金明善 李文佐 宮寶安 索掌懷
(煙臺大學(xué)化學(xué)生物理工學(xué)院 山東煙臺 264005)
利用Clausius-Clapeyron方程的定積分式和不定積分式可以求得純物質(zhì)在兩相平衡時的溫度或壓力,進而與物理化學(xué)的其他章節(jié)內(nèi)容結(jié)合綜合利用。 Clausius-Clapeyron方程的推導(dǎo)及圍繞它的習題(即利用Clausius-Clapeyron方程的定積分和不定積分求純物質(zhì)在兩相平衡時的溫度或壓力的習題)一般在課堂教學(xué)中都能講到,并要求學(xué)生熟練掌握,學(xué)生也能較順利地解題。但是,我們在教學(xué)和考研指導(dǎo)中發(fā)現(xiàn),在其他一些章節(jié)中,應(yīng)用Clausius-Clapeyron方程解題的部分沒能引起足夠的重視,學(xué)生解題感到吃力。為此,本文以若干物理化學(xué)碩士研究生入學(xué)試題為例,總結(jié)了Clausius-Clapeyron方程在其他章節(jié)中的一些應(yīng)用,希望對教師的課堂教學(xué)和學(xué)生的考研復(fù)習有所裨益。
不可逆相變的ΔG計算需設(shè)計可逆過程。對于等溫等壓下的不可逆相變ΔG的計算,在設(shè)計可逆過程時,要用到該溫度下的飽和蒸氣壓,有時需用Clausius-Clapeyron方程求得。
例1(中國海洋大學(xué)2005年物理化學(xué)碩士研究生試題) 結(jié)霜后的早晨冷而干燥,在-5℃,當大氣中的水蒸氣分壓降至266.6Pa時,霜會變?yōu)樗魵鈫??若要使霜存在,水蒸氣的分壓要有多大?已知水的三相點:273.16K,611Pa,水的ΔvapHm(273K)=45.05kJ·mol-1,ΔfusHm(273K)=6.01kJ·mol-1,并假設(shè)水蒸氣為理想氣體,ΔvapHm和ΔfusHm為常數(shù)[2]。
解在-5℃,266.6Pa時,霜會不會變?yōu)樗魵?,該過程為等溫等壓過程,判斷該過程的方向性可用ΔG判據(jù)。由于該過程為不可逆相變,應(yīng)設(shè)計可逆過程,要用到-5℃時固體水(冰)的飽和蒸氣壓。根據(jù)已知條件中的摩爾蒸發(fā)焓ΔvapHm和摩爾熔化焓ΔfusHm可求出摩爾升華焓,再根據(jù)三相點和Clausius-Clapeyron方程可求得-5℃冰的飽和蒸氣壓。
首先求冰的摩爾升華焓:
ΔsubHm=ΔvapHm+ΔfusHm=51.06kJ·mol-1
再根據(jù)Clausius-Clapeyron方程,計算-5℃(268.15K) 時冰的飽和蒸氣壓p2。
設(shè)計可逆過程求ΔG:
例2(南京大學(xué)2003年物理化學(xué)碩士研究生試題) 已知100kPa下,苯和甲苯的沸騰溫度和汽化熱分別為353K、30.72kJ·mol-1和383K、32.00kJ·mol-1(汽化熱可視為與溫度無關(guān))。今以苯和甲苯組成理想溶液。試問若使該溶液在100kPa,373K沸騰,其液相組成應(yīng)為如何?設(shè)所指條件下溶液和氣體視為理想的。
再利用拉烏爾定律求出液相中苯的物質(zhì)的量分數(shù)x苯,即:
例3(中國科學(xué)院研究生院2007年物理化學(xué)碩士研究生試題) 苯的正常沸點為80.15℃,它在10℃時的蒸氣壓為5966.2Pa,求:
(1) 298.2K時,液態(tài)苯變?yōu)闅鈶B(tài)苯的標準生成吉布斯函數(shù)之差;
(2) 298.2K時,下列平衡C6H6(l)=C6H6(g)的標準平衡常數(shù)。
ΔvapHm=33589.9J·mol-1
則可以求得任意溫度下的苯的飽和蒸氣壓。
利用Clausius-Clapeyron方程可求出298.2K時C6H6(l)的飽和蒸氣壓p*:
例4(廈門大學(xué)2005年物理化學(xué)碩士研究生試題)已知水在293K時的表面張力γ=0.07275N·m-1,摩爾質(zhì)量M=0.018kg·mol-1,密度ρ=103kg·m-3。273K時水的飽和蒸氣壓為610.5Pa,在273~293K溫度區(qū)間水的摩爾汽化熱ΔvapHm=40.67kJ·mol-1,求293K、水滴半徑r′=10-9m時,水的飽和蒸氣壓。
解求293K,水滴半徑r′=10-9m時,水的飽和蒸氣壓,需先求出293K時平液面水的飽和蒸氣壓p0。根據(jù)已知條件:在273~293K 溫度區(qū)間內(nèi)水的摩爾汽化熱ΔvapHm=40.67kJ·mol-1,利用Clausius-Clapeyron方程可求出p0。再根據(jù)開爾文公式,可求出293K水滴半徑r′=10-9m時水的飽和蒸氣壓。
從以上例子可以總結(jié)出,若解題時需要某物質(zhì)的飽和蒸氣壓,而已知條件中有該物質(zhì)的相變焓ΔHm或該物質(zhì)在不同溫度下的飽和蒸氣壓等數(shù)據(jù)時,一般可考慮用Clausius-Clapeyron方程,先求出該物質(zhì)的飽和蒸氣壓,然后進一步計算出題中所需的物理量。
[1] 韓德剛,高執(zhí)棣,高盤良.物理化學(xué).北京:高等教育出版社,2001
[2] 沈文霞.物理化學(xué)核心教程.北京:科學(xué)出版社,2004