盧圣鋒 尹海燕 于美玲 余曙光 唐 勇
(南京中醫(yī)藥大學(xué)針?biāo)幗Y(jié)合省部共建教育部重點實驗室,江蘇 南京 210029)
神經(jīng)發(fā)生有助于成年大腦正常功能的維持,也有利于神經(jīng)退行性大腦疾病的自我修復(fù),但隨著年齡的增長,機(jī)體的這種能力會逐漸下降〔1〕。伴隨腦老化的產(chǎn)生,神經(jīng)發(fā)生水平顯著降低,而海馬神經(jīng)發(fā)生與腦老化誘發(fā)的學(xué)習(xí)記憶減退密切相關(guān),因此,深入了解海馬神經(jīng)發(fā)生的意義及其與腦老化的關(guān)系具有十分重要的意義。針灸作用整體性、綜合性已基本達(dá)成共識,而且其主要是通過激活機(jī)體自身的內(nèi)源性因素發(fā)揮效應(yīng)。那么其對腦老化海馬神經(jīng)發(fā)生影響如何?為此,我們進(jìn)行相應(yīng)的總結(jié)。
傳統(tǒng)觀點認(rèn)為,中樞神經(jīng)系統(tǒng)神經(jīng)元缺乏再生能力,創(chuàng)傷和病理過程引發(fā)的神經(jīng)元丟失無法逆轉(zhuǎn)。但是,自1965年,Altman和Das報道在成年大鼠海馬的齒狀回(DG)顆粒下層(SGZ)發(fā)現(xiàn)神經(jīng)干細(xì)胞(NSC)并有新生神經(jīng)元產(chǎn)生以來〔2〕,腦內(nèi)神經(jīng)元缺乏再生能力的觀點受到了極大的挑戰(zhàn)。1997年,Gould和McEwen的團(tuán)隊證實,成年靈長類動物的海馬也有NSC增殖的神經(jīng)發(fā)生現(xiàn)象〔3〕,并在1998年進(jìn)一步證實,真正的靈長類動物猿猴的海馬中也存在神經(jīng)發(fā)生〔4〕。同年,Eriksson等給予5位65~72歲患者BrdU注射標(biāo)記NSC并在其去世后取材,首次證實人類海馬也存在神經(jīng)發(fā)生〔5〕。2007年,Manganas團(tuán)隊運(yùn)用磁共振波譜成像技術(shù)(MRS)在活體人腦的研究成果證實人類海馬存在神經(jīng)發(fā)生〔6〕。至此,成年海馬神經(jīng)發(fā)生已在不同種屬的研究中得到了廣泛證實,這表明成年海馬神經(jīng)發(fā)生在種屬間高度保守,是生物界的普遍現(xiàn)象〔7,8〕。海馬神經(jīng)發(fā)生的發(fā)現(xiàn),為中樞神經(jīng)系統(tǒng)疾病如老年癡呆、帕金森病、腦卒中、腦外傷等神經(jīng)元變性、壞死的神經(jīng)康復(fù)帶來了新的希望〔9~12〕,而且圍繞如何促進(jìn)、調(diào)控海馬神經(jīng)發(fā)生,如何實現(xiàn)海馬新生神經(jīng)元的功能整合,成為重大前沿和研究熱點〔13~18〕。
2.1 海馬神經(jīng)發(fā)生特征 神經(jīng)發(fā)生貫穿生命體的一生,主要存在于兩個腦區(qū):側(cè)腦室周圍的室管膜下區(qū)(SVZ)和海馬DG的SGZ〔19〕。成年神經(jīng)發(fā)生首先是NSC和祖細(xì)胞的增殖。其中NSC是一類具有自我復(fù)制、自我更新能力、增殖和多種分化潛能的神經(jīng)前體細(xì)胞;而祖細(xì)胞具有較高的增殖、有限的自我更新和多種分化潛能特征〔20〕。
NSC和祖細(xì)胞兩者統(tǒng)稱為神經(jīng)前體細(xì)胞(NPCs),其通過增殖方式產(chǎn)生有能力分化為神經(jīng)元或神經(jīng)膠質(zhì)細(xì)胞的未成熟細(xì)胞。在海馬DG的神經(jīng)發(fā)生,是以SGZ祖細(xì)胞增殖開始的,細(xì)胞分化后17 d,從海馬門區(qū)或SGZ產(chǎn)生的新生神經(jīng)元通過短暫遷移到達(dá)顆粒細(xì)胞層。4 w后,這些新生神經(jīng)元具有成熟神經(jīng)元的表征和形態(tài),發(fā)出樹突到分子層(ML)和發(fā)出軸突到CA3區(qū),4~7 w后,具有形成功能鏈接必需的電生理特性,從而整合到神經(jīng)回路,成為海馬神經(jīng)環(huán)路的一部分〔21〕。新生神經(jīng)元長時程增強(qiáng)的閾值降低,是成熟顆粒細(xì)胞的1/10,從而對外來信息更敏感,加快信息編輯處理過程〔22,23〕。
2.2 海馬神經(jīng)發(fā)生與腦老化 腦老化中成年神經(jīng)發(fā)生是減少的〔24~27〕。新生神經(jīng)元的減少主要是由于 NPCs數(shù)量的減少、NPCs增殖減少或者新生神經(jīng)元的存活和分化減少〔28,29〕。采用標(biāo)記細(xì)胞有絲分裂的5-溴脫氧尿嘧啶核苷(BrdU)、增殖標(biāo)記物Ki67或NH3進(jìn)行評價,腦老化的嚙齒類動物DG細(xì)胞增殖減少〔24,30,31〕。與嚙齒類動物相反,靈長類動物 SGZ 成熟神經(jīng)元減少主要是由于NPCs減少,而不是細(xì)胞增殖減少〔29〕。同時,在SVZ也發(fā)現(xiàn)存在差異,在衰老小鼠出現(xiàn) NPCs增殖減少〔30,32〕,而在6 ~21 月齡的大鼠中,NPCs的增殖并沒有發(fā)生改變,但新生神經(jīng)元減少。這些表明,物種的不同可能導(dǎo)致神經(jīng)發(fā)生障礙的機(jī)制不同,但都存在新生神經(jīng)元減少現(xiàn)象。
在新生神經(jīng)元的存活與分化研究中,通過采用(DCX)、多聚多液酸化神經(jīng)細(xì)胞黏附分子(PSA-NCAM)或者微管蛋白β-Ⅲ(beta-Ⅲ-tubulin)標(biāo)記短期存活,采用BrdU和成熟神經(jīng)元標(biāo)記物如NeuN和微管相關(guān)蛋白2(MAP2)共表達(dá)來標(biāo)記長期存活,研究者觀察到〔24〕,雖然老化小鼠 DG區(qū) GCL和門區(qū)的NPCs增殖都減少,但這些細(xì)胞在接下來的4 w內(nèi),其存活率并沒有減少;同樣,在注射BrdU 5個月后,標(biāo)記BrdU/NeuN的成熟神經(jīng)元存活與對照組類似,提示整體細(xì)胞的減少主要原因是細(xì)胞增殖的減少。此外,有研究比較不同年齡小鼠神經(jīng)發(fā)生狀況,發(fā)現(xiàn)注射BrdU 4 w后,6月齡小鼠DG區(qū)BrdU/NeuN標(biāo)記的成熟神經(jīng)元多于18月齡動物。因此,在衰老伴隨的腦老化過程中,成熟神經(jīng)元數(shù)量是減少的〔32~35〕,這種減少主要與NSC增殖密切相關(guān),而與存活和分化關(guān)系不大。
有學(xué)者認(rèn)為腦老化并沒有影響NSCs的數(shù)量,只是這些NSCs由于血管微生態(tài)的體積減少,而處于靜息狀態(tài)〔36〕。并且觀察到衰老腦內(nèi)誘發(fā)神經(jīng)發(fā)生所需內(nèi)環(huán)境發(fā)生變化,如成纖維細(xì)胞生長因子2(FGF-2),胰島素生長因子1(IGF-1)和血管內(nèi)皮生長因子(VEGF)在老年海馬中都減少〔37〕。老化過程中,神經(jīng)源性微環(huán)境發(fā)生改變,對NSC增殖或激活刺激不能產(chǎn)生相應(yīng)響應(yīng),從而影響神經(jīng)發(fā)生。當(dāng)然,這也可能是由于微環(huán)境發(fā)生改變不能發(fā)出適當(dāng)信號所導(dǎo)致。研究表明,增加親神經(jīng)因子或者減少抗神經(jīng)因子,都可能改變NPCs增殖的數(shù)量,提示腦老化中出現(xiàn)的增殖受損是由于神經(jīng)源性微環(huán)境改變所致〔38〕。如研究發(fā)現(xiàn)老化腦中與神經(jīng)發(fā)生減少密切相關(guān)的抗神經(jīng)因子主要是皮質(zhì)類甾醇類〔39〕,當(dāng)10周齡大鼠遭受慢性應(yīng)激時,其SGZ區(qū)的NPCs增殖減少,恢復(fù)后3 w,其增殖水平增加,但仍低于正常水平,而應(yīng)激與皮質(zhì)類甾醇類密切相關(guān)。
海馬神經(jīng)發(fā)生水平與認(rèn)知和學(xué)習(xí)記憶功能密切相關(guān)。海馬成年神經(jīng)發(fā)生在學(xué)習(xí)記憶中扮演著重要的角色,增加神經(jīng)發(fā)生能夠有效地改善認(rèn)知功能〔40〕,除了動物研究得到證實外,在采用計算機(jī)神經(jīng)科學(xué)理論進(jìn)行的研究也證實了新神經(jīng)元的產(chǎn)生能夠提高學(xué)習(xí)記憶能力〔41〕,而且還發(fā)現(xiàn)新生神經(jīng)元能夠減輕記憶中干擾因素的作用〔42〕,同時增加記憶維持時間〔43〕。采用影響細(xì)胞增殖的毒素甲基氧化偶氮甲醇(MAM)或放射線方法來阻斷神經(jīng)發(fā)生,結(jié)果顯示,MAM處理的大鼠DG區(qū)增殖減少,海馬依賴性學(xué)習(xí)記憶能力下降;而用放射線處理的大鼠其Morris水迷宮測試不受影響,但其長時程空間記憶受到損害。
針灸研究工作者開創(chuàng)了針灸神經(jīng)康復(fù)機(jī)制研究領(lǐng)域的新方向,為相關(guān)疾病(如老年癡呆、腦梗死、癲癇等)的針灸作用原理闡釋提供了更為豐富的實驗依據(jù)。如,Kim等〔44〕以缺血蒙古沙鼠為研究對象,選擇“足三里”穴位給予針刺治療,采用BrdU神經(jīng)發(fā)生標(biāo)記技術(shù)檢測發(fā)現(xiàn),缺血鼠海馬神經(jīng)發(fā)生BrdU標(biāo)記陽性細(xì)胞增多,“足三里”針刺組較之更有顯著性增加,結(jié)果提示針刺能促進(jìn)缺血后海馬神經(jīng)發(fā)生;Park等〔45〕則分別選擇“足三里”和“神門”進(jìn)行比較研究。結(jié)果發(fā)現(xiàn),出生14 d后與母鼠分離的幼鼠接受“神門”針刺,海馬神經(jīng)發(fā)生的促進(jìn)效應(yīng)更為顯著;同時,Kim研究組以耳針的研究結(jié)果也證實,耳針可以顯著促進(jìn)缺血鼠海馬神經(jīng)發(fā)生〔46〕;另外,Kim研究組還在糖尿病大鼠的研究中證實,針刺、艾灸均可以明顯促進(jìn)海馬神經(jīng)發(fā)生〔47〕。研究者們以腦梗死或缺血缺氧性腦病模型或老年癡呆為研究對象的結(jié)果也表明,針灸治療不僅可以提高學(xué)習(xí)記憶能力,還可以促進(jìn)海馬神經(jīng)發(fā)生,增加海馬神經(jīng)干細(xì)胞巢蛋白(nestin)表達(dá),促進(jìn)海馬NSC增殖、遷移和分化〔48~50〕。另有研究者電針刺激癲癇模型大鼠“百會”穴,通過行為學(xué)、BrdU海馬神經(jīng)發(fā)生標(biāo)記研究發(fā)現(xiàn),電針穴位刺激后,明顯促進(jìn)了大鼠致癇后7、14 d時海馬的神經(jīng)發(fā)生水平,BrdU免疫陽性細(xì)胞數(shù)目、生長抑素(SS)表達(dá)均較相應(yīng)對照組明顯增加〔51,52〕。
總之,在DG區(qū)產(chǎn)生新的神經(jīng)元越多,整合到神經(jīng)環(huán)路的神經(jīng)元愈多,從而越有利于學(xué)習(xí)。當(dāng)然,也有可能在新神經(jīng)元未完全成熟之前就參與影響學(xué)習(xí)的過程〔53〕。嚙齒類動物海馬神經(jīng)發(fā)生減少與腦老化學(xué)習(xí)記憶能力降低相關(guān)密切是個不爭的事實,其最突出的表現(xiàn)是NPCs增殖減少〔24,25〕。而對于靈長類,則可能存在不同的機(jī)制。神經(jīng)發(fā)生主要包括神經(jīng)干細(xì)胞的增殖、分化、遷移、存活及整合到神經(jīng)回路過程,對于這些過程的理解,目前還沒有達(dá)到一致的認(rèn)識。海馬是學(xué)習(xí)記憶的重要腦區(qū),是腦老化受損部位,海馬神經(jīng)元丟失、變性、壞死,突觸減少,以及與學(xué)習(xí)記憶相關(guān)的神經(jīng)遞質(zhì)減少直接影響學(xué)習(xí)記憶能力〔54〕。海馬神經(jīng)發(fā)生可替代受損神經(jīng)元,形成新的突觸,發(fā)揮突觸可塑性,實現(xiàn)神經(jīng)回路的功能整合,最終提高學(xué)習(xí)記憶能力。中樞神經(jīng)系統(tǒng)也是針灸作用的重要調(diào)控部位,在針灸鎮(zhèn)痛、針刺麻醉、針刺戒毒、針灸鎮(zhèn)靜、醒腦開竅、活血化瘀、抗抑郁、抗焦慮、延緩衰老、針灸減肥、神經(jīng)免疫網(wǎng)絡(luò)調(diào)節(jié)、針灸腦功能調(diào)整、針灸對臟腑功能調(diào)整等眾多的針灸作用原理研究領(lǐng)域中占有重要的地位。已有的研究不僅表明,針灸可以調(diào)整病理狀態(tài)下紊亂的腦功能,促使恢復(fù)到正常的生理狀態(tài),而且,還可以通過誘導(dǎo)或調(diào)動機(jī)體內(nèi)源性因素以促進(jìn)機(jī)體康復(fù)。
1 Galvan V,Jin K.Neurogenesis in the aging brain〔J〕.Clin Interv Aging,2007;2(4):605-10.
2 Altman J,Das GD.Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats〔J〕.J Comp Neurol,1965;124(3):319-35.
3 Gould E,McEwen BS,Tanapat P,et al.Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation〔J〕.J Neurosci,1997;17(7):2492-8.
4 Gould E,Vail N,Wagers M,et al.Adult-generated hippocampal and neocortical neurons in macaques have a transient existence〔J〕.PNAS,2001;98(19):10910-7.
5 Eriksson PS,Perfilieva E,Bjork-Eriksson T,et al.Neurogenesis in the adult human hippocampus〔J〕.Nat Med,1998;4(11):1313-7.
6 Manganas LN,Zhang X,Li Y,et al.Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain〔J〕.Science,2007;318(5852):980-5.
7 Knoth R,Singec I,Ditter M,et al.Murine features of neurogenesis in the human Hippocampus across the lifespan from 0 to 100 years〔J〕.PLoS One,2010;29:5(1):e8809.
8 Curtis MA,Kam M,F(xiàn)aull RL.Neurogenesis in humans〔J〕.Eur J Neurosci,2011;33(6):1170-4.
9 Lie DC,Song H,Colamarino SA,et al.Neurogenesis in the adult brain:New strategies for central nervous system diseases〔J〕.Annu Rev Pharmacol Toxicol,2004;44:399-421.
10 Decarolis NA,Eisch AJ.Hippocampal neurogenesis as a target for the treatment of mental illness:A critical evaluation〔J〕.Neuropharmacology,2010;58(6):884-93.
11 Winner B,Kohl Z,Gage FH.Neurodegenerative disease and adult neurogenesis〔J〕.Eur J Neurosci,2011;33(6):1139-51.
12 Taupin P.Neurogenesis,NSCs,pathogenesis and therapies for Alzheimer's disease〔J〕.Front Biosci(Schol Ed),2011;3:178-90.
13 Laplagne DA,Espósito MS,Piatti VC,et al.Functional convergence of neurons generated in the developing and adult hippocampus〔J〕.PLoS Biol,2006;4(12):e409.
14 Ge S,Goh EL,Sailor KA,et al.GABA regulates synaptic integration of newly generated neurons in the adult brain〔J〕.Nature,2006;439(7076):589-93.
15 Duan X,Chang JH,Ge S,et al.Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain〔J〕.Cell,2007;130(6):1146-58.
16 Ehninger D,Kempermann G.Neurogenesis in the adult hippocampus〔J〕.Cell Tissue Res,2008;331(1):243-50.
17 Ma DK,Jang MH,Guo JU,et al.Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis〔J〕.Science,2009;323(5917):1074-7.
18 Knobloch M,Jessberger S.Perspectives on adult neurogenesis〔J〕.Eur J Neurosci,2011;33(6):1013-7.
19 Zhao C,Deng W,Gage FH.Mechanisms and functional implications of adult neurogenesis〔J〕.Cell,2008;132(4):645-60.
20 Shruster A,Melamed E,Offen D.Neurogenesis in the aged and neurodegenerative brain〔J〕.Apoptosis,2010;15(11):1415-21.
21 Burger C.Region-specific genetic alterations in the aging hippocampus:implications for cognitive aging〔J〕.Front Aging Neurosci,2010;2:140.
22 Couillard-Despres S,Winner B,Karl C,et al.Targeted transgene expression in neuronal precursors:watching young neurons in the old brain〔J〕.Eur J Neurosci,2006;24(6):1535-45.
23 Schmidt-Hieber C,Jonas P,Bischofberger J.Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus〔J〕.Nature,2004;429(6988):184-7.
24 Rao MS,Hattiangady B,Abdel-Rahman A,et al.Newly born cells in the ageing dentate gyrus display normal migration,survival and neuronal fate choice but endure retarded early maturation〔J〕.Eur J Neurosci,2005;21(2):464-76.
25 Dupret D,Revest JM,Koehl M,et al.Spatial relational memory requires hippocampal adult neurogenesis〔J〕.PLoS One,2008;3(4):e1959.
26 Morgenstern NA,Lombardi G,Schinder AF.Newborn granule cells in the ageing dentate gyrus〔J〕.J.Physiol,2008;586(16):3751-7.
27 Toni N,Laplagne DA,Zhao C,et al.Neurons born in the adult dentate gyrus form functional synapses with target cells〔J〕.Nat Neurosci,2008;11(8):901-7.
28 Hattiangady B,Shetty AK.Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus〔J〕.Neurobiol Aging,2008;29(1):129-47.
29 Aizawa K,Ageyama N,Terao K,et al.Primate specific alterations in neural stem/progenitor cells in the aged hippocampus〔J〕.Neurobiol Aging,2011;32(1):140-50.
30 Enwere E,Shingo T,Gregg C,et al.Aging results in reduced epidermal growth factor receptor signaling,diminished olfactory neurogenesis,and deficits in fine olfactory discrimination〔J〕.J Neurosci,2004;24(38):8354-65.
31 Cuppini R,Bucherelli C,Ambrogini P,et al.Age-related naturally occurring depression of hippocampal neurogenesis does not affect trace fear conditioning〔J〕.Hippocampus,2006;16(2):141-8.
32 Molofsky AV,Slutsky SG,Joseph NM,et al.Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing〔J〕.Nature,2006;443(7110):448-52.
33 Van Praag H,Shubert T,Zhao C,et al.Exercise enhances learning and hippocampal neurogenesis in aged mice〔J〕.J Neurosci,2005;25(38):8680-5.
34Heine VM,Maslam S,Jo¨els M,et al.Prominent decline of newborn cell proliferation,differentiation,and apoptosis in the aging dentate gyrus,in absence of an age-related hypothalamus-pituitary-adrenal axis activation〔J〕.Neurobiol Aging,2004;25(3):361-75.
35 Driscoll I,Howard S,Stone J,et al.The aging hippocampus:a multi-level analysis in the rat〔J〕.Neuroscience,2006;139(4):1173-85.
36 Lugert S,Basak O,Knuckles P,et al.Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging〔J〕.Cell Stem Cell,2010;6(5):445-56.
37 Shetty AK,Hattiangady B,Shetty GA.Stem/progenitor cell proliferation factors FGF-2,IGF-1,and VEGF exhibit early decline during the course of aging in the hippocampus:role of astrocytes〔J〕.Glia,2005;51(3):173-86.
38 Jin K,Sun Y,Xie L,et al.Neurogenesis and aging:FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice〔J〕.Aging Cell,2003;2(3):175-83.
39 Heine V,Maslam S,Zareno J,et al.Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible〔J〕.Eur J Neurosci,2004;19(1):131-44.
40 Neves FG,Cooke SF,Bliss TV.Synaptic plasticity,memory and the hippocampus:A neural network approach to causality〔J〕.Nature Rev Neurosci,2008;9(1):65-75.
41 Becker S.A computational principle for hippocampal learning and neurogenesis〔J〕.Hippocampus,2005;15(6):722-38.
42 Wiskott L,Rasch MJ,Kempermann G.A functional hypothesis for adult hippocampal neurogenesis:avoidance of catastrophic interference in the dentate gyrus〔J〕.Hippocampus,2006;16(3):329-43.
43 Aimone JB,Wiles J,Gage FH.Potential role for adult neurogenesis in the encoding of time in new memories〔J〕.Nat Neurosci,2006;9(6):723-7.
44 Kim EH,Kim YJ,Lee HJ,et al.Acupuncture increases cell proliferation in dentate gyrus after transient global ischemia in gerbils〔J〕.Neurosci Lett,2001;297(1):21-4.
45 Park HJ,Lim S,Lee HS,et al.Acupuncture enhances cell proliferation in dentate gyrus of maternally-separated rats〔J〕.Neurosci Lett,2002;319(3):153-6.
46 Kim EH,Chung JH,Kim CJ.Auricular acupuncture increases cell proliferation in the dentate gyrus of Sprague-Dawley rats〔J〕.Acupunct Electrother Res,2001;26(3):187-94.
47 Kim EH,Jang MH,Shin MC,et al.Acupuncture increases cell proliferation and neuropeptide Y expression in dentate gyrus of streptozotocin-induced diabetic rats〔J〕.Neurosci Lett,2002;327(1):33-6.
48 唐 勇,盧圣鋒,喬秀蘭,等.艾灸對SAMP8小鼠海馬神經(jīng)干細(xì)胞分化的影響〔J〕.中國康復(fù)醫(yī)學(xué)雜志,2010;25(4):301-4.
49 喬秀蘭,盧圣鋒,尹海燕,等.針灸對SAMP8小鼠皮層神經(jīng)干細(xì)胞增殖分化的影響〔J〕.中國老年學(xué)雜志,2010;30(1):38-41.
50 Cheng HY,Yu JC,Jiang ZG,et al.Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice〔J〕.Neurosci Lett,2008;432(1):111-6.
51 王津存,黃遠(yuǎn)桂,溫曉妮,等.電針穴位刺激對致癇大鼠海馬齒狀回神經(jīng)發(fā)生及行為學(xué)變化影響的實驗研究〔J〕.第四軍醫(yī)大學(xué)學(xué)報,2006;27(5):441-4.
52 溫曉妮,黃遠(yuǎn)桂.電針對慢性癲癇大鼠海馬新生神經(jīng)元生長抑素表達(dá)的影響〔J〕.西安交通大學(xué)學(xué)報(醫(yī)學(xué)版),2008;29(4):370-3.
53 Leuner B,Gould E,Shors TJ.Is there a link between adult neurogenesis and learning〔J〕?Hippocampus,2006;16(3):216-24.
54 Deng W,Aimone JB,Gage FH.New neurons and new memories:how does adult hippocampal neurogenesis affect learning and memory〔J〕?Nat Rev Neurosci,2010;11(5):339-50.