李江華
(西安理工大學(xué)理學(xué)院,陜西 西安 710048)
廣義Ferm at商中的平方數(shù)和立方數(shù)
李江華
(西安理工大學(xué)理學(xué)院,陜西 西安 710048)
設(shè)p是奇素?cái)?shù),a和b是適合a>b,gcd(a,b)=1以及pab的正整數(shù).在這些條件下討論了一類廣義Fermat商為完全平方及完全立方問題.利用初等方法以及三項(xiàng)Diophantine方程的最新結(jié)果,證明了當(dāng)p>13時(shí),(ap-1?bp-1)/p不是平方數(shù);當(dāng)p>7時(shí),(ap-1?bp-1)/p不是奇立方數(shù).對廣義Fermat商的方冪問題做出了實(shí)質(zhì)性進(jìn)展.
廣義Fermat商;平方數(shù);立方數(shù);三項(xiàng)Diophantine方程
[1]華羅庚.數(shù)論導(dǎo)引[M].北京:科學(xué)出版社,1979.
[2]Cao Z F,Pan J Y.On the diophantine equation x2p?D y2=1 and Ferm at quotient Qp(m)[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),1993,25(1):119-121.
[3]Osada H,Terai N.Generalization of Lucas′theorem for Ferm at quotient[J].C.R.M ath.Rep.Acad.Sci. Canad.,1989,11(2):115-120.
[4]Terai N.Generalization of Lucas′theorem for Ferm at quotientⅡ[J].Tokyo J.M ath.,1990,13(3):277-287.
[5]Guy R K.Unsolved Problem s in Number Theory[M].3版.北京:科學(xué)出版社,2007.
[6]W iles A.M odular elliptic curves and Ferm at last theorem[J].Ann.of M ath.,1995,141(2):443-551.
[7]Taylor R,W iles A.Ring-theoretic properties of certain Hecke algebras[J].Ann.of M ath.,1995,141(2):553-572.
[8]Poonen B.Som e diophantine equations of the form xn+yn=zm[J].Acta.A rith.,1998,86(2):193-205.
[9]Ivorra W.Sur les equations xp+2βyp=z2et xp+2βyp=2z2[J].Acta.A rith.,2003,108(4):327-338.
[10]Darm on H,M erel L.W inding quotients and som e variants of Ferm at′s Last Theorem[J].J.Reine.Angew. M ath.,1997,490:81-100.
[11]賀光榮.D iophantine方程(am?1)(bn?1)=x2的一點(diǎn)注記[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2011,27(5):581-585.
The squares and cubes in generalized Ferm at quotients
Li Jianghua
(College of Science,X i′an University of Technology,X i′an 710048,China)
Let p be an odd prim e,and let a,b be positive integers such that a>b,gcd(a,b)=1 and pab.In this paper we discussed the generalized Ferm at quotient problem s under these conditions.Using the elem entary method and some recent results on ternary Diophantine equations.Proved that if p>13,then(ap?1?bp?1)/p is not a square,and if p>7,then it is not an odd cube.It hasm ade som e p rogress for the generalized Ferm at quotient prob lem s.
generalized Fermat quotient,square,cube,ternary Diophantine equation
O156.4
A
1008-5513(2012)06-0774-05
2012-05-21.
陜西省自然科學(xué)基金(2012K 06-43);陜西省教育廳專項(xiàng)計(jì)劃基金(12JK 0874).
李江華(1980-),博士,研究方向:解析數(shù)論及其應(yīng)用.
2010 M SC:11D 61