成會(huì)朝,范景蓮,盧明園,李鵬飛,田家敏
(中南大學(xué) 粉末冶金國(guó)家重點(diǎn)實(shí)驗(yàn)室, 長(zhǎng)沙 410083)
高強(qiáng)韌Mo-0.1Zr合金的制備、性能及組織
成會(huì)朝,范景蓮,盧明園,李鵬飛,田家敏
(中南大學(xué) 粉末冶金國(guó)家重點(diǎn)實(shí)驗(yàn)室, 長(zhǎng)沙 410083)
采用球磨制備Mo-0.1Zr粉末,經(jīng)壓制成型、預(yù)燒、高溫?zé)Y(jié)和真空熱處理后,制備抗拉強(qiáng)度超過(guò)650 MPa、伸長(zhǎng)率大于30%的高強(qiáng)韌Mo-0.1Zr合金,研究真空熱處理對(duì)合金性能與顯微組織的影響。結(jié)果表明:經(jīng)高溫?zé)Y(jié)后,Mo-0.1Zr合金與純Mo相比性能提高不明顯,斷口形貌呈明顯的沿晶脆性斷裂特征;但經(jīng)真空熱處理后,Mo-0.1Zr合金的性能顯著提高,抗拉強(qiáng)度提高了40%、伸長(zhǎng)率從7.3%提高到31.2%,合金斷口也由沿晶脆性斷裂轉(zhuǎn)變?yōu)榇┚ыg性斷裂,且部分晶粒呈韌性撕裂特征。真空熱處理溫度對(duì)合金性能的影響很大,真空熱處理溫度過(guò)高容易使晶粒長(zhǎng)大,導(dǎo)致性能提高程度下降;而真空熱處理溫度過(guò)低難以起到消除晶體缺陷的作用,對(duì)合金性能提高有限。
Mo-0.1Zr合金;抗拉強(qiáng)度;伸長(zhǎng)率;沿晶斷裂;穿晶斷裂;韌性撕裂
鉬合金具有熔點(diǎn)高、熱膨脹系數(shù)小、耐磨性好、熱導(dǎo)率高和高溫強(qiáng)度高等優(yōu)點(diǎn),是航空航天、國(guó)防軍工等領(lǐng)域一種非常重要的高溫結(jié)構(gòu)材料,常被用作火箭鼻錐、發(fā)動(dòng)機(jī)噴管、飛行器前緣、方向舵、隔熱屏、蜂窩結(jié)構(gòu)及原子反應(yīng)堆屏蔽材料等超高溫部件[1-3]。然而,由于鉬及鉬合金體心立方的本征脆性和間隙氮、氧等原子在晶界的偏聚,鉬合金的塑脆轉(zhuǎn)變溫度較高、室溫脆性較大[4-5]。如果不采用形變強(qiáng)化(鍛造、擠壓或扎制等)和后續(xù)熱處理來(lái)提高合金的塑性,鉬合金的伸長(zhǎng)率通常只有 5%左右[6-7],但形變強(qiáng)化+熱處理又使得合金的制備工藝復(fù)雜、成本明顯增加,且對(duì)于采用粉末冶金方法制備的大多數(shù)零部件,形變強(qiáng)化會(huì)破壞產(chǎn)品形狀和結(jié)構(gòu)。因此,如何從材質(zhì)和工藝上取得突破,不需形變強(qiáng)化就可以使鉬合金具有高強(qiáng)度和塑性,極大限度地推動(dòng)粉末冶金鉬合金的發(fā)展和應(yīng)用,已成為當(dāng)前研究重點(diǎn)[8-10]。
圍繞提高鉬的強(qiáng)度和塑性,國(guó)內(nèi)外科研人員開(kāi)展了較多的研究工作[11-14],并開(kāi)發(fā)展多種體系鉬合金。其中,TZM(Mo-Ti-Zr-C)和ODS合金(稀土氧化物強(qiáng)化鉬合金)分別是固溶強(qiáng)化型和彌散強(qiáng)化型合金的典型代表,其強(qiáng)度較純Mo有了明顯提高,應(yīng)用十分廣泛。然而,這兩種合金如不經(jīng)形變強(qiáng)化和后續(xù)熱處理,其在室溫下的伸長(zhǎng)率通常不超過(guò) 8%。近來(lái),美國(guó)橡樹(shù)嶺國(guó)家實(shí)驗(yàn)室的 MILLER等[15]采用添加微量合金元素Zr、B和C來(lái)降低晶界氧和強(qiáng)化鉬基體含量,在未經(jīng)形變強(qiáng)化和熱處理的情況下合金的抗拉強(qiáng)度達(dá)到544 MPa、伸長(zhǎng)率約為20%,取得較好的效果。但與形變強(qiáng)化態(tài)鉬合金相比,合金的性能(尤其是抗拉強(qiáng)度)還是偏低。為此,本文作者采用微合金化元素Zr對(duì)鉬合金基體進(jìn)行強(qiáng)化,采用粉末冶金方法制備Mo-0.1Zr合金,并研究真空熱處理對(duì)Mo-0.1Zr合金的性能和組織的影響。
按 Mo-0.1Zr%的質(zhì)量分?jǐn)?shù)稱取 Mo粉和 Zr粉,將稱好的粉末在高能球磨機(jī)上球磨混合,球磨過(guò)程采用氬氣保護(hù),球磨轉(zhuǎn)速為200 r/min、球磨時(shí)間為5 h。將球磨混合粉在 300 MPa壓力下模壓成 “工”字形拉伸試樣。拉伸試樣在氫氣保護(hù)下進(jìn)行低溫預(yù)燒,預(yù)燒最終溫度為1 000 ℃,保溫2 h。然后,將預(yù)燒樣在高溫鎢棒燒結(jié)爐中進(jìn)行燒結(jié),燒結(jié)溫度為 1 920℃,燒結(jié)時(shí)間為2 h。最后,將燒結(jié)后的樣品在1 100~1 300 ℃進(jìn)行真空熱處理,真空度≤0.1 Pa。
采用Instron-8802型力學(xué)試驗(yàn)機(jī)測(cè)定拉伸試樣的力學(xué)性能;采用JSM-5600LV型掃描電鏡對(duì)樣品的斷口形貌和微觀組織進(jìn)行分析。
2.1 Mo-0.1Zr合金的燒結(jié)性能與顯微組織
表1所列為純Mo與Mo-0.1Zr合金燒結(jié)后的力學(xué)性能檢測(cè)數(shù)據(jù)。從表1可以看到,純Mo在室溫下的強(qiáng)度較低,脆性也較大(伸長(zhǎng)率只有3.9%),而Mo-0.1Zr合金的抗拉強(qiáng)度和伸長(zhǎng)率相對(duì)較純Mo的都有了一定的提高,這與合金元素Zr的固溶強(qiáng)化和凈化晶界氧有關(guān)系。合金元素Zr在低溫時(shí)為密排六方結(jié)構(gòu),但當(dāng)溫度高于863 ℃時(shí)會(huì)轉(zhuǎn)變?yōu)榕cMo相同的體心立方結(jié)構(gòu),這樣,在燒結(jié)過(guò)程中就可以與Mo晶體中的Mo原子發(fā)生置換固溶,從而對(duì)合金起到固溶強(qiáng)化效果;此外,Zr元素與氧的結(jié)合力強(qiáng)于Mo,在燒結(jié)過(guò)程中會(huì)優(yōu)先與氧反應(yīng),從而對(duì)Mo晶界起到氧凈化作用,因此,Mo-0.1Zr合金的性能優(yōu)于純 Mo的。但總體來(lái)說(shuō),Mo-0.1Zr合金的性能仍然較差,合金的脆性也較大。
表1 純Mo與Mo-0.1Zr合金的力學(xué)性能Table1 Mechanical properties of pure Mo and Mo-0.1Zr alloy
圖1所示為純Mo拉伸斷口的SEM像??梢钥吹?,純Mo拉伸樣斷口基本上是沿晶斷裂,且晶粒之間存在少量孔隙。圖 2所示為Mo-0.1Zr合金拉伸斷口的
圖1 燒結(jié)態(tài)純Mo斷口的SEM像Fig.1 SEM image of fracture of sintered pure Mo
SEM像??梢钥吹?,Mo-0.1Zr合金基本上也是沿晶斷裂,但個(gè)別晶粒出現(xiàn)穿晶斷裂,且晶粒表面存在一些球形小粒子。通過(guò)對(duì)球形小粒子的能譜分析(見(jiàn)圖 3)可知,這些粒子由Mo、Zr和O元素構(gòu)成,說(shuō)明合金元素Zr除部分固溶到Mo基體,對(duì)合金起到固溶強(qiáng)化效果外,還與氧反應(yīng)生成氧化物粒子,對(duì)合金起到凈化晶界氧的效果。
圖2 燒結(jié)態(tài)Mo-0.1Zr合金斷口的SEM像Fig.2 SEM image of fracture of sintered Mo-0.1Zr alloy
圖3 Mo-0.1Zr合金晶粒間二次相粒子的SEM像及EDS分析結(jié)果Fig.3 SEM image (a) and EDS analysis results (b) of particles at grain boundary
2.2 經(jīng)真空熱處理后 Mo-0.1Zr合金的性能與顯微組織
圖4所示為純Mo經(jīng)1 200 ℃真空熱處理后的拉伸應(yīng)力—位移曲線。從拉伸應(yīng)力—位移曲線可知,純Mo的強(qiáng)度較低,脆性較大,在彈性變形階段就發(fā)生了斷裂。圖5所示為Mo-0.1Zr合金經(jīng)1 200 ℃真空熱處理后的拉伸應(yīng)力—位移曲線。從圖 5可以看到,Mo-0.1Zr合金在拉伸過(guò)程中發(fā)生了明顯的屈服和塑性變形,其拉伸位移是純Mo的10倍,抗拉強(qiáng)度也高達(dá)660 MPa,顯示了非常優(yōu)異的強(qiáng)度和韌性。
圖4 經(jīng) 1 200 ℃真空熱處理后純 Mo的拉伸應(yīng)力—位移曲線Fig.4 Stress—displacement curve of pure Mo after vacuum heat treatment at 1 200 ℃
圖 5 經(jīng) 1 200 ℃真空熱處理后 Mo-0.1Zr合金的拉伸應(yīng)力—位移曲線Fig. 5 Stress—displacement curve of Mo-0.1Zr alloy after vacuum heat treatment at 1 200 ℃
表2 1 200 ℃真空熱處理對(duì)純Mo和Mo-0.1Zr合金性能的影響Table2 Effect of vacuum heat treatment at 1 200 ℃ on mechanical properties of pure Mo and Mo-0.1Zr alloy
表2所列為純Mo和Mo-0.1Zr合金經(jīng)1 200 ℃真空熱處理前后的性能變化數(shù)據(jù)。從表2可以看到,經(jīng)真空熱處理后,純Mo的抗拉強(qiáng)度和伸長(zhǎng)率基本上沒(méi)有發(fā)生變化,說(shuō)明真空熱處理對(duì)純Mo性能的影響不大。但經(jīng)真空熱處理后,Mo-0.1Zr合金的抗拉強(qiáng)度和伸長(zhǎng)率都得到了顯著提高,其抗拉強(qiáng)度由475 MPa提高到660 MPa,伸長(zhǎng)率也由7.3%提高到31.2%,強(qiáng)度提高了40%、伸長(zhǎng)率提高了3倍多,說(shuō)明真空熱處理對(duì)Mo-0.1Zr合金性能的提高非常有效。
圖6所示為純Mo經(jīng)1 200 ℃真空熱處理后拉伸斷口的SEM像。在拉伸斷口的中心區(qū)域(見(jiàn)圖6(a)),Mo晶粒大小約為10 μm,基本上也都是沿晶斷裂,這與真空熱處理前的斷口形貌特征一致,但在拉伸斷口的邊緣區(qū)域(見(jiàn)圖 6(b)),尤其是靠近樣品的表面,可以看到一些尺寸約為50 μm的粗大晶粒,且部分粗大晶粒發(fā)生了穿晶脆性斷裂,說(shuō)明經(jīng)1 200 ℃真空熱處理后,純Mo已經(jīng)發(fā)生了再結(jié)晶晶粒長(zhǎng)大。這可能是由于在真空熱處理過(guò)程中,熱量是由樣品表面向內(nèi)傳遞,造成了樣品表面晶粒優(yōu)先開(kāi)始長(zhǎng)大,從而造成拉伸試樣斷口晶粒大小呈方向性分布。
圖6 經(jīng)1 200 ℃真空熱處理后純Mo樣品斷口的SEM像Fig. 6 SEM images of fracture of pure Mo after vacuum heat treating at 1 200 ℃: (a) Center area; (b) Fringe area
圖7 經(jīng)1 200 ℃真空熱處理后Mo-0.1Zr合金斷口的SEM像Fig. 7 SEM images of fracture of Mo-0.1Zr alloy after vacuum heat treatment at 1 200 ℃: (a), (c) Center area; (b), (d) Fringe area
經(jīng)1 200 ℃真空熱處理后,Mo-0.1Zr合金的拉伸試樣斷口呈現(xiàn)明顯的頸縮特征,且斷口中心區(qū)域顏色明顯呈暗灰色。圖7所示為Mo-0.1Zr合金經(jīng)1 200 ℃真空熱處理后拉伸斷口的 SEM 像??梢?jiàn),在拉伸斷口的中心區(qū)域(見(jiàn)圖7(a)),Mo晶粒發(fā)生了明顯變形,呈現(xiàn)明顯的韌窩特征;而在拉伸斷口的邊緣區(qū)域(見(jiàn)圖7(b)),呈現(xiàn)穿晶斷裂特征,但 Mo晶粒并未像純 Mo那樣發(fā)生明顯的再結(jié)晶長(zhǎng)大,說(shuō)明Mo-0.1Zr合金相比純Mo具有更高的再結(jié)晶溫度。雖然Mo-0.1Zr合金沒(méi)有像純Mo那樣發(fā)生明顯的晶粒再結(jié)晶長(zhǎng)大,但邊緣區(qū)域晶粒大于中心區(qū)域晶粒,因而發(fā)生了穿晶斷裂。圖 7(c)和(d)所示分別為 Mo-0.1Zr合金中心區(qū)域和邊緣區(qū)域高倍下的 SEM 像,從兩幅圖中均可看到明顯的晶粒撕裂特征,這與拉伸試樣的頸縮、斷口的韌窩特征一起證實(shí)了 Mo-0.1Zr合金具有較高的強(qiáng)度和韌性。
Mo-0.1Zr合金經(jīng)真空熱處理后性能顯著提高,這與真空熱處理降低晶體缺陷(空位、位錯(cuò))有直接關(guān)系。Mo-0.1Zr合金中由于Zr原子與Mo原子發(fā)生的是置換固溶,當(dāng)Zr原子置換Mo原子時(shí),由于原子半徑差,必然在Mo基體中產(chǎn)生晶格畸變,而這種晶格畸變與原子半徑差直接相關(guān),原子半徑差越大,晶格畸變程度越高,而Mo和Zr的原子半徑差比較大:ΔR=|R(Zr)-R(Mo)|=|2.15-2.01|=0.14(原子半徑因子),當(dāng) Zr原子固溶到Mo晶體時(shí),在產(chǎn)生明顯的固溶強(qiáng)化效果的同時(shí)也引起較大的晶格畸變,而這種較大的晶格畸變也使得晶體內(nèi)的空位、位錯(cuò)等缺陷增多。由于真空熱處理溫度在Mo-0.1Zr合金的再結(jié)晶溫度范圍內(nèi),這樣,在真空熱處理過(guò)程中合金會(huì)發(fā)生回復(fù)和再結(jié)晶,使晶體內(nèi)的位錯(cuò)等缺陷降低,從而使合金的伸長(zhǎng)率成倍增加。純Mo由于沒(méi)有固溶元素引起的晶格畸變,晶體內(nèi)的缺陷較少,因而經(jīng)真空處理后性能變化不大。
2.3 真空熱處理溫度對(duì)Mo-0.1Zr合金性能和顯微組織的影響
圖8和9所示分別為Mo-0.1Zr合金的抗拉強(qiáng)度和伸長(zhǎng)率隨真空熱處理溫度的變化曲線。從圖8可以看到,Mo-0.1Zr合金的抗拉強(qiáng)度在真空熱處理溫度為1 200 ℃時(shí)達(dá)到最高,當(dāng)真空熱處理溫度進(jìn)一步升高時(shí),合金的抗拉強(qiáng)度開(kāi)始下降。從圖 9可以看到,Mo-0.1Zr合金的伸長(zhǎng)率也是在1 200 ℃達(dá)到最大,當(dāng)真空熱處理溫度升高時(shí)合金的伸長(zhǎng)率出現(xiàn)下降。
圖10所示為經(jīng)1 150 ℃真空熱處理后Mo-0.1Zr合金拉伸斷口邊緣區(qū)域的 SEM 像??梢钥吹?,合金的晶粒與真空處理前的相比(見(jiàn)圖2)基本沒(méi)有長(zhǎng)大,斷口仍以沿晶斷裂為主,沒(méi)有發(fā)現(xiàn)韌窩和穿晶撕裂,因而合金的性能相對(duì)較差,但相比真空熱處理前還是有了很大提高。圖11所示為經(jīng)1 300 ℃真空熱處理后Mo-0.1Zr合金拉伸斷口邊緣區(qū)域的SEM像??梢钥吹?,拉伸斷口、邊緣區(qū)域出現(xiàn)了大晶粒的穿晶斷裂,說(shuō)明經(jīng)1 300 ℃真空處理后,個(gè)別晶粒開(kāi)始非均勻長(zhǎng)大,因而Mo-0.1Zr合金的性能隨真空熱處理溫度的進(jìn)一步升高而降低。
圖8 真空熱處理溫度對(duì)Mo-0.1Zr合金抗拉強(qiáng)度的影響Fig. 8 Effect of vacuum heat treatment temperature on tensile strength of Mo-0.1Zr alloy
圖9 真空熱處理溫度對(duì)Mo-0.1Zr合金伸長(zhǎng)率的影響Fig. 9 Effect of vacuum heat treatment temperature on elongation of Mo-0.1Zr alloy
圖10 經(jīng)1 150 ℃真空熱處理后Mo-0.1Zr合金拉伸斷口邊緣區(qū)域的SEM像Fig. 10 SEM image of fringe fracture of Mo-0.1Zr alloy after vacuum heat treatment at 1 150 ℃
圖11 經(jīng)1 300 ℃真空熱處理后Mo-0.1Zr合金拉伸斷口邊緣區(qū)域的SEM像Fig. 11 SEM image of fringe picture of Mo-0.1Zr alloy after vacuum heat treatment at 1 300 ℃
1) 由于合金元素Zr可以固溶到Mo基體和在合金中生成第二相氧化物粒子相,所以,Mo-0.1Zr合金的力學(xué)性能和再結(jié)晶溫度高于純Mo的,但真空熱處理前Mo-0.1Zr合金的強(qiáng)度和伸長(zhǎng)率與純Mo相比優(yōu)勢(shì)不明顯,合金斷口呈現(xiàn)明顯的沿晶脆性斷裂特征。
2) 純Mo經(jīng)1 200 ℃真空熱處理后,晶粒發(fā)生了再結(jié)晶長(zhǎng)大,導(dǎo)致力學(xué)性能下降。而Mo-0.1Zr合金經(jīng)1 200 ℃真空熱處理后,強(qiáng)度和塑性出現(xiàn)峰值,其抗拉強(qiáng)度提高了40%、伸長(zhǎng)率提高了3倍多,合金斷口也由沿晶脆性斷裂轉(zhuǎn)變?yōu)榇┚ыg性斷裂,并呈現(xiàn)明顯的韌窩特征。
3) 真空熱處理溫度對(duì) Mo-0.1Zr合金性能影響很大,溫度過(guò)高,合金發(fā)生再結(jié)晶晶粒長(zhǎng)大,致使性能提高程度降低;而真空處理溫度過(guò)低,難以起到消除晶體缺陷(位錯(cuò)、空位)的目的,也使合金性能提高程度有限。
REFERENCES
[1] COCKERAM B V. The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC),molybdenum-0.5pct titanium-0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum[J]. Materials Science and Engineering A, 2006, 418: 120-136.
[2] 向鐵根. 鉬冶金[M]. 長(zhǎng)沙: 中南大學(xué)出版社, 2002: 8-9.XIANG Tie-gen. Molybdenum metallurgy[M]. Changsha:Central South University Press, 2002: 8-9.
[3] SCHNEIBEL J H, FELDERMAN E J, OHRINER E K.Mechanical properties of ternary molybdenum-rhenium alloys at room temperature and 1 700 K[J]. Scripta Materials, 2008, 59(2):131-134.
[4] HIRAOKA Y, NODA T, OKADA M. Embrittlement of sintered molybdenum predoped with carbon in high temperature oxygen-contaminated helium[J]. Journal of Less-Commmon Metals, 1983, 91: 167-176.
[5] HIRAOKA Y, YOSHIMURA S. Low-temperature tensile behavior of powder-metallurgy Mo-Ti alloys[J]. International Journal of Refractory Metals and Hard Materials, 1994, 12(4):211-216.
[6] 蔡宗玉, 金建民, 陳 樺. TZM鉬合金強(qiáng)化機(jī)理分析[J]. 上海鋼研, 1993, 3: 56-58.CAI Zong-yu, JIN Jian-min, CHEN Hua. Analysis of the strengthening mechanism of TZM molybdenum alloy[J]. Journal of Shanghai Iron and Steel Research, 1993, 3: 56-58.
[7] TAKANORI K, YUTAKA H, SEIJI N, YOSHIHARU Y. Effects of sintering conditions on the properties of sintered molybdenum[C]//Proceedings of 2006 Powder Metallurgy World Congress.Busan: Korean Powder Metallurgy Institute, 2006: 1153-1154.
[8] YOSHIMURA S, HIRAOKA Y. Influence of heating in vacuum on low-temperature fracture behavior of carburized Mo-Ti alloys[J]. International Journal of Refractory Metals and Hard Materials, 1996, 14(5/6): 325-333.
[9] 范景蓮, 成會(huì)朝, 盧明園, 黃伯云, 田家敏. 合金元素 Ti、Zr對(duì)Mo合金性能及顯微組織的影響[J]. 稀有金屬材料與工程,2008, 37(8): 1471-1474.FAN Jing-lian, CHENG Hui-chao, LU Ming-yuan, HUANG Bai-yun, TIAN Jia-min. Effect of alloyed elements Ti, Zr on the property and microstructure of Mo alloy[J]. Rare Metal Materials and Engineering, 2008, 37(8): 1471-1474.
[10] INOUE T, HIRAOKA Y, SUKEDAI E, NAGAE M, TAKADA J.Hardening behavior of dilute Mo-Ti alloys by two-step heat-treatment[J]. International Journal of Refractory Metals and Hard Materials, 2007, 25(2): 138-143.
[11] 盧明園, 范景蓮, 成會(huì)朝, 劉濤, 田家敏, 黃伯云. Ti對(duì)Mo-Ti合金拉伸強(qiáng)度及顯微組織的影響[J]. 中國(guó)有色金屬學(xué)報(bào),2008, 18(3): 409-413.LU Ming-yuan, FAN Jing-lian, CHENG Hui-chao, LIU Tao,TIAN Jia-min, HUANG Bai-yun. Effects of Ti on tensile strength and microstructure of Mo-Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3): 409-413.
[12] KITSUNAI Y, KURISHITA H, KUWABARA T, NARUI M,HASEGAWA M, TAKIDA T, TAKEBE K. Radiation embrittlement behavior of fine-grained molybdenum alloy with 0.2wt%TiC addition[J]. Journal of Nuclear Materials, 2005,346(2/3): 233-243.
[13] 易永鵬, 高積強(qiáng). Y2O3/CeO2復(fù)合強(qiáng)化鉬合金(MYC)絲的研究[J]. 稀有金屬材料科學(xué)與工程, 2005, 34(2): 271-274.YI Yong-peng, GAO Ji-qiang. The study of molybdenum wire doped with Y2O3/CeO2(MYC)[J]. Rare Metal Materials and Engineering, 2005, 34(2): 271-274.
[14] KURISHITA H, KITSUNAI Y, HIRAOKA Y, SHIBAYAMA T,KAYANO H. Development of molybdenum alloy with high toughness at low temperature[J]. Materials Transactions, JIM,1996, 37(1): 89-97.
[15] MILLER M K, KENIK E A, MOUSA M S, RUSSELL K F,BRYHAN A J. Improvement in the ductility of molybdenum alloys due to grain boundary segregation[M]. Scripta Materialia,2002, 46: 299-303.
Preparation, performance and structure of high tenacious Mo-0.1Zr alloy
CHENG Hui-chao, FAN Jing-lian, LU Ming-yuan, LI Peng-fei, TIAN Jia-min
(State Key Laboratory of Powder Metallurgy, Central South University,Changsha 410083, China)
Mo-0.1Zr powder was prepared by ball-milling, then this powder was made into high tenacious alloy with tensile strength above 650 MPa and elongation above 30% after a series of processes including press forming,pre-sintering, high-temperature sintering, and vacuum heat treating. The effects of vacuum heat treatment on properties and microscopic structure of the alloy were investigated. The results show that, after sintering at high temperature, the properties of Mo-0.1Zr alloy have no obvious improvement compared with pure Mo, and its fracture exhibits an obvious characteristic of intergranular brittle rupture. However, after vacuum heat treatment, the performance of Mo-0.1Zr alloy rises obviously, tensile strength increases by 40%, elongation percentage increases from 7.3% to 31.2%, and alloy fracture translates from intergranular brittle rupture to transcytalline ductile rupture. At the same time, parts of the grains exhibit a characteristic of ductile tearing. The significant increase in performance of Mo-0.1Zr alloy after vacuum heat treatment is closely related to the elimination of vacancies and dislocations. However, an excessively high temperature will cause the grain growth, resulting in the decrease of increasing extent of alloy performance; an excessively low vacuum heat treatment temperature has little effect on increasing the alloy performance because it can hardly play a role in eliminating crystal defects.
Mo-0.1Zr alloy; tensile strength; elongation; intergranular rupture; transcytalline rupture; ductile tearing
TG146.4
A
1004-0609(2012)1-0114-07
國(guó)家自然科學(xué)基金創(chuàng)新群體項(xiàng)目(51021063);國(guó)家杰出青年科學(xué)基金資助項(xiàng)目(50925416);教育部博士點(diǎn)基金資助項(xiàng)目(20090162110032)
2010-09-28;
2011-02-20
范景蓮,教授,博士;電話:0731-88836652; E-mail: fjl@mail.csu.edu.cn
(編輯 陳衛(wèi)萍)