張 超, 程 昊*, J D Vervoort
(1. 同濟(jì)大學(xué) 海洋地質(zhì)國家重點實驗室, 上海 200092; 2. School of Earth and Environmental Sciences, Washington State University, Washington 99164, USA)
20 世紀(jì) 90 年代 MC-ICP-MS 的出現(xiàn)[1–2]使 Hf同位素的化學(xué)分離與質(zhì)譜測定大為簡化[3], Lu-Hf同位素研究由此進(jìn)入了快速發(fā)展的時期。其中以定年為主要目的的 Lu-Hf同位素年代學(xué)研究更是取得了長足的發(fā)展。Lu-Hf同位素定年對象涉及隕石[4]、巖漿巖[5]、變質(zhì)巖[6]和沉積巖[7]。定年的主要對象也從早期的全巖和石榴子石為主, 擴(kuò)展到了磷灰石[7]、輝石[6]和硬柱石[8]等。由于石榴子石常具有較高的母子體176Lu/176Hf比值, 往往能夠構(gòu)筑高質(zhì)量的等時線, 石榴子石因此成為Lu-Hf年代學(xué)的首選礦物。近年來,石榴子石 Lu-Hf年代學(xué)[9]在造山帶的研究中體現(xiàn)出了其獨特的價值, 獲得了許多其他定年體系所沒能揭示出的造山帶演化的信息[10–25]。國內(nèi)外研究者對大別-蘇魯造山帶這類花崗質(zhì)片麻巖的成因、形成時代及其構(gòu)造意義等重要的科學(xué)問題還存在較大的分歧, 其中一個核心的爭論則是其是否經(jīng)歷了超高壓變質(zhì)作用。詮釋該論題的一個直接辦法就是對該類巖石進(jìn)行精細(xì)的年代學(xué)研究, 并與超高壓巖石的變質(zhì)演化史進(jìn)行對比。西大別屬于大別-蘇魯造山帶的西緣, 該區(qū)出露的含榴花崗質(zhì)巖石的年代學(xué)工作寥寥無幾[26–29], 且僅限于鋯石U-Pb定年。單一的定年體系給出的信息往往有所局限, 常需要結(jié)合多個同位素體系以期提供更多的時間信息來厘定其精細(xì)的演化歷程。另一方面, 對于造山帶中廣泛出露的花崗質(zhì)巖石, 其狹窄的 Lu/Hf比值變化范圍使得構(gòu)建高精度全巖 Lu-Hf等時線極為困難, 國際上尚未有該類巖石的石榴子石Lu-Hf年齡報道。考慮到石榴子石親Lu排Hf的特性, 這類特殊的巖石是可能給出高精度的石榴子石 Lu-Hf等時線的。因此, 本文嘗試對西大別一個典型的含榴花崗片麻巖進(jìn)行Lu-Hf年代學(xué)研究, 結(jié)合鋯石U-Pb年代學(xué)、巖石學(xué)和礦物學(xué)研究, 給出首條高精度的花崗質(zhì)巖石的Lu-Hf等時線, 并對含榴花崗片麻巖的石榴子石成因及Lu-Hf/U–Pb年齡所代表的地質(zhì)意義進(jìn)行討論。
大別-蘇魯造山帶是位于華北和揚子兩大陸塊間的復(fù)雜碰撞造山帶。西大別又稱紅安地區(qū), 為大別-蘇魯造山帶的西延部分, 東側(cè)以商麻斷裂與東大別造山帶分開, 西側(cè)由大悟斷裂與桐柏相隔(圖1)。大量的構(gòu)造、巖石、年代學(xué)和地球化學(xué)研究表明西大別記錄了秦嶺-大別-蘇魯造山帶的多期演化歷史, 為一典型的復(fù)合造山帶。這一地區(qū)以新縣高壓-超高壓變質(zhì)地體為核心呈一個構(gòu)造穹窿, 南北兩翼由高壓至中低壓變質(zhì)帶組成[26]。根據(jù)巖石構(gòu)造特征, 從北到南可分為: (南灣)復(fù)理石帶、(八里畈)構(gòu)造混雜巖帶、(滸灣-新縣-紅安)高壓-超高壓-高壓變質(zhì)帶以及(木蘭山)藍(lán)片-綠片巖帶等六個相帶[29](圖1)。該區(qū)榴輝巖出露面積大, 白堊紀(jì)巖漿活動較弱, 并出露大量的藍(lán)片巖-綠片巖相變質(zhì)巖石, 是研究大別-蘇魯造山帶構(gòu)造演化理想的地區(qū)。該地區(qū)主要出露巖石為花崗質(zhì)片麻巖, 榴輝巖以透鏡體狀產(chǎn)出在這些巖石中。少部分花崗質(zhì)片麻巖含有石榴子石, 這類含榴花崗片麻巖主要零星分布于高壓-超高壓變質(zhì)帶內(nèi)。所研究的含榴花崗片麻巖樣品采自湖北省麻城市四道河村附近的一個采石場(31°20.712′N,114°3.051′ E, 圖1)。該花崗片麻巖巖體內(nèi)部可見殘留的退變質(zhì)榴輝巖透鏡體(圖 2a)。樣品為灰白色, 中細(xì)粒結(jié)構(gòu), 弱面理化。石英+斜長石+鉀長石組合占95%以上, 副礦物有黑云母(約1%)、石榴子石(約2%)、磁鐵礦和榍石等。石榴子石離散分布于巖石中(圖2b)。前人對該地區(qū)的含榴花崗片麻巖鋯石 U-Pb定年結(jié)果給出一致的約227 Ma[27–29]的諧和年齡。
圖1 西大別四道河含榴花崗片麻巖采樣圖[29]Fig.1 Simplified geologic map of the West Dabie Mountains, modified after Liu et al.[29], showing the sample locality for the Sidaohe granitic gneiss
樣品經(jīng)機(jī)械粉碎和磁選, 在雙目顯微鏡下挑選鋯石及不含可見包裹體的石榴子石。石榴子石和全巖的Lu-Hf同位素分析在美國華盛頓州立大學(xué)完成, 化學(xué)流程及儀器狀態(tài)與文獻(xiàn)[12]一致。石榴子石微量元素和鋯石U-Pb測試在中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室用LA-ICP-MS法完成。激光束斑直徑 32 μm。具體分析條件及流程詳見文獻(xiàn)[30]。石榴子石主要元素成分分析在該實驗室JXA 8100電子探針儀上完成, 分析條件為加速電壓15 kV , 電流為20 nA , 束斑直徑為2 μm。結(jié)果校正采用標(biāo)準(zhǔn)ZAF方法, 使用天然礦物作為標(biāo)樣。
圖2 西大別四道河含榴花崗片麻巖Fig.2 Field photographs showing granitic gneiss and enclosed retrograded eclogite lenses (a) and granitic gneiss with eyeball-shaped garnet crystal (b) from Sidaohe, the West Dabie Mountains
圖3 西大別四道河含榴花崗片麻巖鋯石典型CL圖及U-Pb諧和圖Fig.3 Zircon U-Pb concordia diagram with selected CL images
四道河含榴花崗片麻巖中鋯石為透明短柱狀, 自形程度較差, 陰極發(fā)光(CL)結(jié)構(gòu)表現(xiàn)為弱分帶和霧狀分帶[27–28](圖3)。對這些鋯石進(jìn)行了U-Pb年齡測定,206Pb/238U年齡范圍是216.5~228.5 Ma (表1和圖3), 加權(quán)平均值為(223.2±1.1) Ma (2σ, MSWD = 1.8)。此年齡應(yīng)為這些鋯石形成時間的最佳估計值。四道河含榴花崗片麻巖中石榴子石呈他形變晶結(jié)構(gòu), 粒徑 0.2~1.0 mm。主要元素環(huán)帶不明顯, 僅在顆粒邊部較窄的區(qū)域出現(xiàn)Mn和Ca含量升高、Fe含量降低的變化趨勢(表2和圖4a、4b)。重稀土元素則呈單邊遞增/減的變化趨勢(表3和圖4c~4f)。石榴子石具有極高的母子體同位素比值(176Lu/177Hf = 約300)。兩個石榴子石分析點和一個全巖分析點構(gòu)筑的 Lu-Hf等時線給出(212.2±0.7) Ma (2σ, MSWD = 0.1)的高精度年齡(表 4和圖5)。
表1 四道河含榴花崗片麻巖鋯石LA-ICP-MS U-Pb同位素分析結(jié)果Table 1 Zircon U-Pb isotopic data for Sidaohe granitic gneiss
表2 四道河含榴花崗片麻巖中石榴子石代表性電子探針數(shù)據(jù)(%)Table 2 Representative electron microprobe analysis data (%) for garnet from Sidaohe granitic gneiss
圖4 西大別四道河含榴花崗片麻巖石榴子石的Mg-Fe-Ca-Mn成分環(huán)帶(a和b)、稀土元素分布模式(c和d)及Y-Lu成分分帶(e和f)Fig.4 Mg-Fe-Ca-Mn elemental zoning (a,b), REE patterns (c,d) and Y/Lu zonation (e, f) for two garnet grains from Sidaohe granitic gneissPrp– 鎂鋁榴石; Alm– 鐵鋁榴石; Grs– 鈣鋁榴石; Sps– 錳鋁榴石。石榴子石邊界接觸礦物為長石-綠簾石-石英-黑云母組合。Prp– pyrope; Alm– almandine; Grs– grossular; Sps– spessartine. Mineral assemblage of plagioclase-epidote-quartz-biotite is in contacted with the garnet grains.
盡管對大別造山帶內(nèi)出露的含榴花崗片麻巖是否經(jīng)歷過高壓/超高壓變質(zhì)作用尚存在爭議[26–30,33–35],尚未在四道河含榴花崗片麻巖中找到超高壓/高壓變質(zhì)作用的礦物學(xué)的直接證據(jù), 然而, 四道河含榴花崗片麻巖中石榴子石不具Eu異常(圖 4)可能說明石榴子石與長石結(jié)晶的非同時性。石榴子石為富鈣鐵鋁榴石(Grs15-22Alm36-63Sps8-36Prp6-9), 與阿爾卑斯的高壓變質(zhì)花崗巖和高壓正片麻巖[36]以及大別東部超高壓榴輝巖和超高壓變質(zhì)花崗質(zhì)正片麻巖所含的石榴子石類似[33]。利用鋯石中Ti的含量估算該花崗巖中巖漿鋯石和變質(zhì)鋯石的形成溫度, 分別為約786 ℃和約674 ℃[28]。后者和與之直接接觸的榴輝巖峰期溫度約 692 ℃[28]一致。前人獲得的(227±2)Ma (16 個點)[28]和(227±5) Ma (4 個點)[27]的變質(zhì)鋯石U-Pb年齡雖略高于我們獲得(223.2±1.1) Ma (26個點)的年齡, 但都具有極低的 Th/U 比值(0.01~0.03),且與直接接觸的榴輝巖年齡相近[28]。
表3 四道河含榴花崗片麻巖中石榴子石LA-ICP-MS稀土元素分析數(shù)據(jù)(μg/g)Table 3 LA-ICP-MS rare earth element data (μg/g) for garnet from Sidaohe garnet-bearing granitic gneiss
表4 四道河含榴花崗片麻巖石榴子石和全巖Lu-Hf同位素分析結(jié)果Table 4 Lu-Hf isotopic data for Sidaohe garnet-bearing granitic gneiss
圖5 西大別四道河含榴花崗片麻巖Lu-Hf等時線Fig.5 Garnet-whole rock Lu-Hf isochron for Sidaohe garnet-bearing granitic gneiss
正確解釋石榴子石Lu-Hf等時線/擬合線最有效的途徑就是厘定石榴子石生長歷程。Cheng et al.[14,37]在研究高壓榴輝巖中的珊瑚礁狀石榴子石時, 發(fā)現(xiàn)具有完好生長環(huán)帶的石榴子石Lu-Hf的等時線年齡實際代表了退變質(zhì)階段流體活動的時間。四道河含榴花崗片麻巖中的石榴子石主要元素成分分帶非常微弱, 僅在最邊緣部分呈Mn和Ca含量升高、Fe含量降低的變化趨勢, 指示溶蝕-再吸收的過程。用Crank的一維擴(kuò)散模型[38]和Carlson[39]的自擴(kuò)散系數(shù)可以估算出石榴子石邊部約 100 μm的溶蝕-再吸收邊的 Ca-Fe-Mn-Mg成分環(huán)帶的均一化時間為9.2×106~5.3×107a, 指示石榴子石重結(jié)晶后的快速冷卻。結(jié)合單邊遞減/增的非中心對稱的微量元素分帶特征(圖4)以及石榴子石內(nèi)包體的缺乏, 我們認(rèn)為該石榴子石經(jīng)歷的是一個典型的溶蝕-再結(jié)晶的過程[14,37,40-44]。石榴子石邊部的簾石、黑云母和石英可能就是退變質(zhì)過程中流體沿裂隙活動的產(chǎn)物, 一種可能的機(jī)制是通過石榴子石+白云母+H2O→綠簾石+黑云母+石英的反應(yīng), 類似的石榴子石也在挪威的西部片麻巖(WGR)的超高壓變質(zhì)巖中發(fā)現(xiàn)過[45,46]。
放射性同位素定年的等時線法必須滿足同源、同時和封閉這三個基本條件。不滿足這些前提的回歸擬合線都不是嚴(yán)格意義上的等時線。然而, 當(dāng)相對于這些條件的偏差是可以忽略或者偏差本身具有明確的地質(zhì)意義的情況下, 雖無法確定出嚴(yán)格意義上的等時線, 但對礦物和全巖的分析點的回歸剖析卻能提供諸多有益的地質(zhì)信息[10–24]。我們把四道河含榴花崗片麻巖的石榴子石-全巖擬合線解釋為等時線是因為: (1) 石榴子石經(jīng)歷的流體改造過程(溶蝕-再結(jié)晶)保證不同母子體比值石榴子石的同源和同時的條件; (2) 全巖極低的176Lu/177Hf比值(表 1)決定了其176Hf/177Hf比值非常接近體系的初始同位素比(圖 5); (3) 由于石榴子石快速生長期間造成基質(zhì)大量Lu虧損及176Lu較長的半衰期, 石榴子石重結(jié)晶期間全巖的初始同位素比值變化可以忽略; (4) 石榴子石-全巖擬合線的平均標(biāo)準(zhǔn)權(quán)重偏差(MSWD = 0.1)遠(yuǎn)小于1個自由度(3個數(shù)據(jù)點)時2.0的臨界值[47]。
由于稀土元素在石榴子石中的較慢擴(kuò)散速率[48],一般地質(zhì)條件下石榴子石的Nd封閉溫度在700~750℃[49]。石榴子石的Lu-Hf體系封閉溫度一般被認(rèn)為要高于700 ℃[50]。結(jié)合四道河含榴花崗片麻巖中石榴子石的微量元素成分分帶, 約212 Ma的石榴子石Lu-Hf年齡代表的應(yīng)該是石榴子石重結(jié)晶年齡, 對應(yīng)一期流體活動時間。這個年齡比約223 Ma的鋯石U-Pb年齡要晚約10 Ma, 說明石榴子石和鋯石生長不是同期的, 這與鋯石陡立的重稀土富集型的稀土元素分布模式[28]是一致的。該年齡與大別山東緣的片麻狀變質(zhì)花崗巖約 215 Ma 的高壓榴輝巖相重結(jié)晶時間以及約212 Ma的蘇魯-大別榴輝巖中石英脈的形成時間一致[51–53], 可能指示了一期相退變質(zhì)作用流體活動[54]。含榴花崗片麻巖中石榴子石極高的母子體同位素比值也對Hf-Lu混合稀釋劑的配比提出了特殊的要求。
野外采樣由王超完成, 采樣過程中得到鄭永飛老師的悉心指導(dǎo); 鄭曙老師、吳元保老師和陳璐同學(xué)在電子探針和 LA-ICP-MS測試過程中和數(shù)據(jù)處理上給予了指導(dǎo)和協(xié)助; 吳元保老師還提供了巖石薄片, 在此一并致謝。
:
[1] Halliday A N, Lee D C, Christensen J N, Rehk?mper M, Yi W,Luo X Z, Hall C M, Ballentine C J, Pettke T, Stirling C. Applications of multiple collector-ICPMS to cosmochemistry,geochemistry and paleoceanography [J]. Geochim Cosmochim Acta, 1998, 62(6): 919?940.
[2] Halliday A N, Lee D C, Christensen J N, Walder A J, Freedman P A, Jones C E, Hall C M, Yi W, Teagle D. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry [J]. Int J Mass Spectrom Ion Process, 1995, 146/147: 21?33.
[3] Blichert-Toft J. On the Lu-Hf isotope geochemistry of silicate rocks [J]. Geostand Geoanal Res, 2001, 25(1): 41?56.
[4] Patchett P J, Tatsumoto M. Lu-Hf total-rock isochron for the eucrite meteorites [J]. Nature, 1980, 288(5791): 571?574.
[5] Wittig N, Baker J A, Downes H. Dating the mantle roots of young continental crust [J]. Geology, 2006, 34(4): 237?240.
[6] Duchêne S, Blichert-Toft J, Luais B, Télouk P, Lardeaux J-M.The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism [J]. Nature, 1997, 387(6633):586–589.
[7] Barfod G H, Albarède F, Knoll A H, Xiao S H, Téloukc P, Frei R, Baker J. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils [J]. Earth Planet Sci Lett, 2002, 201(1):203–212.
[8] Mulcahy S R, King R L, Vervoort J D. Lawsonite Lu-Hf geochronology: A new geochronometer for subduction zone processes [J]. Geology, 2010, 37(11): 987–990.
[9] Kohn M J. Models of garnet differential geochronology [J].Geochim Cosmochim Acta, 2009, 73(1): 170–182.
[10] Lapen T J, Johnson C M, Baumgartner L P, Mahlen N J, Beard B L, Amato J M. Burial rates during prograde metamorphism of an ultra-high-pressure terrane: An example from Lago di Cignana, western Alps, Italy [J]. Earth Planet Sci Lett, 2003,215(1/2): 57–72.
[11] Skora S, Baumgartner L P, Mahlen N J, Johnson C M, Pilet S,Hellebrand E. Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu-Hf and Sm-Nd geochronology [J]. Contrib Mineral Petrol, 2006, 152(6): 703–720.
[12] Cheng Hao, King R L, Nakamura E, Vervoort J D, Zhou Zu-yi.Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen[J]. J Metamorph Geol, 2008, 26(7): 741–758.
[13] Cheng Hao, King R L, Nakamura E, Vervoort J D, Zheng Yong-fei, Ota T, Wu Yuan-bao, Kobayashi K, Zhou Zu-yi.Transitional time of oceanic to continental subduction in the Dabie orogen: constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating [J]. Lithos, 2009, 110(1–4):327–342.
[14] Cheng Hao, Nakamura E, Zhou Zu-yi. Garnet Lu-Hf dating of retrograde fluid activity during ultrahigh-pressure metamorphic eclogites exhumation [J]. Mineral Petrol, 2009, 95(3):315–326.
[15] Cheng Hao, DuFrane, S A, Vervoort J D, Nakamura E, Zheng Yong-fei, Zhou Zu-yi. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm–Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen [J]. Am Mineral, 2010, 95(8/9): 1214–1223.
[16] Cheng Hao, DuFrane S A, Vervoort J D, Nakamura E, Li Qiu-li, Zhou Zu-yi. The Triassic age for oceanic eclogites in the Dabie orogen: Entrainment of oceanic fragments in the continental subduction [J]. Lithos, 2011, 117(1–4): 82–98.
[17] Cheng Hao, Zhang Chao, Vervoort J D, Wu Yuan-bao, Zheng Yong-fei, Zheng Shu, Zhou Zu-yi. New Lu-Hf geochronology constrains the onset of continental subduction in the Dabie orogen [J]. Lithos, 2011, 121(1–4): 41–54.
[18] Cheng Hao, Zhang Chao, Vervoort J D, Li Xian-hua, Li Qiu-li,Zheng Shu, Cao Dadi. Geochronology of the transition of eclogite to amphibolite facies metamorphism in the North Qinling orogen of central China [J]. Lithos, 2011, 125(3/4):969–983.
[19] Cheng Hao, Vervoort J D, Li Xian-hua, Zhang Chao, Li Qiu-li,Zheng Shu. The growth interval of garnet in the UHP eclogites from the Dabie orogen, China [J]. Am Mineral. 2011,96(8/9): 1300–1307.
[20] Kylander-Clark A R C, Hacker B R, Johnson C M, Beard B L,Mahlen N J. Slow subduction of a thick ultrahigh-pressure terrane [J]. Tectonics, 2009, 28(2), doi:10.1029/2007TC002251.
[21] Kylander-Clark A R C, Hacker B R, Johnson C M, Beard B L,Mahlen N J, Lapen T J. Coupled Lu-Hf and Sm-Nd geochronology constrains prograde and exhumation histories of highand ultrahigh-pressure eclogites from western Norway [J].Chem Geol, 2007, 242(1/2): 137–154.
[22] Corrie S L, Kohn M J, Vervoort J D. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal:P-T-t path and tectonic implications [J]. Earth Planet Sci Lett,2010, 289(3/4): 406–416.
[23] Wallis S R, Anczkiewicz R, Endo S, Aoya M, Platt J P, Thirlwall M, Hirata T. Plate movements, ductile deformation and geochronology of the Sanbagawa belt, SW Japan: Tectonic significance of 89–88 Ma Lu-Hf eclogite ages [J]. J Metamorph Geol, 2009, 27(2): 93–105.
[24] 袁洪林, 高山, 羅彥, 宗春蕾, 戴夢寧, 柳小明, 第五春榮.Lu-Hf年代學(xué)研究——以大別榴輝巖為例[J]. 巖石學(xué)報,2007, 23(2): 233–239 Yuan Hong-lin, Gao Shao, Luo Yan, Zong Chun-lei, Dai Meng-ning, Liu Xiao-ming, Diwu Chun-rong. Study of Lu-Hf geochronology: A case study of eclogite from Dabie UHP Belt[J]. Acta Petrol Sinica, 2007, 23(2): 233–239 (in Chinese with English abstract).
[25] Herwartz D, Nagel T J, Münker C, Scherer E E, Froitzheim N.Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry [J]. Nat Geosci, 2011, 4(3): 178–183.
[26] 徐樹桐, 吳維平, 蘇文, 江來利, 劉貽燦. 大別山東部榴輝巖帶中的變質(zhì)花崗巖及其大地構(gòu)造意義[J]. 巖石學(xué)報,1998, 14(1): 42–59.Xu Shu-tong, Wu Wei-ping, Su Wen, Jiang Lai-li, Liu Yi-can.Meta-granitoid from the high ultrahigh pressure metamorphic belt in the Dabie Mountains and its tectonic significance [J].Acta Petrol Sinica, 1998, 14(1): 42–59 (in Chinese with English abstract).
[27] 張宏飛, 鐘增球, 高山, 張本仁, 李惠民. 大別山西部面理化含榴花崗巖鋯石 U-Pb年齡[J]. 科學(xué)通報, 46(10):843–846.Zhang Hongfei, Zhong Zengqiu, Gao Shan, Zhang Benren, Li Huimin. U-Pb zircon age of the foliated garnet-bearing granites in western Dabie Mountains, Central China [J]. Chinese Sci Bull, 2001, 46(19): 1657–1660.
[28] Wu Yuan-bao, Gao Shan, Zhang Hong-fei, Yang Shen-hai,Jiao Wei-fang, Liu Yong-sheng, Yuan Hong-lin. Timing of UHP metamorphism in the Hong’an area, western Dabie Mountains, China: Evidence from zircon U-Pb age, trace element and Hf isotope composition [J]. Contrib Mineral Petrol, 2008, 155(1): 123–133.
[29] Liu Xiao-chun, Wei Chun-jing, Li Sang-zhong, Dong Shu-wen, Liu Jing-bo. Thermobaric structure of a traverse across western Dabieshan: Implications for collision tectonics between the Sino-Korean and Yangtze cratons [J]. J Metamorph Geol, 2004, 22(4): 361–379.
[30] Liu Yongsheng, Hu Zhaochu, Gao Shan, Güntherc D, Xu Juan,Gao Changgui, Chen Haihong. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chem Geol, 2008, 257(1/2):34–43.
[31] Scherer E, Münker C, Mezger K. Calibration of the lutetium-hafnium clock [J]. Science, 2001, 293(5530): 683–687.
[32] S?derlund U, Patchett P J, Vervoort J D, Isachsen C E. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth Planet Sci Lett, 2004, 219(3/4): 311–324.
[33] Carswell D A, Wilson R N, Zhai Ming-guo. Metamorphic evolution, mineral chemistry and thermo-barometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China [J]. Lithos, 2000, 52(1–4):121–155.
[34] 張利, 鐘增球, 張本仁, 劉勇勝, 胡圣虹. 桐柏-大別造山帶高壓變質(zhì)單元面理化(含榴)花崗巖地球化學(xué)及其對巖石成因的限制[J]. 地球化學(xué), 2004, 33(3): 232–242.Zhang Li, Zhong Zeng-qiu, Zhang Ben-ren, Liu Yong-sheng,Hu Sheng-biao. Geochemistry and petrogenesis of foliated garnet-bearing granites in the high pressure metamorphic unit of the Tongbai-Dabie orgenic belt [J]. Geochimica, 2004,33(3): 232–242 (in Chinese with English abstract).
[35] Zhang L, Zhong Z, Zhang H, Sun W, Xiang H. The formation of foliated (garnet-bearing) granites in the Tongbai-Dabie orogenic belt: Partial melting of subducted continental crust during exhumation [J]. J Metamorph Geol, 2009, 27(9):789–803.
[36] Massonne H J, Chopin C. P-T history of the Gran Paradiso(western Alps) metagranites based on phengite geobarometry[J]. Geol Soc London Spec Publ, 1989, 43: 545–549.
[37] Cheng Hao, Nakamura E, Kobayashi K, Zhou Zuyi. Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone [J]. Am Mineral, 2007, 92(7): 1119–1129.
[38] Crank J. The Mathematics of Diffusion (2nd ed) [M]. Oxford:Oxford University Press, 1975: 414p.
[39] Carlson W D. Rates of Fe, Mg, Mn, and Ca diffusion in garnet[J]. Am Mineral, 2006, 91(1): 1–11.
[40] Lanzirotti A. Yttrium zoning in metamorphic garnets [J].Geochim Cosmochim Acta, 1995, 59(19): 4105–4110.
[41] Whitney D L, Mechum T A, Dilek Y, Kuehner S M. Modification of garnet by fluid infiltration during regional metamorphism in garnet through sillimanite-zone rocks, Dutchess County, New York [J]. Am Mineral, 1996, 81(5/6): 696–705.
[42] Kohn M, Spear F S. Retrograde net transfer reaction insurance for pressure-temperature estimates [J]. Geology, 2000, 28(12):1127–1130.
[43] Yang P, Rivers T. Chromium and manganese zoning in pelitic garnet and kyanite: Spiral, overprint and oscillatory (?) zoning patterns and the role of growth rate [J]. J Metamorph Geol,2001, 19(4): 455–474.
[44] Keller L M, Hauzenberger C A, Abart R. Diffusion along interphase boundaries and its effect on retrograde zoning patterns of metamorphic minerals [J]. Contrib Mineral Petrol,2007, 154(2): 205–216.
[45] Carswell D A, Cuthbert S J. Ultrahigh pressure metamorphism in the Western Gneiss Region of Norway [M]//Carswell D A,Compagnoni R. Ultrahigh Pressure Metamorphism. EMU Notes in Mineralogy. Budapest: E?tv?s University Press, 2003,5: 51–73.,.
[46] Cuthbert S J, Buckman J O. Charge contrast imaging of fine-scale microstructure and compositional variation in garnet using the environmental scanning electron microscope [J].Am Mineral, 2005, 90(4): 701–707.
[47] Wendt I, Carl C. The statistical distribution of the mean squared weighted deviation [J]. Chem Geol, 1991, 86(4):275–285.
[48] Van Orman J A, Grove T L, Shimizu N, Layne G. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa[J]. Contrib Mineral Petrol, 2002, 142(4): 416–424.
[49] Ganguly J, Tirone M, Hervig R. Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks [J]. Science, 1998, 281(5378): 805–807.
[50] Scherer E E, Cameron K L, Blichert-Toft J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions [J]. Geochim Cosmochim Acta, 2000, 64(19): 3413–3432.
[51] Zheng Y F, Gao T S, Wu Y B, Gong B, Liu X M. Fluid flow during exhumation of deeply subducted continental crust:Zircon U-Pb age and O isotope studies of quartz vein in eclogite [J]. J Metamorph Geol, 2007, 25(2): 267–283.
[52] 邱華寧, Wijbrans J R. 南大別角閃巖相退變質(zhì)與熱液活動:朱家沖榴輝巖與閃石脈 Ar-Ar年代學(xué)研究[J]. 地球化學(xué),2006, 35(5): 517–524.Qiu Hua-ning, Wijbrans J R. Amphibolite-facies overprinting and a hydrothermal activity in southern Dabie terrane: Insight from Ar-Ar dating of Zhujiachong eclogite and metamorphic amphibole vein [J]. Geochimica, 2006, 35(5): 517–524 (in Chinese with English abstract).
[53] 胡建, 邱檢生, 徐夕生, 王孝磊, 李真. 大別山東緣片麻狀變質(zhì)花崗巖的鋯石U-Pb年代學(xué)與地球化學(xué): 對揚子板塊北東緣新元古構(gòu)造-巖漿作用的啟示[J]. 中國科學(xué)(D輯), 2010,40(2): 138–155.Hu Jian, Qiu Jiansheng, Xu Xisheng, Wang Xiaolei, Li Zhen.Geochronology and geochemistry of gneissic metagranites in eastern Dabie Mountains: Implications for the Neoproterozoic tectono-magmatism along the northeastern margin of the Yangtze Block [J]. Sci China Earth Sci, 2010, 53(4): 501–517.
[54] Wu Y B, Gao S, Zhang H F, Yang S H, Liu X C, Jiao W F, Liu Y S, Yuan H L, Gong H J, He M C. U-Pb age, trace-element,and Hf-isotope composition of zircons in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultra-high pressure rock [J].Am Mineral, 2009, 94(2/3): 303–312.