劉華麗
(武漢紡織大學(xué)化學(xué)與化工學(xué)院 湖北 武漢 430073)
有色物質(zhì)的過(guò)量排放是目前全球面臨的共同環(huán)境問(wèn)題,因此,從印染和印刷行業(yè)的廢水中去除染料和色素已成為解決上述問(wèn)題的技術(shù)難點(diǎn)。天然產(chǎn)物數(shù)量豐富、種類繁多、結(jié)構(gòu)復(fù)雜多變,其中許多物質(zhì)具有較強(qiáng)的吸附染料和色素的功能,故能據(jù)此開發(fā)與集成印染廢水處理的新技術(shù)。
具有染料吸附功能的天然產(chǎn)物主要為動(dòng)、植物材料與其它固體材料等。動(dòng)物材料包括蛋殼[1]與骨骼[2]等,植物材料包括香蕉、荔枝與希蒙得木的樹干和樹皮[3-4]、草[5]、洋麻纖維[6]、藻類[7]以及木屑[8-9]和稻殼灰[10]等,其它固體材料包括土壤[11]、沸石[12]、顆粒狀活性碳與粉煤灰[13]等,上述物質(zhì)因組分的差異表現(xiàn)出明顯不同的吸附染料的功能。
利用物理化學(xué)方法可基本描述染料吸附過(guò)程的熱力學(xué)與動(dòng)力學(xué)特征,輔之以分析化學(xué)測(cè)試,則能大體解釋吸附過(guò)程的機(jī)理。首先,熵、焓和吉布斯自由能等熱力學(xué)參數(shù)的分析結(jié)果可指示吸附反應(yīng)的性質(zhì)和方向,例如,稻殼灰對(duì)食用靛藍(lán)(IC)染料的吸附與脫脂加州希蒙得木對(duì)亞甲基藍(lán)的吸附反應(yīng)均為自發(fā)過(guò)程[4,10];具體而言,土壤對(duì)剛果紅染料的吸附和用多聚物固定的蛋殼對(duì)活性紅染料的吸附均屬自發(fā)的放熱反應(yīng)[11],而洋麻纖維對(duì)亞甲基藍(lán)的吸附和三毛櫸鋸屑對(duì)廢陽(yáng)離子染料孔雀石綠的吸附均屬自發(fā)的吸熱反應(yīng)[6];其次,吸附的基本過(guò)程與步驟可用動(dòng)力學(xué)模型加以描述,粉煤灰及其合成沸石吸附食用靛藍(lán)的主要機(jī)制為表面吸附與顆粒間的擴(kuò)散作用[13],以剛果紅為對(duì)象的動(dòng)力學(xué)實(shí)驗(yàn)結(jié)果表明,土壤顆粒上表面吸附位點(diǎn)具有非均一性,且吸附過(guò)程并非完全受擴(kuò)散步驟控制[11],另一方面,用多聚物固定的蛋殼能有效吸附活性紅染料,被吸附分子在顆粒間的擴(kuò)散是吸附過(guò)程的限速步驟[1];此外,天然產(chǎn)物的物理性狀與吸附機(jī)制密切相關(guān),就活性碳而言,粉末狀比顆粒態(tài)具有更強(qiáng)的對(duì)染料的吸附速率和能力,其原因在于染料本身的滲透阻力[14];再次,精細(xì)的化學(xué)分析方法可判定吸附劑的關(guān)鍵基團(tuán),從而在微觀層次上揭示吸附過(guò)程的機(jī)理。傅里葉變換紅外光譜顯示,在吸附間胺黃染料的過(guò)程中,荔枝樹皮中的氨基憑借靜電引力吸附染料[3],固定化念珠藻吸附反應(yīng)性染料的主要基團(tuán)則為羥基、氨基、羧基、甲基和亞甲基等[7]。簡(jiǎn)言之,天然產(chǎn)物在水相中吸附染料的過(guò)程可在自然條件下發(fā)生,其效用主要取決于吸附劑的表面性狀與化學(xué)基團(tuán)的特征,而染料自身的分子結(jié)構(gòu)以及由此形成的在吸附劑中的擴(kuò)散能力亦為影響吸附量和相應(yīng)速率的重要因素。反應(yīng)介質(zhì)中的理化條件亦能顯著影響吸附過(guò)程。其中主要的調(diào)控因素包括水溶液中染料的濃度、pH值、溫度、鹽度與接觸時(shí)間等[11,15]。在低 pH(pH=2.0)條件下,香蕉莖桿對(duì)染料并無(wú)吸附作用,而pH值增加時(shí)(pH=4.0-12.0),吸附效能明顯增加[16],而在極度酸性條件下(pH=2),荔枝樹皮可吸收水中絕大部分(97.6%)的間胺黃染料[3]。在研究設(shè)置的溫度范圍內(nèi)(20-50℃),三毛櫸鋸屑均能自發(fā)而有效吸附廢水溶液中陽(yáng)離子染料孔雀石綠[8]。中度空隙的碳材料對(duì)于甲基橙染料的吸附量將隨水溶液中染料的初始濃度和鹽濃度的增加而顯著上升[15]。在時(shí)間序列上,天然產(chǎn)物對(duì)染料的吸附一般具有階段性特征,前期速率較高,中期漸緩,而后期則達(dá)到平衡,例如,盡管染料的初始濃度不同,蛋殼對(duì)于活性紅染料的吸附平衡時(shí)間均為3h[1],而希蒙得木對(duì)于亞甲基藍(lán)的吸附則在40min達(dá)到平衡[4]。簡(jiǎn)言之,天然產(chǎn)物與染料之間的特殊匹配最終決定相關(guān)吸附反應(yīng)的適宜外在條件。
根據(jù)吸附過(guò)程的特定機(jī)制可對(duì)天然材料進(jìn)行適當(dāng)?shù)男揎椗c固定,并將其與相應(yīng)的最佳反應(yīng)條件相耦合,進(jìn)而實(shí)現(xiàn)規(guī)?;脑囼?yàn)與應(yīng)用。多聚吡咯包裹的鋸屑對(duì)于紅色酸性染料的最大吸附在低pH(pH=4)條件下發(fā)生,溫度較高時(shí),吸附量較大,以此為材料的吸附柱可有效去除印染廢水中的染料,經(jīng)稀NaOH溶液處理之后,所吸附的染料得以洗脫,吸附柱可再度使用[9]。固定化草床(柱)能有效吸附印染廢水中的亞甲基藍(lán),利用稀鹽酸亦可洗脫吸附的染料,如此循環(huán)利用6次,其吸附效能僅見(jiàn)極為有限(3.38%)的減少[5]。坡縷石具有多孔內(nèi)部結(jié)構(gòu)和纖維狀外形,故能表現(xiàn)出優(yōu)異的吸附特征,經(jīng)熱處理之后,其結(jié)構(gòu)發(fā)生明顯變化,且能表現(xiàn)出對(duì)水溶液中亞甲基藍(lán)更加有效的吸附力,反應(yīng)過(guò)程對(duì)溫度的適宜性亦更強(qiáng)[17],表面活性劑處理亦可改變其表面性質(zhì),同時(shí)增加染料吸附的效率[18],利用沼氣殘?jiān)a(chǎn)的活性炭能有效吸附印染廢水中的亞甲基藍(lán),吸附過(guò)程符合經(jīng)典的朗格繆爾模型[19]。用檸檬酸對(duì)草進(jìn)行預(yù)處理可使其吸附染料的平衡時(shí)間由40min縮短至20min[5]。從動(dòng)物骨骼制備的活性碳具有更強(qiáng)的吸附酸黃染料的能力,其原因在于經(jīng)過(guò)高溫(>800℃)處理之后,動(dòng)物骨骼表面的功能基團(tuán)(羧基和酮)消失,而多孔狀結(jié)構(gòu)得以出現(xiàn),在表面吸附和顆粒間擴(kuò)散這兩種機(jī)制中,染料更加趨向于前者[2];沸石經(jīng)脫硅作用后,中等空隙增加,吸附亞甲基藍(lán)的效率亦相應(yīng)提高[12]??傊浞职l(fā)掘天然產(chǎn)物的多樣性可大力開發(fā)經(jīng)濟(jì)高效的染料吸附劑,并據(jù)此建立資源節(jié)約型與環(huán)境友好型印染廢水處理技術(shù)體系,從而最終實(shí)現(xiàn)水資源的可持續(xù)利用與紡織工業(yè)的健康發(fā)展。
[1]Abd El-Latif M M,Elkady M F,Ibrahim A.M.,et al.Assessment of the adsorption kinetics,equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads[J].Desalination,2011,278(1-3):412-423.
[2]Bangash F K,Alam S.Removal of acid yellow 34 from aqueous solution by activated charcoal of animal bones[J].Tenside Surfactants Detergents,2006,43(6):299-309.
[3]Shafiq-ur-Rehman,Adnan A,Shahid,S.,et al.Sorption potential of litchi chinensis for aqueous metanil yellow solution[J].Asian Journal of Chemistry,2011,23(9):4183-4185.
[4]Al-Anber Z A,Al-Anber M A,Matouq,M.,et al.Defatted Jojoba for the removal of methylene blue from aqueous solution:Thermodynamic and kinetic studies[J].Desalination,2011,276(1-3):169-174.
[5]Luo F,Chen L H,Ramadan,A.,et al.Biosorption of methylene blue from aqueous solution using lawny grass modified with citric acid[J].Journal of Chemical and Engineering Data,2011,56(8):3392-3399.
[6]Chia C H,Sajab M S,Zakaria,S.,et al.Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution[J].Bioresource Technology,2011,102(15):7237-7243.
[7]Kaushik A,Mona S,Kaushik,C.P.,et al.Biosorption of reactive dye by waste biomass of Nostoc linckia [J].Ecological Engineering,2011,37(10):1589-1594.
[8]Witek-Krowiak A.Analysis of influence of process conditions on kinetics of malachite green biosorption onto beech sawdust[J].Chemical Engineering Journal,2011,171(3):976-985.
[9]Keivani M B,Ansari R,et al.,Delavar,A.F.,Application of polypyrrole coated onto wood sawdust for the removal of carmoisine dye from aqueous solutions [J].Journal of Applied Polymer Science,2011,122(2):804-812.
[10]Mall I D,Lakshmi U R,Srivastava,V.C.,et al.Rice husk ash as an effective adsorbent:Evaluation of adsorptive characteristics for Indigo Carmine dye[J].Journal of Environmental Management,2009,90(2):710-720.
[11]Smaranda C,Gavrilescu M,Bulgariu,D.,et al.Studies on sorption of congo red from aqueous solution onto soil[J].International Journal of Environmental Research,2011,5(1):177-188.
[12]Akgul,M,Karabakan A.Promoted dye adsorption performance over desilicated natural zeolite.Microporous and Mesoporous Materials,2011,145(1-3):157-164.
[13]Fungaro D A,de Carvalho T E M,Magdalena,C.P.,et al.Adsorption of indigo carmine from aqueous solution using coal fly ash and zeolite from fly ash [J].Journal of Radioanalytical and Nuclear Chemistry,2011,289(2):617-626.
[14]Yener J,Kopac T,Dogu,G.,et al.Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon[J].Chemical Engineering Journal,2008,144(3):400-406.
[15]Gupta V K,Mohammadi N,Khani,H.,et al.Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies [J]Journal of Colloid and Interface Science,2011,362(2):457-462.
[16]Hameed B H,Mahmoud D K,Ahmad,A.L.,et al.Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste[J].Journal of Hazardous Materials,2008,158(2-3):499-506.
[17]Zhang G K,Bu X Z,Guo,Y.D.,et al.Thermal modified palygorskite:Preparation,characterization,and application for cationic dye-containing wastewater purification [J].Desalination and Water Treatment,2011,30(1-3):339-347.
[18]Yan Y S,Wang X,Pan,J.M.,et al.Adsorptive removal of 2,6-Dichlorophenol from aqueous solution by surfactant-modified palygorskite sorbents:Equilibrium,kinetics and thermodynamics [J].Adsorption Science&Technology,2011,29(2):185-196.
[19]Yuan X Z,Shi X S,Zeng,S.J.,et al.Activated carbons prepared from biogas residue:characterization and methylene blue adsorption capacity [J].Journal of Chemical Technology and Biotechnology,2011,86(3):361-366.