami H, et al. Relations of serum high-sensitivity C-reactive protein and interleukin-6 levels with silent brain infarction[J]. Stroke, 2005, 36(4): 768-772.
[27]Chapman KZ, Dale VQ, Dénes A, et al. A rapid and transient peripheral inflammatory response precedes brain inflammation after experimental stroke[J]. J Cereb Blood Flow Metab, 2009,29(11): 1764-1768.
[28]Yan J, Greer JM, McCombe PA. Prolonged elevation of cytokine levels after human acute ischaemic stroke with evidence of individual variability[J]. J Neuroimmunol, 2012, 246(1/2): 78-84.
[29]Grygorczuk S, Pancewicz S, Zajkowska J. Concentrations of macrophage inflammatory proteins MIP-1alpha and MIP-1beta and interleukin 8 (IL-8) in lyme borreliosis[J]. Infection, 2004,32(6): 350-355.
[30]Enquobahrie DA, Smith NL, Bis JC, et al. Cholesterol ester transfer protein, interleukin-8, peroxisome proliferator activator receptor alpha, and Toll-like receptor 4 genetic variations and risk of incident nonfatal myocardial infarction and ischemic stroke[J]. Am J Cardiol, 2008, 101(12): 1683-1688.
[31]DeBer OJ, Vander Wal AC, Beeker AE. Atherosclerosis,inflammation and infection[J]. J Pathol, 2000, 90 (3): 237-243.
[32]Catania A, Lonati C, Sordi A, et al. Detrimental consequences of brain injury on peripheral cells[J]. Brain Behav Immun, 2009,23(7): 877-884.
[33]Sultana S, Kolla VK, Jeedigunta Y, et al. Tumour necrosis factor alpha and interleukin 10 gene polymorphisms and the risk of ischemic stroke in south Indian population[J]. J Genet, 2011,90(2): 361-364.
[34]Rodríguez-Yá?ez M, Sobrino T, Arias S, et al. Early biomarkers of clinical-diffusion mismatch in acute ischemic stroke[J]. Stroke,2011, 42(10): 2813-2818.
[35]Chang LT, Yuen CM, Liou CW, et al. Link between interleukin-10 level and outcome after ischemic stroke[J].Neuroimmunomodulation, 2010, 17(4): 223-228.
[36]Nayak AR, Kashyap RS, Purohit HJ, et al. Evaluation of the inflammatory response in sera from acute ischemic stroke patients by measurement of IL-2 and IL-10[J]. Inflamm Res,2009, 58(10): 687-691.
[37]Jander S, Schroeter M, Stoll G. Interleukin-18 expression after focal ischemia of the rat brain: association with the late-stage inflammatory response[J]. J Cereb Blood Flow Metab, 2002,22(1): 62-70.
[38]Yang L, Zhang Z, Sun D, et al. The serum interleukin-18 is a potential marker for development of post-stroke depression[J].Neurol Res, 2010, 32(4): 340-346.
[39]Stott DJ, Welsh P, Rumley A, et al. Adipocytokines and risk of stroke in older people: a nested case-control study[J]. Int J Epidemiol, 2009, 38(1): 253-261.