李 巍 牛衛(wèi)衛(wèi) 張冬麗
1.河南大學淮河醫(yī)院心電圖室,河南開封 475000;2.河南大學淮河醫(yī)院腦電圖室,河南開封 475000;3.河南大學淮河醫(yī)院婦產(chǎn)科,河南開封 475000
目前有許多化學結(jié)構(gòu)不同的藥物用于治療抑郁癥,但是這些藥物僅對一部分人有效,而且需要服用數(shù)周到數(shù)月,且常伴有很大副作用。過去認為這些抗抑郁藥的藥理作用機制為調(diào)節(jié)5-羥色胺(5-HT)或去甲腎上腺素(NE)在腦內(nèi)的傳遞,這種作用在短時間內(nèi)就可完成,但抗抑郁藥臨床起效延遲的機制至今還不清楚。越來越多的文獻報道抗抑郁藥能夠調(diào)節(jié)腦內(nèi)神經(jīng)營養(yǎng)因子表達水平和海馬內(nèi)神經(jīng)發(fā)生,并且神經(jīng)營養(yǎng)因子在抗抑郁藥治療過程中對神經(jīng)適應(yīng)起重要作用[1]。因此,神經(jīng)營養(yǎng)因子與神經(jīng)發(fā)生可能是抗抑郁藥產(chǎn)生療效的新的作用靶點。
越來越多的研究支持抑郁癥的神經(jīng)營養(yǎng)因子假說。臨床前和臨床研究表明抑郁癥患者死后腦源性神經(jīng)營養(yǎng)因子(BDNF)表達下調(diào)[2],并且不同類型的慢性神經(jīng)緊張動物模型實驗也出現(xiàn)上述變化[1]。還有研究表明向抑郁癥動物模型的海馬內(nèi)注入BDNF 能夠產(chǎn)生抗抑郁效應(yīng)[3]。然而,BDNF 基因缺失鼠或其受體酪氨酸蛋白激酶受體B(TrkB)陰性轉(zhuǎn)基因鼠沒有抑郁癥表現(xiàn)[4-5]。
盡管降低BDNF/TrkB 信號轉(zhuǎn)導不足以產(chǎn)生抑郁癥表現(xiàn),但目前有研究表明降低BDNF表達水平會增加抑郁癥的易患性[6]。給予BDNF 基因缺失型鼠輕微的刺激就能觀察到抑郁癥表現(xiàn),盡管這個刺激單獨存在時并不足以產(chǎn)生抑郁行為[6],表明抑郁癥的發(fā)生與BDNF表達水平有關(guān)。
成年猴子和大鼠遭受短期或長期的精神緊張,海馬內(nèi)神經(jīng)發(fā)生減少[7-8],表明海馬內(nèi)神經(jīng)發(fā)生在抑郁癥的生物學中起重要作用,特別是由精神緊張引發(fā)的海馬內(nèi)神經(jīng)發(fā)生減少可能是抑郁癥事件中一個重要的偶發(fā)因素。還有人提出成熟海馬內(nèi)神經(jīng)發(fā)生的減少和僵化對臨床抑郁癥的發(fā)生和恢復很重要[9]。目前抑郁癥中調(diào)節(jié)神經(jīng)發(fā)生的機制還不清楚。神經(jīng)遞質(zhì)5-HT、糖皮質(zhì)激素和與應(yīng)激有關(guān)的激素可能是調(diào)節(jié)抑郁癥神經(jīng)發(fā)生的潛在因子[10]。免疫細胞釋放的白介素6(IL-6)參與神經(jīng)系統(tǒng)炎癥反應(yīng),最近一項研究顯示IL-6 降低齒類動物海馬內(nèi)神經(jīng)發(fā)生[11]。因此,IL-6可能是調(diào)節(jié)抑郁癥神經(jīng)發(fā)生的又一潛在因子。
神經(jīng)緊張引起的海馬重塑包括齒狀回神經(jīng)發(fā)生減少和CA3 錐體細胞突重塑,海馬重塑與腦內(nèi)神經(jīng)營養(yǎng)因子的作用有關(guān)[12]。BDNF對海馬重塑的確切作用還不清楚,有文獻報道BDNF 基因敲除鼠和TrkB 受體陰性轉(zhuǎn)基因鼠中齒狀回不成熟神經(jīng)元的存活率顯著下降[13]。最近一項研究表明神經(jīng)元祖細胞TrkB 缺失抑制抗抑郁藥的促進新生神經(jīng)元增殖作用[14],表明BDNF-TrkB 復合物影響新生神經(jīng)元的增殖和存活。
血管內(nèi)皮生長因子(VEGF)不僅是抗抑郁藥調(diào)節(jié)的神經(jīng)營養(yǎng)因子[15,24],而且具有促神經(jīng)發(fā)生作用。VEGF/VEGF受體FIK-1 信號增加神經(jīng)元祖細胞增殖[16],刺激海馬神經(jīng)發(fā)生[17],促進軸突外向生長[18]。VEGF可能通過直接促進神經(jīng)元祖細胞的有絲分裂來促進神經(jīng)元細胞的增殖,也可能通過刺激上皮細胞增殖反過來誘導神經(jīng)元細胞分裂[15]??傊@些發(fā)現(xiàn)表明BDNF 和VEGF對海馬新生細胞的增殖和存活不僅有各自的作用,而且作用有重疊。未來對BDNF和VEGF 傳導通路以及這些生長因子的精確神經(jīng)發(fā)生作用的闡明可能有助于研發(fā)對神經(jīng)發(fā)生特定階段起作用的抗抑郁藥。
對抑郁癥復發(fā)患者的臨床研究顯示其邊緣和皮層結(jié)構(gòu)的總?cè)莘e減少,這可能是抑郁癥的病理生理學之一[19];長期給予抗抑郁藥能夠逆轉(zhuǎn)或減少這些改變[20],表明抗抑郁藥對抑郁癥患者具有神經(jīng)營養(yǎng)作用。與健康人相比,抑郁癥自殺者腦內(nèi)BDNF表達下調(diào)[21],而生前服用抗抑郁藥的患者腦內(nèi)BDNF表達水平增加[22]。同時,BDNF表達的增加對抗抑郁藥在行為和細胞上的效應(yīng)起著重要作用[3,5],BDNF 基因缺失鼠或不表達TrkB 受體的轉(zhuǎn)基因鼠拮抗抗抑郁藥的作用[13],這些表明抗抑郁藥的療效需要BDNF 參與。
抗抑郁藥除了增加BDNF的表達,還增加海馬VEGF mRNA 和蛋白的表達[23]。向齒鼠顱內(nèi)注入VEGF后產(chǎn)生抗抑郁藥類似的行為效應(yīng)[24]。此外,長期精神緊張下調(diào)VEGF在海馬內(nèi)的表達[25],少量注入VEGF 受體拮抗劑抑制抗抑郁藥對神經(jīng)發(fā)生的作用[24],這些表明抗抑郁藥的療效同樣需要VEGF的參與。
長期給予抗抑郁藥增加神經(jīng)元增殖細胞的存活,促進新生神經(jīng)元的成熟,增強齒狀回長時程突觸可塑性,阻止或逆轉(zhuǎn)精神緊張誘發(fā)的海馬神經(jīng)發(fā)生下調(diào),這些作用有助于改變抑郁癥患者海馬形態(tài)學的變化[1]。同時,活體內(nèi)檢測神經(jīng)發(fā)生的新方法能夠預測抗抑郁藥對抑郁癥患者神經(jīng)發(fā)生的療效。目前一項研究采用了高分辨率電子計算機X線斷層成像術(shù),它指出活體內(nèi)海馬皮層血容量的改變與神經(jīng)發(fā)生有關(guān)[26]。此外,X 光照射能夠破壞海馬神經(jīng)發(fā)生進而減少運動產(chǎn)生的海馬皮層血容量[26],提示抗抑郁藥和運動增強的認知效應(yīng)需要神經(jīng)發(fā)生。
總之,抗抑郁藥能夠增加神經(jīng)營養(yǎng)因子表達,促進神經(jīng)元祖細胞增殖、存活和成熟,增強齒狀回突觸可塑性以及海馬內(nèi)神經(jīng)發(fā)生。腦內(nèi)神經(jīng)營養(yǎng)因子和海馬內(nèi)神經(jīng)發(fā)生為我們探索中樞神經(jīng)系統(tǒng)的功能和神經(jīng)系統(tǒng)的治療提供了一條新的線索。未來研發(fā)的新的抗抑郁藥的作用靶點可能直接或間接與神經(jīng)營養(yǎng)因子或神經(jīng)發(fā)生有關(guān)。新一代抗抑郁藥可能會促進神經(jīng)元祖細胞的增殖,未成熟神經(jīng)元細胞的存活,并能夠改善神經(jīng)發(fā)生的微環(huán)境。有關(guān)抑郁癥的病原學、神經(jīng)營養(yǎng)因子及神經(jīng)發(fā)生在抗抑郁治療中的作用還有待于進一步研究。
[1]Schmidt HD,Duman RS.The role of neurotrophic factors in adult hippocampal neurogenesis,antidepressant treatments and animal models of depressive-like behavior[J].Behav Pharmacol,2007,18(5-6):391-418.
[2]Sen S,Duman R,Sanacora G.Serum brain-derived neurotrophic factor,depression,and antidepressant medications: meta-analyses and implications[J].Biol Psychiatry,2008,64(6):527-532.
[3]Shirayama Y,Chen AC-H,Nakagawa S,et al.Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression[J].J Neurosci,2010,22(8):3251-3261.
[4]Monteggia LM,Barrot M,Powell CM,et al.Essential role of brainderived neurotrophic factor in adult hippocampal function [J].Proc Natl Acad Sci USA,2011,101(29):10827-10832.
[5]Saarelainen T,Hendolin P,Lucas G,et al.Activation of the TrkB neur otrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects[J].J Neurosci,2012,23(1):349-357.
[6]Duman CH,Schlesinger L,Kodama M,et al.A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment[J].Biol Psychiatry,2007,61(5):661-670.
[7]Gould E,Tanapat P,McEwen BS,et al.Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress[J].Proc Natl Acad Sci USA,2011,95(6):3168-3171.
[8]Pham K,Nacher J,Hof PR,et al.Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus[J].Eur J Neurosci,2010,17(4):879-886.
[9]Jacobs BL,Praag H,Gage FH.Adult brain neurogenesis and psychiatry:a novel theory of depression[J].Mol Psychiatry, 2010,5(3):262-269.
[10]Cameron HA,Gould E.Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus[J].Neuroscience,2012, 61(2):203-209.
[11]Vallieres L,Campbell IL,Gage FH,et al.Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6[J].J Neurosci,2010,22(2):486-492.
[12]Lee J,Duan W,Mattson MP.Evidence that brain-de rived neurotrophic factor is required for basal neurogenesis and mediates,in part,the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice[J].J Neurochem, 2010,82(6):1367-1375.
[13]Sairanen M,Lucas G,Ernfors P,et al.Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover,proliferation,and survival in the adult dentate gyrus[J].J Neurosci,2005,25(5): 1089-1094.
[14]Li Y,Luikart BW,Birnbaum S,et al.TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment[J].Neuron,2008,59(3):399-412.
[15]Newton SS,Collier EF,Hunsberger J,et al.Gene pro?le of electroconvulsive seizures:induction of neurotrophic and angiogenic factors[J].J Neurosci,2011,23(34):10841-10851.
[16]Wada T,Haigh JJ,Ema M,et al.Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes denitive neural stemcell survival[J].J Neurosci,2006,26(25):6803-6812.
[17]Jin K,Zhu Y,Sun Y,et al.Vascular endothelial growth factor(VEGF)stimulates neurogenesis in vitro and in vivo[J].Proc Natl Acad Sci USA,2011,99(18):11946-11950.
[18]Khaibullina AA,Rosenstein JM,Krum JM,et al.Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures[J].Brain Res Dev Brain Res,2010,148(1):59-68.
[19]Campbell S,Mac QG.An update on regional brain volume differences associated with mood disorders[J].Curr Opin Psychiatry,2006,19(1):25-33.
[20]SapolskyRM.Depression,antidepressants,andtheshrinking hippocampus[J].Proc Natl Acad Sci USA,2011,98(22):12320-12322.
[21]Karege F,Vaudan G,Schwald M,et al.Neurotrophin levels in postmortembrains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs[J].Brain Res Mol Brain Res,2005,136(1-2):29-37.
[22]Chen B,Dowlatshahi D,Mac Queen GM,et al.Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication[J].Biol Psychiatry,2011,50(4):260-265.
[23]Warner-Schmidt JL,Duman RS.VEGF as a potential target for therapeutic intervention in depression[J].Curr Opin Pharmacol,2008,8(1):14-19.
[24]Warner-Schmidt JL,Duman RS.VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants[J].Proc Natl Acad Sci USA,2007,104(11):4647-4652.
[25]Heine VM,Zareno J,Maslam S,et al.Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression[J].Eur J Neurosci,2005,21(5):1304-1314.
[26]Pereira AC,Huddleston DE,Brickman AM,et al.An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus[J].Proc Natl Acad Sci USA,2007,104(13):5638-5643.