国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Aq-Analogof the Weideman's Formula

2011-12-23 03:08:00ZHENGDeyinCHENGuang
關(guān)鍵詞:理學(xué)院二項(xiàng)式恒等式

ZHENG De-yin,CHEN Guang

(College of Science,Hangzhou Normal University,Hangzhou 310036,China)

Aq-Analogof the Weideman's Formula

ZHENG De-yin,CHEN Guang

(College of Science,Hangzhou Normal University,Hangzhou 310036,China)

1 Introduction

Recently,Weideman's formula[1,Eq.(20)]called one of the hardest challenge identities:

is closely concerned,where the harmonic numbers Hnand the second order harmonic number H(2)nare defined by

respectively.Schneider[2,Eq.(16)](cf.[3,Eq.(12)]also)proved the formula(1)via computer algebra package Sigma,while Chu proved it using partial fraction method in[4,Eq.(6)]and hypergeometric series method in[5,Eq.(3)].The main purpose of this paper is to find q-analogs of Weideman's formula by means of partial fraction decomposition.

We use the standard notation on q-series.The q-shifted factorial(a;q)nis defined by

The q-binomial coefficient,or the Gauss coefficient,is given by

The paper investigated the decomposition of a class of rational function by partial fraction method,established a generalized identity about q-harmonic numbers,and obtained twelve striking q-like-Weideman formulas from twelve special cases of this general identity.

q-binomial coefficients;q-harmonic numbers;algebraic identities

With the above preparations,we can establish the following general q-algebraicidentity.

2 Partial fraction decompositions

Theorem 1 Let xbe an indeterminate and napositive integer.For any polynomial Q(x)of degree≤2+3n,we have

Multiplying by xacross equation(4)and then letting x→+∞,we can obtain immediately the following general identity on q-binomial-harmonic number.

Theorem 2 Let n be a positive integer.For any polynomial Q(x)of degree≤1+3n,there holds

3 q-Harmonic number identities

Some interesting identities can be obtained by choosing different Q(x)in identity(5).We will display some examples of this class of q-harmonic number identities in this section.

The list can be endless.However,we are not bothered to extend it further.The interested reader can do that for enjoyment.

[1]Weideman J A C.Padéapproximations to the logarithm I:derivation via differential equations[J].Quaestiones Mathematicae,2005,28(3):375-390.

[2]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithmⅡ:identities,recurrences,and symbolic computation[J].Ramanujan Journal,2006,11(2):139-158.

[3]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithm Ⅲ:alternative methods and additional results[J].Ramanujan Journal,2006,12(3):299-314.

[4]Chu Wenchang.Partial-fraction decompositions and harmonic number identities[J].Journal of Combinatorial Mathematics and Combinatorial Computating,2007,60:139-153.

[5]Chu Wenchang,F(xiàn)u Mei.Dougall-Dixon formula and harmonic number identities[J].Ramanujan Journal,2009,18(1):11-31.

Weideman公式的一種q-模擬

鄭德印,陳 廣
(杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

使用部分分式方法將一類有理函數(shù)分解為部分分式,進(jìn)而建立了一個(gè)一般化的q-harmonic數(shù)恒等式.作為例子,列出了此恒等式的12種特殊情況,得到了12個(gè)漂亮的類q-Weideman公式.

q-二項(xiàng)式系數(shù);q-harmonic數(shù);代數(shù)恒等式

date:2010-06-24

Supported by the Natural Science Foundation of Zhejiang Province of China(Y7080320).

Biography:ZHENG De-yin(1964—),male,born in Tongbai,Henan Province,associate professor,engaged in combinatorics,hypergeometric series and special function.E-mail:deyinzheng@yahoo.com.cn

O157.1 MSC2010:05A30;11B65Article character:A

1674-232X(2011)01-0011-04

10.3969/j.issn.1674-232X.2011.01.002

猜你喜歡
理學(xué)院二項(xiàng)式恒等式
昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
昆明理工大學(xué)理學(xué)院簡(jiǎn)介
活躍在高考中的一個(gè)恒等式
民族文匯(2022年23期)2022-06-10 00:52:23
聚焦二項(xiàng)式定理創(chuàng)新題
二項(xiàng)式定理備考指南
二項(xiàng)式定理??碱}型及解法
一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
Weideman公式的證明
西安航空學(xué)院專業(yè)介紹
———理學(xué)院
自主招生與數(shù)學(xué)競(jìng)賽中的計(jì)數(shù)與二項(xiàng)式定理(二)
高台县| 英吉沙县| 科技| 崇文区| 仙桃市| 五家渠市| 平陆县| 长寿区| 湖南省| 泰州市| 额敏县| 珠海市| 乃东县| 墨玉县| 阿拉善右旗| 和平县| 新宁县| 沂水县| 东光县| 综艺| 大竹县| 聊城市| 诸暨市| 乳源| 罗山县| 太仆寺旗| 西和县| 綦江县| 诸暨市| 浦县| 莎车县| 鸡东县| 宜川县| 高邑县| 公安县| 衡阳县| 珠海市| 永兴县| 芜湖市| 外汇| 平昌县|