国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Extensions of Reduced Rings

2011-11-23 01:32:14WUHuifeng
關(guān)鍵詞:冪級(jí)數(shù)約化環(huán)上

WU Hui-feng

(College of Science,Hangzhou Normal University,Hangzhou 310036,China)

Extensions of Reduced Rings

WU Hui-feng

(College of Science,Hangzhou Normal University,Hangzhou 310036,China)

A ringRis a reduced ring,provided thata2=0 implies thata=0.The paper discussed the relations between reduced rings and 3-Armendariz rings and proved that power series rings and some special upper triangular matrix rings of reduced rings are 3-Armendariz rings.

reduced ring; power series ring; 3-Armendariz ring.

1 Introduction

Condition(P) For alla,b,c∈R,if (abc)2=0,thenabc=0.(see [1])

Proposition1 IfRis a reduced ring,thenRsatisfies the Condition (P),but the converse is not true.

ProofIt is easy to prove thatRis a reduced ring implies thatRsatisfies the Condition (P),there exists a ring that satisfies the Condition (P) but is not a reduced ring.Let

From [1],we know thatRis 3-Armendariz ring if and only ifR[x] is 3-Armendariz ring.Clearly,all subrings of 3-Armendariz rings are 3-Armendariz rings.IfR[[x]] is a 3-Armendariz ring,thenR[x] is a 3-Armendariz ring,but the converse is not true.

Theorem1 LetRbe a reduced ring,thenR[[x]] is a 3-Armendariz ring.

If [f(x)g(x)h(x)]2=0,that is

(d0+d1x+d2x2+d3x3+…+dn-1xn-1+dnxn)·(d0+d1x+d2x2+d3x3+…+dn-1xn-1+dnxn)=

dn+1dn-1)x2n+(d0d2n+1+d2n+1d0+d1d2n+d2nd1+d2d2n-1+d2n-1d2+…+dndn+1+dn+1dn)x2n+1+…=0.

SetAibe the coefficient of [f(x)g(x)h(x)]2.then

d2n-2d2+…+dn-1dn+1=0;A2n+1=d0d2n+1+d2n+1d0+d1d2n+d2nd1+d2d2n-1+d2n-1d2+…+

dn-1dn+2+dndn+1=0; ….

AsA2n=0 andd0=0,d1=0,d2=0,d3=0,…,dn-1=0,

Continuing in this way we haved0=0,d1=0,d2=0,d3=0,…,dn=0,….

Corollary1 IfRis a reduced ring,thenR[x] is a 3-Armendariz ring.

Theorem2 LetRbe a reduced ring,then is a 3-Armendariz ring.

ProofIt is well know that for a ringRand any positive integern≥2,R[x]/(xn)≌S.where (xn) is the ideal ofR[x] generated byxn.It is evident thatR[x]/(xn)≌R′,R′ is subring ofR[[x]],soR′≌S.SinceRis reduced ring,by Theorem 1,we knowR[[x]] is 3-Armendariz ring,moveover,subrings of 3-Armendariz rings are 3-Armendariz rings,soR′ is a 3-Armendariz ring.ThereforeSis a 3-Armendariz ring and the proof is complete.

Theorem3 LetRbe a reduced ring,then

is a 3-Armendariz ring.

ProofSinceRis a reduced ring,thenRsatisfies the Condition (P),that is

if(abc)2=0,thenabc=0.

InR,since (bca)2=bcabca=bc(abc)a=0,sobca=0.

We can denote their addition and multiplication by:

(f0(0),f0(x),f1(x))+(g0(0),g0(x),g1(x))=(f0(0)+g0(0),f0(x)+g0(x),f1(x)+g1(x)).and

(f0(0),f0(x),f1(x))·(g0(0),g0(x),g1(x))=(f0(0)g0(0),f0(x)g0(x),f0(0)g1(x)+f1(x)g0(x)).

So every polynomial ofR[y] can be expressed by (f0(0),f0(y),f1(y)),wheref0(y),f1(y)∈R[x][y].For allf(y),g(y),h(y) ∈R〈x〉[y],and

f(y)=(f0(0),f0(y),f1(y)),
g(y)=(g0(0),g0(y),g1(y)),
h(y)=(h0(0),h0(y),h1(y)).

Iff(y)g(y)h(y)=0,we have the following system of equations:

f0(0)g0(0)h0(0)=0,

(1)

f0(y)g0(y)h0(y)=0,

(2)

f0(0)g0(0)h1(y)+f0(0)g1(y)h0(y)+f1(y)g0(y)h0(y)=0.

(3)

If we multiply (3) on the right side byf0(y),then

f0(0)g0(0)h1(y)f0(y)+f0(0)g1(y)h0(y)f0(y)=0

(3′)

(sincef0(y)g0(y)h0(y)=g0(y)h0(y)f0(y)=0.)

Also if we multiply (3′) on the right side byg0(y),then

f0(0)g0(0)h1(y)f0(y)g0(y)=0.

Thusf0(0)g0(0)h1(y)f0(0)g0(0)=0.So (f0(0)g0(0)h1(y))2=f0(0)g0(0)h1(y)f0(0)g0(0)h1(y)=0.SinceRa reduced ring,thenR[x] is a reduced ring,and thenR[x][y] is a reduced ring.Thereforef0(0)g0(0)h1(y)=0.Hencef0(0)g1(y)h0(y)f0(y)=0,sof0(0)g1(y)h0(y)f0(0)=0,it means that (f0(0)g1(y)h0(y))2=0,thenf0(0)g1(y)h0(y)=0.

And sof0(0)g0(0)h1(y)=f0(0)g1(y)h0(y)=f1(y)g0(y)h0(y)=0.

Write

and set

For all 0≤i≤r,0≤j≤s,0≤k≤t,we have

we knowR[x][y] is a reduced ring,soR[x][y] is a 3-Armendariz ring.Sincef0(0)g0(0)h0(0)=0,thenf1i(0)f2j(0)f3k(0)=0.Sincef0(y)g0(y)h0(y)=0,thenf1i(x)f2j(x)f3k(x)=0.Sincef0(0)g0(0)h1(y)=0,thenf1i(0)f2j(0)g3k(x)=0.Sincef0(0)g1(y)h0(y)=0,thenf1i(0)g2j(x)f3k(x)=0.Sincef1(y)g0(y)h0(y)=0,theng1i(x)f2j(x)f3k(x)=0.

Consequently

HenceR〈x〉 is a 3-Armendariz ring.

Example1Z2〈x〉 is a 3-Armendariz ring,henceZ2〈x〉 is a Armendariz ring whereZ2is the field with two elements.

ProofIn view of Theorem 3,Z2〈x〉 is a 3-Armendariz ring.ButZ2〈x〉 has an identity,and so it is a Armendariz ring.

[1] Yang Suiyi.On the extension of Armendariz rings[D].Lanzhou:Lanzhou University,2008:9-19.

[2] Anderson D D,Camillo V.Armendariz rings and Gaussian rings[J].Comm Algebra,1998,26(7):2265-2272.

[3] Rege M B.Chhawchharia S.Armendariz rings[J].Proc Japan Acad Ser A Math Sci,1997,73:14-17.

[4] Hirano Y.On annihilator ideals of a polynomial ring over a non commutative ring[J].J Pure Appl Algebra,2002,168:45-52.

[5] Yan Zhanping.Armendariz property of a class of matrix rings[J].Journal of Northwest Normal University Natural Science,2003,39(3):22-24.

[6] Wang Wenkang.Armendariz and semicommutative properties of a class of upper triangular matrix rings[J].Journal of Shandong University:Natural science Edition,2008,43(2):62-65.

[7] Kim N K,Lee K H,Lee Y,Power series rings satisfying a zero divisor porperty[J].Comm Alg,2006,34:2205-2218.

約化環(huán)的推廣

伍惠鳳

(杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

稱環(huán)R是約化環(huán),如果a2=0,那么a=0.討論了約化環(huán)和3-Armendariz環(huán)之間的關(guān)系,證明了不帶單位元的約化環(huán)上的冪級(jí)數(shù)環(huán)和某些特殊的上三角矩陣環(huán)是3-Armendariz 環(huán).

約化環(huán); 冪級(jí)數(shù)環(huán); 3-Armendariz環(huán).

date:2011-03-18

Biography:Wu Hui-feng(1982—),famale,born in Anqing,Anhui province,master,engageed in Algebraic.E-mail:yaya57278570@163.com

10.3969/j.issn.1674-232X.2011.05.005

O153.3MSC2010:16E99; 14F99ArticlecharacterA

1674-232X(2011)05-0407-04

猜你喜歡
冪級(jí)數(shù)約化環(huán)上
約化的(3+1)維Hirota方程的呼吸波解、lump解和半有理解
冪級(jí)數(shù)的求和方法總結(jié)
主動(dòng)脈瓣環(huán)擴(kuò)大聯(lián)合環(huán)上型生物瓣膜替換治療老年小瓣環(huán)主動(dòng)脈瓣狹窄的近中期結(jié)果
矩陣環(huán)的冪級(jí)數(shù)弱McCoy子環(huán)
冪級(jí)數(shù)J-Armendariz環(huán)*
交換環(huán)上四階反對(duì)稱矩陣?yán)畲鷶?shù)的BZ導(dǎo)子
取繩子
投射可遷環(huán)上矩陣環(huán)的若當(dāng)同態(tài)
M-強(qiáng)對(duì)稱環(huán)
關(guān)于強(qiáng)冪級(jí)數(shù)McCoy環(huán)
安仁县| 罗源县| 拜城县| 曲麻莱县| 乡城县| 仙游县| 嘉义县| 绍兴市| 阆中市| 文化| 蓬莱市| 潼关县| 永和县| 清水河县| 巴塘县| 靖州| 长岭县| 福建省| 宜春市| 浦江县| 新巴尔虎右旗| 沐川县| 巫山县| 大悟县| 乌兰浩特市| 长春市| 阿勒泰市| 阿荣旗| 新晃| 涪陵区| 马鞍山市| 游戏| 石首市| 石家庄市| 犍为县| 乌审旗| 涟源市| 浪卡子县| 敦煌市| 绥德县| 体育|