国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

人工神經(jīng)網(wǎng)絡(luò)繼電保護(hù)原理分析

2011-12-28 09:03朱文渝唐廣
關(guān)鍵詞:繼電保護(hù)神經(jīng)網(wǎng)絡(luò)

朱文渝 唐廣

摘要:文章根據(jù)現(xiàn)代控制技術(shù)的人工神經(jīng)網(wǎng)絡(luò)理論提出了一種保護(hù)原理構(gòu)成方案,并分析了原理實(shí)現(xiàn)的可行性和技術(shù)難點(diǎn)。

關(guān)鍵詞:神經(jīng)網(wǎng)絡(luò);繼電保護(hù);模糊邏輯

中圖分類號(hào):TM773文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-8937(2011)22-0029-01

人工神經(jīng)網(wǎng)絡(luò)(Aartificial Neural Network,下簡(jiǎn)稱ANN)是模擬生物神經(jīng)元的結(jié)構(gòu)而提出的一種信息處理方法。早在1943年,已由心理學(xué)家Warren S.Mcculloch和數(shù)學(xué)家Walth H.Pitts提出神經(jīng)元數(shù)學(xué)模型。ANN之所以受到人們的普遍關(guān)注,是由于它具有本質(zhì)的非線形特征、并行處理能力、強(qiáng)魯棒性以及自組織自學(xué)習(xí)的能力。其中研究得最為成熟的是誤差的反傳模型算法(BP算法,Back Propagation),它的網(wǎng)絡(luò)結(jié)構(gòu)及算法直觀、簡(jiǎn)單,在工業(yè)領(lǐng)域中應(yīng)用較多。

1人工神經(jīng)網(wǎng)絡(luò)理論概述

經(jīng)訓(xùn)練的ANN適用于利用分析振動(dòng)數(shù)據(jù)對(duì)機(jī)器進(jìn)行監(jiān)控和故障檢測(cè),預(yù)測(cè)某些部件的疲勞壽命。非線形神經(jīng)網(wǎng)絡(luò)補(bǔ)償和魯棒控制綜合方法的應(yīng)用(其魯棒控制利用了變結(jié)構(gòu)控制或滑動(dòng)??刂疲?,在實(shí)時(shí)工業(yè)控制執(zhí)行程序中較為有效。人工神經(jīng)網(wǎng)絡(luò)(ANN)和模糊邏輯(Fuzzy Logic)的綜合,實(shí)現(xiàn)了電動(dòng)機(jī)故障檢測(cè)的啟發(fā)式推理。對(duì)非線形問題,可通過ANN的BP算法學(xué)習(xí)正常運(yùn)行例子調(diào)整內(nèi)部權(quán)值來準(zhǔn)確求解。因此,對(duì)于電力系統(tǒng)這個(gè)存在著大量非線性的復(fù)雜大系統(tǒng)來講,ANN理論在電力系統(tǒng)中的應(yīng)用具有很大的潛力。

BP算法是一種監(jiān)控學(xué)習(xí)技巧,它通過比較輸出單元的真實(shí)輸出和希望值之間的差別,調(diào)整網(wǎng)絡(luò)路徑的權(quán)值,以使下一次在相同的輸入下,網(wǎng)絡(luò)的輸出接近于希望值。BP算法的神經(jīng)網(wǎng)絡(luò)圖形,設(shè)網(wǎng)絡(luò)的輸入模塊為p,令其作用下網(wǎng)絡(luò)輸出單元j的輸出為Opj。如果輸出的希望值是Tpj,則其誤差為Dpj=Tpj-Opj。若輸入模塊的第i個(gè)單元輸入為Ipi,則就輸入模塊p而言,輸入接點(diǎn)I與輸出接點(diǎn)j之間的權(quán)值變化量為:ΔWpji=zDpjIpi,式中,z是某一個(gè)常數(shù)。當(dāng)反復(fù)迭代該式時(shí),便可使實(shí)際值收斂于目標(biāo)值。其中隱含層既有輸入網(wǎng)線,又有輸出網(wǎng)線,每一個(gè)箭頭都有一定的權(quán)值。

2人工神經(jīng)網(wǎng)絡(luò)的基本特征

人工神經(jīng)網(wǎng)絡(luò)具有四個(gè)基本特征:其一,非線性。非線性關(guān)系是自然界的普遍特性。大腦的智慧就是一種非線性現(xiàn)象。人工神經(jīng)元處于激活或抑制二種不同的狀態(tài),這種行為在數(shù)學(xué)上表現(xiàn)為一種非線性關(guān)系。具有閾值的神經(jīng)元構(gòu)成的網(wǎng)絡(luò)具有更好的性能,可以提高容錯(cuò)性和存儲(chǔ)容量。其二,非局限性。一個(gè)神經(jīng)網(wǎng)絡(luò)通常由多個(gè)神經(jīng)元廣泛連接而成。一個(gè)系統(tǒng)的整體行為不僅取決于單個(gè)神經(jīng)元的特征,而且可能主要由單元之間的相互作用、相互連接所決定。通過單元之間的大量連接模擬大腦的非局限性。聯(lián)想記憶是非局限性的典型例子。其三,非常定性。人工神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)、自組織、自學(xué)習(xí)能力。神經(jīng)網(wǎng)絡(luò)不但處理的信息可以有各種變化,而且在處理信息的同時(shí),非線性動(dòng)力系統(tǒng)本身也在不斷變化。經(jīng)常采用迭代過程描寫動(dòng)力系統(tǒng)的演化過程。其四,非凸性。一個(gè)系統(tǒng)的演化方向,在一定條件下將取決于某個(gè)特定的狀態(tài)函數(shù)。例如能量函數(shù),它的極值相應(yīng)于系統(tǒng)比較穩(wěn)定的狀態(tài)。非凸性是指這種函數(shù)有多個(gè)極值,故系統(tǒng)具有多個(gè)較穩(wěn)定的平衡態(tài),這將導(dǎo)致系統(tǒng)演化的多樣性。

3神經(jīng)網(wǎng)絡(luò)型繼電保護(hù)

神經(jīng)網(wǎng)絡(luò)理論的保護(hù)裝置,可判別更復(fù)雜的模式,其因果關(guān)系是更復(fù)雜的、非線性的、模糊的、動(dòng)態(tài)的和非平穩(wěn)隨機(jī)的。它是神經(jīng)網(wǎng)絡(luò)(ANN)與專家系統(tǒng)(ES)融為一體的神經(jīng)網(wǎng)絡(luò)專家系統(tǒng),其中,ANN是數(shù)值的、聯(lián)想的、自組織的、仿生的方式,ES是認(rèn)知的和啟發(fā)式的。裝置可直接取線路及其周邊的模擬量、數(shù)字量,經(jīng)模式特征變換輸入給神經(jīng)網(wǎng)絡(luò),專家系統(tǒng)對(duì)運(yùn)行過程控制和訓(xùn)練,按最優(yōu)方式收集數(shù)據(jù)或由分析過程再收集控制,對(duì)輸出結(jié)果進(jìn)行評(píng)估,判別其正確性、一致性,做出最終判決,經(jīng)變換輸出,去執(zhí)行機(jī)構(gòu)。即使是新型保護(hù),也會(huì)存在著某些功能模塊不正確動(dòng)作的可能,這時(shí)可以過后人為干預(yù)擴(kuò)展專家系統(tǒng)數(shù)據(jù)庫(kù)或由專家系統(tǒng)做出判別,作為訓(xùn)練樣本訓(xùn)練ANN的這部分功能模塊,改變其某些網(wǎng)線的權(quán)值,以使下次相同情況下減少不正確動(dòng)作的可能。

下面是一個(gè)簡(jiǎn)單的ANN線路保護(hù)例子。當(dāng)電力系統(tǒng)故障時(shí),輸電線路各相、各序電壓、電流也隨之發(fā)生變化,特別是故障后故障相的相電壓和相電流,以及接地系統(tǒng)在接地故障的零序電流的變化有明顯的代表性。比如選輸入層神經(jīng)元個(gè)數(shù)為14個(gè),分別是Uar,Uai,Ubr,Ubi,UcrUci,Iai,Ibr,Ibi,Icr,Ici,Ior,Ioi(下標(biāo)r和i分別代表實(shí)部與虛部),選定輸出層神經(jīng)元個(gè)數(shù)為5個(gè):YA(A相),YB(B相),YC(C相),YO(接地),YF(方向),各輸出值為1,代表選中;輸出值為0,代表沒選中(YF為0代表反向)。這5個(gè)輸出完全滿足線路方向保護(hù)的需求(沒考慮正向超越),隱含層神經(jīng)元數(shù)目為2N+1(N為輸入層神經(jīng)元數(shù)目)。訓(xùn)練樣本集包含14個(gè)輸入變量和5個(gè)輸出變量,而測(cè)試樣本集中的樣本則只有14個(gè)輸入變量。

在正常狀態(tài)下,令h∠δ=(EM)/(EN),h=1,δ隨負(fù)荷變化,取為-60°,-50°,-40°,-30°,-20°,-10°,0°,10°,20°,30°,40°,50°,60°,有13個(gè)樣本。故障情況下,δ取值為-60°,-30°,0°,30°,60°,故障點(diǎn)選反向出口(-0 km),正向出口(+0 km),線路中部(150 km),線末(300 km)。接地電阻Rg取值0 Ω,50 Ω,100 Ω,150 Ω,200 Ω,相間電阻Rp取值0 Ω,25 Ω,50 Ω,則共有5×4×(5+3+5×3+3)=520個(gè)樣本。每個(gè)樣本的5個(gè)輸出都有一組期望的輸出值,以此作為訓(xùn)練樣本。而實(shí)際運(yùn)行、故障時(shí),保護(hù)所測(cè)到的電流、電壓極少直接與樣本相同,此時(shí)就需要用到模糊理論,規(guī)定某個(gè)輸出節(jié)點(diǎn)。如YA(A相)在某一取值范圍時(shí),則被選中。

4結(jié)論

本文基于現(xiàn)代控制技術(shù)提出了人工神經(jīng)網(wǎng)絡(luò)理論的保護(hù)構(gòu)想。我認(rèn)為全波數(shù)據(jù)窗建立的神經(jīng)網(wǎng)絡(luò)在準(zhǔn)確性方面優(yōu)于利用半波數(shù)據(jù)窗建立的神經(jīng)網(wǎng)絡(luò),反應(yīng)速度比純數(shù)字計(jì)算軟件快幾十倍以上,這樣,在相同的動(dòng)作時(shí)間下,可以大大提高保護(hù)運(yùn)算次數(shù),以實(shí)現(xiàn)在時(shí)間上即次數(shù)上提高冗余度。

一套完整的ANN保護(hù)是需要有很多輸入量的,如果對(duì)某套保護(hù)來說,區(qū)內(nèi)、區(qū)外故障時(shí)其輸入信號(hào)幾乎相同,則很難以此作為訓(xùn)練樣本訓(xùn)練保護(hù),而每套保護(hù)都增多輸入量,必然會(huì)使保護(hù)、二次接線復(fù)雜化。變電站綜合自動(dòng)化也許是解決該問題的一個(gè)較好方法,各套保護(hù)通過總線聯(lián)網(wǎng),交換信息,充分利用ANN的并行處理功能,每套保護(hù)均對(duì)其它線路信息進(jìn)行加工,以此綜合得出動(dòng)作判據(jù)。神經(jīng)網(wǎng)絡(luò)的硬件芯片現(xiàn)在仍很昂貴,但技術(shù)成熟時(shí),應(yīng)利用硬件實(shí)現(xiàn)現(xiàn)在的軟件功能。

參考文獻(xiàn):

[1] Robert E.Uhrig.Application of Artificial Neural Networks in Industrial Technology[J].IEEE Trans,1994,10(3):371-377.

[2] Chow Mo-Yuen.The Advantage of Machine Fault Detection Using Artificial Neural Networks and Fuzzy Logic Techno-logy[J].IEEE Trans,1992,5(6):1078-1085.

猜你喜歡
繼電保護(hù)神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)抑制無線通信干擾探究
繼電保護(hù)自動(dòng)化技術(shù)在電力系統(tǒng)中的應(yīng)用
電力系統(tǒng)繼電保護(hù)運(yùn)行維護(hù)措施
電力系統(tǒng)繼電保護(hù)二次回路的維護(hù)與檢修
關(guān)于配電網(wǎng)自動(dòng)化繼電保護(hù)的幾點(diǎn)探討
基于神經(jīng)網(wǎng)絡(luò)的拉矯機(jī)控制模型建立
復(fù)數(shù)神經(jīng)網(wǎng)絡(luò)在基于WiFi的室內(nèi)LBS應(yīng)用
基于支持向量機(jī)回歸和RBF神經(jīng)網(wǎng)絡(luò)的PID整定
基于神經(jīng)網(wǎng)絡(luò)分?jǐn)?shù)階控制的逆變電源
基于GA-BP神經(jīng)網(wǎng)絡(luò)的光伏陣列MPPT研究