戴陳新綜述 袁健鄭亞新審校
1.同濟大學(xué)附屬東方醫(yī)院肝臟病科,上海 200120;
2.同濟大學(xué)附屬東方醫(yī)院轉(zhuǎn)化醫(yī)學(xué)平臺,上海 200120
去泛素化酶與腫瘤發(fā)生及發(fā)展關(guān)系的研究進展
戴陳新1綜述 袁健2鄭亞新1審校
1.同濟大學(xué)附屬東方醫(yī)院肝臟病科,上海 200120;
2.同濟大學(xué)附屬東方醫(yī)院轉(zhuǎn)化醫(yī)學(xué)平臺,上海 200120
去泛素化酶具有逆轉(zhuǎn)泛素化的作用,其大多數(shù)研究還保留在分子生物學(xué)領(lǐng)域,在轉(zhuǎn)化醫(yī)學(xué)研究中尚未引起充分的重視。目前研究發(fā)現(xiàn),去泛素化酶的目的蛋白通過各種途徑影響腫瘤的發(fā)生、發(fā)展,如細胞凋亡和自噬、炎性反應(yīng)和腫瘤的關(guān)系、腫瘤缺氧、腫瘤信號通路、細胞周期的調(diào)節(jié)和DNA損傷等?,F(xiàn)就去泛素化酶與腫瘤發(fā)生、發(fā)展的關(guān)系及研究進展作一綜述。
去泛素化;腫瘤;凋亡;信號傳導(dǎo);細胞周期
去泛素化酶是一類數(shù)量眾多的蛋白酶家族,自上個世紀(jì)90年代被確認(rèn)存在后,不僅被發(fā)現(xiàn)在細胞的正常生理活動中發(fā)揮作用,而且被認(rèn)為可能與腫瘤的發(fā)生、發(fā)展有關(guān)。目前已知人類基因能編碼5個家族約80種去泛素化酶[1]。去泛素化酶的目的蛋白眾多,包括酶、轉(zhuǎn)錄因子、信號傳導(dǎo)分子等,有些則是已知的癌基因或抑癌基因的產(chǎn)物[2]。去泛素化酶對泛素化過程不僅有抑制作用,而且可以通過再循環(huán)泛素分子、校對泛素化進程、分解泛素化抑制因子等方式促進泛素化過程[3]。近年來,去泛素化酶與腫瘤相關(guān)的分子機制研究有一些進展,如Yuan等[4]2010年在Cell上發(fā)表了去泛素化酶USP10對p53穩(wěn)定性的調(diào)節(jié)。然而,去泛素化酶數(shù)量眾多,功能涉及細胞的各種生命活動,因此,深入探討去泛素化酶的功能將為研究腫瘤的發(fā)生、發(fā)展提供新的理論依據(jù)。
p53作為一個抑癌基因在誘導(dǎo)細胞凋亡中是必不可少的,而野生型p53的減少也被證實是多種腫瘤發(fā)生、發(fā)展的重要因素。近來的研究表明,多種去泛素化酶在調(diào)節(jié)p53的過程中發(fā)揮作用。Yuan等[4]的研究也發(fā)現(xiàn),USP10通過去泛素化作用可以調(diào)節(jié)p53的穩(wěn)定性,當(dāng)細胞發(fā)生DNA損傷后,部分USP10開始進入細胞核定位,并逆轉(zhuǎn)MDM2誘導(dǎo)的p53的泛素化過程,從而穩(wěn)定p53基因,抑制腫瘤細胞生長。另外,USP22可以特異性的去泛素化SIRT1,而SIRT1可以使p53蛋白乙酰化,降低p53蛋白與DNA結(jié)合的能力,從而阻止其誘導(dǎo)細胞凋亡的作用,因此,USP22通過去泛素化SIRT1從而抑制p53的功能[5]。異常表達的USP22在結(jié)直腸癌[6]、胃癌[7]及小細胞肺癌[8]等惡性腫瘤中有促進腫瘤發(fā)展的作用。Trivigno等[9]研究則發(fā)現(xiàn),USP9X去泛素化穩(wěn)定抗凋亡蛋白Mcl-1,可能與腫瘤放療耐受的機制有關(guān)。而Harris等[10]研究發(fā)現(xiàn),降低USP9X的表達能激活結(jié)腸癌細胞中的凋亡信號通路,并增強5-FU的化療作用。
此外,去泛素化酶在自噬的發(fā)生機制中也有一定的作用。Taillebourg等[11]研究發(fā)現(xiàn),USP36能通過去泛素化作用控制自噬的激活,當(dāng)USP36丟失或變異時,細胞核內(nèi)泛素化蛋白聚集,并通過自噬相關(guān)蛋白p62激活自噬反應(yīng)。Liu等[12]研究則發(fā)現(xiàn),自噬相關(guān)蛋白Beclin 1通過調(diào)節(jié)USP10和USP13的穩(wěn)定性影響細胞內(nèi)p53的水平,進而起到促進自噬、抑制腫瘤的作用。
NF-κB信號通路在聯(lián)系炎性反應(yīng)與腫瘤、調(diào)節(jié)細胞的惡變、增殖、凋亡及侵襲轉(zhuǎn)移方面也有重要的作用。Urbanik等[13]研究發(fā)現(xiàn),下調(diào)去泛素化酶CYLD可以激活NF-κB,由于CYLD可以去除63位賴氨酸相連的多泛素化修飾,導(dǎo)致NF-κB的抑制因子IκB蛋白升高,從而負(fù)性調(diào)節(jié)NF-κB信號通路,這個機制是肝細胞肝癌抗凋亡的一個重要因素。Gautheron等[14]也認(rèn)為,CYLD是聯(lián)系炎性反應(yīng)和腫瘤的新因素。Fan等[15]的研究發(fā)現(xiàn),USP4可以去泛素化轉(zhuǎn)化生長因子β活化激酶1 (TAK1)的63位賴氨酸相連的多泛素化修飾,從而使腫瘤壞死因子(TNF)激活NF-κB的途徑受阻。He等[16]則研究發(fā)現(xiàn),USP2a可以去泛素化腫瘤壞死因子受體相關(guān)蛋白6(TRAF6),從而使IL-1β和病毒誘導(dǎo)NF-κB激活途徑受到抑制。USP4也可通過去泛素化TRAF6負(fù)性調(diào)節(jié)NF-κB信號通路的激活[17],而激活NF-κB信號通路在聯(lián)系炎性反應(yīng)和腫瘤中有重要作用。
缺氧誘導(dǎo)因子HIF-1α在細胞處于缺氧狀態(tài)下發(fā)揮功能的主要轉(zhuǎn)錄因子,具有促進腫瘤發(fā)展的作用[18]。我們之前的研究也表明,肝癌中HIF-1α的表達水平與肝癌病人術(shù)后復(fù)發(fā)和生存有關(guān),并與癌組織中炎性反應(yīng)、血管新生及癌基因密切相關(guān)[19]。Li等[20]研究證實,去泛素化酶USP20(也稱VDU2)等通過去泛素化作用,使已經(jīng)發(fā)生泛素化的HIF-1α逆轉(zhuǎn),進而增加HIF-1α目的基因,如VEGF的轉(zhuǎn)錄。Park等[21]報道了USP20的單克隆和多克隆抗體用于進一步研究USP20在細胞內(nèi)的生物機制。Altun等[22]在宮頸癌細胞中也發(fā)現(xiàn),USP19能作用于缺氧信號通路,阻止HIF-1α的降解,而當(dāng)USP19缺失時,細胞則不能適應(yīng)缺氧微環(huán)境。Flugel等[23]研究發(fā)現(xiàn),HIF-1α可被一種新的方式降解糖原合成酶激酶3(GSK-3)介導(dǎo)通路,而腫瘤細胞中的USP28可以拮抗這條通路,使HIF-1α表達增高,進而促進腫瘤的侵襲和轉(zhuǎn)移。
腫瘤的發(fā)生、發(fā)展與細胞內(nèi)多種信號傳導(dǎo)通路密切相關(guān),如AKT、STAT、mTOR、Smad信號通路等[24]。目前發(fā)現(xiàn),去泛素化酶與這些腫瘤信號通路也存在密切的聯(lián)系。Zhang等[25]發(fā)現(xiàn)肺癌中USP1低表達可以促進AKT的磷酸化激活該信號通路,有可能在肺癌的進展中起著重要作用。Chipumuro等[26]發(fā)現(xiàn),USP22在誘導(dǎo)JAK-STAT信號通路激活目的基因轉(zhuǎn)錄的過程中發(fā)揮作用。Yang等[27]則研究發(fā)現(xiàn),腫瘤信號通路中關(guān)鍵蛋白STAT3通過抑制USP7從而減少內(nèi)源性p53的表達,進而促進結(jié)腸癌的發(fā)展。Agrawal等[28]發(fā)現(xiàn),USP9X可以抑制mTOR的激活。而mTOR信號通路的激活與人類腫瘤密切相關(guān)[29]。Wicks等[30]研究表明,去泛素化酶UCH37可抑制Smad蛋白的泛素化降解,從而促進TGF-β在誘導(dǎo)癌癥發(fā)生中的作用。
細胞周期的異常是惡性腫瘤一個主要特征,針對細胞周期的調(diào)節(jié)也是治療腫瘤的一個重要方法[31]。目前的研究發(fā)現(xiàn),去泛素化酶在調(diào)節(jié)細胞周期的過程中有著重要的意義。Kim等[32]在膀胱癌細胞中發(fā)現(xiàn),USP2a能使細胞周期蛋白Cyclin A1去泛素化,阻止其降解,而Cyclin A1的聚集會加速細胞周期,促進腫瘤細胞增殖、侵襲、轉(zhuǎn)移,并與某些化療藥物耐受機制有關(guān)。
腫瘤細胞中DNA損傷修復(fù)的加強是導(dǎo)致腫瘤發(fā)展惡化和耐藥的重要因素,而去泛素化酶與DNA損傷修復(fù)密切相關(guān)[33]。Zhang等[34]發(fā)現(xiàn),USP22可以去泛素化組蛋白H2A/H2B,使泛素分子從組蛋白中分離,而DNA損傷修復(fù)則需要大量的泛素分子。Zhang等[35]進一步的研究發(fā)現(xiàn),乳腺癌中USP22的升高與淋巴結(jié)轉(zhuǎn)移和預(yù)后有相關(guān)性。此外,Joo等[36]發(fā)現(xiàn),USP12和USP46也具有去泛素化組蛋白H2A/H2B釋放泛素分子的作用。
去泛素化酶擁有多個家族和成員,目前很多研究還局限在生物學(xué)實驗室明確其生化結(jié)構(gòu)與分子作用機制。大量篩選與腫瘤相關(guān)的去泛素化酶,探討其在腫瘤發(fā)生、發(fā)展中的作用,進而研究出有效的治療靶點和藥物,這是轉(zhuǎn)化醫(yī)學(xué)需要解決的課題。隨著對腫瘤分子機制的研究越來越深入,學(xué)者們已經(jīng)發(fā)現(xiàn)去泛素化的抑制和激活有可能成為抗腫瘤治療的一個新的藥物靶點[37]。
[1] CLAGUE M J, COULSON J M, URBé S. Cellular functions of the DUBs [J]. J Cell Sci, 2012, 125(Pt 2): 277-286.
[2] HUSSAIN S, ZHANG Y, GALARDY P J. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, nononcogenes and tumor suppressors [J]. Cell Cycle, 2009, 8(11): 1688-1697.
[3] SOWA M E, BENNETT E J, GYGI S P, et al. Defining the human deubiquitinating enzyme interaction landscape [J]. Cell, 2009, 138(2): 389-403.
[4] YUAN J, LUO K, ZHANG L, et al. USP10 regulates p53 localization and stability by deubiquitinating p53 [J]. Cell, 2010, 140(3): 384-396.
[5] LIN Z, YANG H, KONG Q, et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development [J]. Mol Cell, 2012, 46(4): 484-494.
[6] LIU Y L, YANG Y M, XU H, et al. Aberrant expression of USP22 is associated with liver metastasis and poor prognosis of colorectal cancer [J]. J Surg Oncol, 2011, 103(3): 283-289.
[7] YANG D D, CUI B B, SUN L Y, et al. The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma [J]. Cell Biochem Biophys, 2011, 61(3): 703-710.
[8] HU J, LIU Y L, PIAO S L, et al. Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-smallcell lung cancer [J]. Lung Cancer, 2012, 77(3): 593-599.
[9] TRIVIGNO D, ESSMANN F, HUBER S M, et al. Deubiquitinase USP9x confers radioresistance through stabilization of Mcl-1 [J]. Neoplasia, 2012, 14(10): 893-904.
[10] HARRIS D R, MIMS A, BUNZ F. Genetic disruption of USP9X sensitizes colorectal cancer cells to 5-fluorouracil[J]. Cancer Biol Ther, 2012, 13(13): 1319-1324.
[11] TAILLEBOURG E, GREGOIRE I, VIARGUES P, et al. The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins [J]. Autophagy, 2012, 8(5): 767-779.
[12] LIU J, XIA H, KIM M, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 [J]. Cell, 2011, 147(1): 223-234.
[13] URBANIK T, KOHLER B C, BOGER R J, et al. Downregulation of CYLD as a trigger for NF-kappaB activation and a mechanism of apoptotic resistance in hepatocellular carcinoma cells [J]. Int J Oncol, 2011, 38(1): 121-131.
[14] GAUTHERON J, LUEDDE T. A novel player in inflammation and cancer: The deubiquitinase CYLD controls HCC development [J]. J Hepatol, 2012, 57(5): 937-939.
[15] FAN Y H, YU Y, MAO R F, et al. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation[J]. Cell Death Differ, 2011, 18(10): 1547-1560.
[16] HE X, LI Y, LI C, et al. USP2a negatively regulates IL-1betaand virus-induced NF-κB activation by deubiquitinating TRAF6 [J]. J Mol Cell Biol, 2013, 5(1): 39-47.
[17] ZHOU F, ZHANG X, VAN DAM H, et al. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation [J]. J Biol Chem, 2012, 287(14): 11002-11010.
[18] HU Y, LIU J, HUANG H. Recent agents targeting HIF-1α for cancer therapy [J]. J Cell Biochem, 2013, 114(3): 498-509.
[19] DAI C X, GAO Q, QIU S J, et al. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery [J]. BMC Cancer, 2009, 9: 418.
[20] LI Z, WANG D, MESSING E M, et al. VHL proteininteracting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1α [J]. EMBO Rep, 2005, 6(4): 373-378.
[21] PARK J J, YUN J H, BAEK K H. Polyclonal and monoclonal antibodies specific for ubiquitin-specific protease 20 [J]. Monoclon Antib Immunodiagn Immunother, 2013, 32(3): 193-199.
[22] ALTUN M, ZHAO B, VELASCO K, et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia [J]. J Biol Chem, 2012, 287(3): 1962-1969.
[23] FLUGEL D, GORLACH A, KIETZMANN T. GSK-3β regulates cell growth, migration, and angiogenesis via Fbw7 and USP28-dependent degradation of HIF-1α [J]. Blood, 2012,119(5):1292-1301.
[24] GRANT S. Cotargeting survival signaling pathways in cancer[J]. J Clin Invest, 2008, 118(9): 3003-3006.
[25] ZHANG Z Q, YANG Q H, ZHANG Y Q, et al. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells [J]. J Cancer Res Clin Oncol, 2012, 138(7): 1231-1238.
[26] CHIPUMURO E, HENRIKSEN M A. The ubiquitin hydrolase USP22 contributes to 3'-end processing of JAK-STAT-inducible genes [J]. FASEB J, 2012, 26(2): 842-854.
[27] YANG Z, HUO S J, SHAN Y Z, et al. STAT3 repressed USP7 expression is crucial for colon cancer development [J]. FEBS Lett, 2012, 586(19): 3013-3017.
[28] AGRAWAL P, CHEN Y T, SCHILLING B, et al. Ubiquitinspecific peptidase 9, X-linked (USP9X) modulates activity of mammalian target of rapamycin (mTOR) [J]. J Biol Chem, 2012, 287(25): 21164-21175.
[29] POPULO H, LOPES J M, SOARES P. The mTOR signalling pathway in human cancer [J]. Int J Mol Sci, 2012, 13(2): 1886-1918.
[30] WICKS S J, HAROS K, MAILLARD M, et al. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling [J]. Oncogene, 2005, 24(54): 8080-8084.
[31] DIAZ-MORALLI S, TARRADO-CASTELLARNAU M, MIRANDA A, et al. Targeting cell cycle regulation in cancer therapy [J]. Pharmacol Ther, 2013, 138(2): 255-271.
[32] KIM J, KIM W J, LIU Z, et al. The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer [J]. Cell Cycle, 2012, 11(6): 1123-1130.
[33] CAO J, YAN Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer [J]. Front Oncol, 2012, 2: 26.
[34] ZHANG X Y, PFEIFFER H K, THORNE A W, et al. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A [J]. Cell Cycle, 2008, 7(11): 1522-1524.
[35] ZHANG Y, YAO L, ZHANG X, et al. Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer [J]. J Cancer Res Clin Oncol, 2011, 137(8): 1245-1253.
[36] JOO H Y, JONES A, YANG C, et al. Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46 [J]. J Biol Chem, 2011, 286(9): 7190-7201.
[37] D'ARCY P, BRNJIC S, OLOFSSON M H, et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy[J]. Nat Med, 2011, 17(12): 1636-1640.
Advances in the study of deubiquitinating enzymes in cancer research
DAI Chen-xin, YUAN Jian, ZHENG Ya-xin (1.Department of Liver Disease, East Hospital, Tongji University, Shanghai 200120, China; 2.Research Center for Translational Medicine, East Hospital, Tongji University, Shanghai 200120, China)
ZHENG Ya-xin E-mail: zheng021@yahoo.com
Deubiquitinating enzymes, reversing protein ubiquitination, most of the researches focused on the field of molecular biology. However, it have not yet attracted enough attention in translational medicine research. In fact, target proteins of deubiquitinating enzymes affect the tumor progression through various ways, for example, cell apoptosis and autophagy, the link between inflammation and cancer, tumor hypoxia, signal transduction, cell cycle regulation and DNA damage. This paper reviewed the research progress on the relations between deubiquitinating enzymes and the correlated factors of tumor.
Deubiquitination; Neoplasms; Apoptosis; Signal transduction; Cell cycle
10.3969/j.issn.1007-3969.2013.07.012
R73-37
:A
:1007-3639(2013)07-0547-04
2013-03-01
2013-06-07)
國家自然科學(xué)基金面上項目(No:31270806);國家自然科學(xué)基金青年基金(No:81102011)
鄭亞新 E-mail:zheng021@yahoo.com