葉呈敏 黃迪奇
(浙江工業(yè)大學建筑工程學院,浙江杭州 310000)
氣流通過建筑物時,由于建筑物堵塞造成氣流的分離,將會在建筑表面產(chǎn)生渦團以及再附著現(xiàn)象,表面風壓的分布及特性將由來流的流動狀況及流動方向決定。就某一個單體建筑物表面風壓,除受到在起表面氣流狀況以及來流的速度、來流風向角、垂直風速坡面和地面粗糙度影響外,還受到建筑物自身因素影響:表面幾何尺寸(建筑物長度、寬度和高度)、屋面形式(平屋面、雙坡屋面和單坡屋面)等。在工程設(shè)計領(lǐng)域,開展對單棟低矮建筑物風荷載特性的研究,主要是致力于分析不同體形的建筑布局和屋面形式對表面風壓分布規(guī)律的影響,采用風荷載體形系數(shù)的形式提供工程設(shè)計荷載取值參考。而歷次的風災害調(diào)查表明[1],由風災造成的破壞各類房屋,尤其是低矮房屋破壞造成的損失最大,至少占到總損失的50%。我國東南沿海地區(qū)分布著大量普通住房和工商業(yè)用房為主的低矮建筑,尤其是當?shù)厣絽^(qū)的居民住房。同時,該地區(qū)是臺風的多發(fā)地帶,每次臺風過境造成大量的低矮建筑破損、倒塌,嚴重危害到居民生命財產(chǎn)安全。因此,開展對沿海地區(qū)山村低矮建筑的風致響應比較研究具有重大的現(xiàn)實應用意義。
分析山村低矮建筑的風致響應主要從以下兩方面展開:1)整體安全性。山村低矮建筑在總體上受到的風荷載分布和大小是否得到了準確的估計,決定了結(jié)構(gòu)整體抗風的安全性。主要通過考慮風在建筑物表面引起的實際壓力或吸力與來流氣體動壓的比值,即:風壓系數(shù)[2]。2)局部安全性。由于低矮建筑表面風壓分布不同,在局部峰值壓力或吸力作用下是否會導致局部構(gòu)件的失效。以往的大量現(xiàn)場實測和風洞模型試驗的資料證明:低矮建筑主要在其各個表面連接處附近,即在墻體轉(zhuǎn)角、屋檐、屋脊、山墻邊緣等附近,來流會形成一個局部的壓力(吸力)峰值區(qū)域,因此,這部分區(qū)域的面平均風壓系數(shù)通常遠高于該面的整體平均風壓系數(shù),從而在局部區(qū)域形成較大的作用,在臺風作用下極易導致低矮建筑物相應部位構(gòu)件失效,進而可能引發(fā)結(jié)構(gòu)整體破壞。
在工程設(shè)計中廣泛應用兩方程模型中的標準k—ε模型計算建筑物風荷載響應,同時方程計算中,將會采用當?shù)赜嬎愕贸龅耐膭幽芎屯哪芎纳肀硎緶u團粘度[3]。方程通過以相應的微分方程控制表征湍流粘性系數(shù)的兩個特征量,同時增加湍流特征長度標尺l的微分方程,采用以上所有形式相似的微分方程Z,對于靠近建筑物近壁面的計算區(qū)域來說ε最為方便、有效。
三維的非穩(wěn)態(tài)N—S方程可以推導出k,ε的控制方程如下:
本文根據(jù)對沿海地區(qū)山村現(xiàn)有低矮建筑的調(diào)查、整理、歸類,將已有雙坡屋頂?shù)桶ㄖ凑瘴蓓斝问椒譃榈湫蛦螌与p坡屋面建筑和典型兩層雙坡屋頂?shù)慕ㄖ?,并以此建立幾何模型,其中模型一為典型單層雙坡屋面建筑,見圖1,模型二為典型兩層雙坡屋頂建筑,見圖2。
圖1 典型單層雙坡屋面建筑原型以及幾何模型一
圖2 典型兩層雙坡屋頂建筑原型以及幾何模型二
1)入口邊界采用速度進口條件(inlet),給定入口風速與來流方向,入口速度值現(xiàn)場實測值,在5 m高度處為18.5 m/s。
2)由于下游流域設(shè)定足夠長,可以忽略出口對建筑物附近流場的影響,采用壓力出口邊界條件(pressure-outlet),出口壓力設(shè)定為0 Pa。
3)截面壁面設(shè)定為無滑移壁面(wall)。
為保證柯朗(Courant)數(shù)小于5[4],即其中,v為入口速度;Δt為時間步長;Δx為網(wǎng)格最小尺度。網(wǎng)格最小尺度的極小值為D/450,故選定時間步長為0.001 s,模擬時間總長度為10 s。
圖3,圖4給出了0°風向角下計算所得到單層雙坡屋面建筑整體的風壓系數(shù)分布。由圖3可知,在正面來流風力作用下,迎風面受到正風壓。正風壓系數(shù)在迎風面中心部位處最大,最大值達到0.72。等值線以風壓系數(shù)最大處為中心向外擴散,數(shù)值減小。在迎風面邊緣處,等值線梯度較大。由于建筑本身較為低矮,風速隨高度呈現(xiàn)指數(shù)規(guī)律變化對風壓的高度變化影響不顯著。建筑頂部及側(cè)面全部受負風壓,風壓系數(shù)分布不規(guī)則,總體變化梯度較小。側(cè)面最大負壓系數(shù)達到-0.69,頂部最大負壓系數(shù)達到-0.96,頂部局部的較大風壓對建筑安全是十分不利的,要對此引起重視。
圖3 0°風向角模型一迎風側(cè)壓力系數(shù)分布
圖4 0°風向角模型一背風側(cè)壓力系數(shù)分布
圖5 0°風向角模型二迎風側(cè)壓力系數(shù)分布
圖5,圖6給出了0°風向角下計算所得到兩層坡屋頂建筑整體的風壓系數(shù)分布。由圖5可知,在正面來流風力作用下,迎風面受到正風壓。正風壓系數(shù)在迎風面中心部位處最大,最大值達到0.80。等值線以風壓系數(shù)最大處為中心向外擴散,數(shù)值減小。在迎風面邊緣處,等值線梯度較大。由于建筑本身較為低矮,風速隨高度呈現(xiàn)指數(shù)規(guī)律變化對風壓的高度變化影響不顯著。建筑頂部及側(cè)面全部受負風壓,風壓系數(shù)分布不規(guī)則,總體變化梯度較小。側(cè)面最大負壓系數(shù)達到-0.76,頂部最大負壓系數(shù)達到-0.88,頂部局部的較大風壓對建筑安全是十分不利的,要對此引起重視。
圖7給出了45°風向角下計算所得到單層雙坡屋面建筑周圍速度矢量圖。
圖6 0°風向角模型二背風側(cè)壓力系數(shù)分布
圖8是在45°風向角下的風場豎向剖面速度矢量。在45°風向角下,兩個背風面形成兩個獨立的渦結(jié)構(gòu),頂部的沒有渦結(jié)構(gòu)出現(xiàn)。
圖 7 45°風向角模型一5 m高度處速度矢量
圖 8 模型一45°風向角豎向剖面速度矢量
圖9給出了45°風向角下計算所得到單層雙坡屋面建筑周圍速度等值線分布圖。速度等值線在背風側(cè)梯度顯著,最大風速達到 24.5 m/s。
圖 9 45°風向角模型一豎向剖面速度等值線
圖 10 45°風向角模型二豎向剖面速度矢量
圖10給出了45°風向角下計算所得到兩層坡屋頂建筑周圍速度矢量圖。
圖11是在45°風向角下,風場豎向剖面速度矢量。在45°風向角下,兩個背風面形成兩個獨立的渦結(jié)構(gòu),頂部前端出現(xiàn)附著的渦。
圖12給出了45°風向角下計算所得到兩層坡屋頂建筑周圍速度等值線分布圖。速度等值線在背風側(cè)梯度顯著,最大風速達到28 m/s。
圖11 模型二45°風向角5 m高度處速度矢量
圖 12 45°風向角模型二豎向剖面速度等值線
通過對沿海地區(qū)已有低矮建筑物的調(diào)研,將已有雙坡屋頂?shù)桶ㄖ凑瘴蓓斝问椒譃榈湫蛦螌与p坡屋面建筑和典型兩層雙坡屋頂建筑。建立具有山村典型代表性的低矮建筑,模擬在主導風向下建筑風荷載的影響。低矮建筑表面較大的風壓主要存在于體形突變處,及在屋檐、屋脊處出現(xiàn)較大的局部風壓。通過計算模擬,低矮建筑的表面風壓分布系數(shù):正壓力系數(shù)最大值達到0.98,最大負壓系數(shù)在-1.20,屋頂負壓區(qū)局部過大且負壓區(qū)面積較大。而低矮建筑的這部分區(qū)域的風荷載取值無法從我國結(jié)構(gòu)荷載規(guī)范中獲得,也較少引起工程設(shè)計人員重視。
[1] 孫炳楠,傅國宏.94年17號臺風對溫州民房破壞的調(diào)查[A].第七屆結(jié)構(gòu)風效應學術(shù)會議論文[C].1995:19-23.
[2] GB 50009-2001,建筑結(jié)構(gòu)荷載規(guī)范(2006版)[S].
[3] 黃本才,汪叢軍.結(jié)構(gòu)抗風分析原理及應用[M].第2版.上海:同濟大學出版社,2008.
[4] Davenport A G.The Relationship of Wind Structure to Wind Loading[C].//proc.of the Symposium on Wind Effect on Building and Structures.London:1965:54-102.