楊志娟,翁建欣
(安徽師范大學(xué)數(shù)學(xué)系,安徽 蕪湖 241003)
關(guān)于丟番圖方程(12n)x+(35n)y=(37n)z
楊志娟,翁建欣
(安徽師范大學(xué)數(shù)學(xué)系,安徽 蕪湖 241003)
運用同余及元素階的性質(zhì),證明對任意正整數(shù)n,丟番圖方程
僅有正整數(shù)解(x,y,z)=(2,2,2).
Je′smanowicz猜想;丟番圖方程;同余
致謝感謝導(dǎo)師湯敏教授在論文撰寫過程中給予的精心指導(dǎo).
[1]Sierpi′nski W.On the equation 3x+4y=5z[J].Wiadom.Mat.,1955/1956,1:194-195.
[2]Je′smanowicz L.Several remarks on Pythagorean numbers[J].Wiadom.Mat.,1955/1956,1:196-202.
[3]Deng Moujie,Cohen G L.On the conjecture of Je′smanowicz concerning Pythagorean triples[J].Bull.Aust. Math.Soc.,1998,57:515-524.
[4]Le Maohua.A note on Je′smanowicz conjecture concerning Pythagorean triples[J].Bull.Aust.Math.Soc., 1999,59:477-480.
[5]關(guān)文吉.關(guān)于商高數(shù)的Je′smanowicz猜想[J].紡織高?;A(chǔ)科學(xué)學(xué)報,2011,24(4):557-559.
[6]Yang Zhijuan,Tang Min.On the Diophantine equation(8n)x+(15n)y=(17n)z[J].Bulletin of the Australian Mathematical Society,2012,86(2):348-352.
[7]陸文端.關(guān)于商高數(shù)組4n2?1,4n,4n2+1[J].四川大學(xué)學(xué)報:自然科學(xué)版,1959,2:39-42.
On the Diophantine equation(12n)x+(35n)y=(37n)z
Yang Zhijuan,Weng Jianxin
(School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)
Using the properties of congruences and the order of elements,we show that,for any positive integer n,the Diophantine equation(12n)x+(35n)y=(37n)zhas no solution other than(x,y,z)=(2,2,2)in positive integers.
Je′smanowicz conjecture,Diophantine equation,congruence
O156
A
1008-5513(2012)05-0698-07
2012-05-14.
國家自然科學(xué)基金(10901002);安徽省自然科學(xué)基金(1208085QA02).
楊志娟(1987-),碩士生,研究方向:組合數(shù)論.
2010 MSC:11D61