陳寅,陳傳新,張華,夏正東
(中南電力設(shè)計院,湖北武漢430071)
避雷線塔是換流站重要的高聳結(jié)構(gòu)構(gòu)筑物。風(fēng)荷載是其主要的設(shè)計荷載。目前還沒有相關(guān)的設(shè)計規(guī)范對避雷線塔風(fēng)振系數(shù)的取值提出相關(guān)標(biāo)準(zhǔn),為了方便設(shè)計,本文將根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)《建筑結(jié)構(gòu)荷載規(guī)范》(GB500009-2006)、《高聳結(jié)構(gòu)設(shè)計規(guī)范》(GB50135-2006)以及對比日本荷載規(guī)范2004版中的相關(guān)內(nèi)容(以下將分別簡稱《荷載規(guī)范》、《高聳規(guī)范》和日本規(guī)范),對24.5m(塔型1)和34.5m(塔型2)兩種形式三腳塔以及28m(塔型3)、34.5m(塔型4)兩種形式四角塔的風(fēng)振系數(shù)取值結(jié)果進行比較,進而對避雷塔架結(jié)構(gòu)風(fēng)振系數(shù)計算方法和取值給出建議。
換流站常用幾種避雷塔架2結(jié)構(gòu)形式如圖1所示。
由于避雷塔架現(xiàn)階段并無相關(guān)計算自振周期的經(jīng)驗計算式,本文參考《荷載規(guī)范》高聳鋼結(jié)構(gòu)自振周期近似計算式即:
式中,T1為結(jié)構(gòu)第一自振周期,s;H為全塔高度,m;對于鋼結(jié)構(gòu)計算式中的系數(shù)可取高值,本文取0.013。
由式(1)可得上述4種塔型的自振周期,所得結(jié)果見表1;同時采用通用結(jié)構(gòu)分析與設(shè)計軟件STAAD對上述4種塔型進行建模分析后所得自振周期結(jié)果見表1。
圖1 避雷塔架結(jié)構(gòu)形式
表1 避雷塔自振周期
從表1可以看出,總體來說采用式(1)計算所得結(jié)構(gòu)自振周期與采用Staad軟件所得結(jié)果,除第2塔型略有差別外,其他3種塔型相對符合較好;同時四腳塔以及塔身高度較低時,采用經(jīng)驗公式所得值與采用Staad軟件所得值相對更為吻合。
大氣邊界層中的風(fēng)可分為長周期的平均風(fēng)和短周期的脈動風(fēng)。脈動風(fēng)會引起結(jié)構(gòu)振動,其大小決定于結(jié)構(gòu)的動力特性。風(fēng)振系數(shù)的大小與結(jié)構(gòu)本身特性以及自然條件,其值不僅影響避雷塔的安全和可靠度,也影響到設(shè)計時塔材的選取,中國的建筑結(jié)構(gòu)荷載規(guī)范中,風(fēng)作用的動力影響是通過風(fēng)振系數(shù)來表達的。中國規(guī)范中的βz同時考慮了風(fēng)的脈動和結(jié)構(gòu)的風(fēng)振效應(yīng),其值沿高是變化的;而日本規(guī)范對于結(jié)構(gòu)整體采用的陣風(fēng)影響因子來描述。
1)《荷載規(guī)范》中規(guī)定對于一般懸臂結(jié)構(gòu),如塔架等高聳結(jié)構(gòu),均可僅考慮第一振型的影響。結(jié)構(gòu)在z高度處的風(fēng)振系數(shù)βz可按式(2)來進行計算:
式中,ε為脈動增大系數(shù);v為脈動影響系數(shù);θB為構(gòu)筑物迎風(fēng)面在z高度處的寬度B與底部寬度B0的比值;θv為脈動影響系數(shù)的修正系數(shù);φz為振型系數(shù);μz為風(fēng)壓高度變化系數(shù)。
2)《高聳規(guī)范》中規(guī)定自立式高聳結(jié)構(gòu)在z高度處的風(fēng)振系數(shù)βz可按式(3)確定:
式中,ξ為脈動增大系數(shù);ε1為風(fēng)壓脈動和風(fēng)壓高度等的影響系數(shù);ε2為振型、結(jié)構(gòu)外形的影響系數(shù)。
3)日本規(guī)范中對于結(jié)構(gòu)在風(fēng)荷載作用下的風(fēng)振響應(yīng)采用整體的陣風(fēng)影響因子來描述,類似與我國規(guī)范的風(fēng)振系數(shù)。在其規(guī)范中對于高度在40m以下,或者設(shè)計風(fēng)速小于40 m/s的柔性結(jié)構(gòu)陣風(fēng)影響因子Gf的計算式如(4):
式中,Gf為陣風(fēng)影響因子;rf為紊流因子Bf為 背 景 激 勵 因 子 ,Bf=1-1/;IH為參考高度處的紊流度,IH=0.1(H/ZG)-a-0.05;LH為參考高度處的紊流尺度,LH=100(H/30)0.5;ZG為梯度風(fēng)高度;a為風(fēng)剖面指數(shù)律指數(shù)。
該場地為B類地貌(對應(yīng)于日本規(guī)范的II類地貌),50年一遇基本風(fēng)壓取w0=0.5 kN/m2。分別采用公式(2)、(3)和(4)式對上述4種避雷塔進行計算。1)采用Staad分析軟件分析所得自振周期進行風(fēng)振系數(shù)計算
從表2和表3可看出,分別采用荷載規(guī)范和高聳規(guī)范計算所得4種避雷塔架的風(fēng)振系數(shù)值是一致的;同時可以看出2種方法計算得到的風(fēng)振系數(shù)均隨著高度的增加而增大,其加權(quán)平均值在1.5左右,而文獻[5]中所述格構(gòu)式避雷塔架風(fēng)振系數(shù)取值為1.5,兩者是一致的;對比荷載規(guī)范和高聳規(guī)范的計算式可發(fā)現(xiàn),顯然高聳規(guī)范的計算式更為簡單,更適合工程中應(yīng)用。而根據(jù)日本規(guī)范算出的陣風(fēng)影響因子(相當(dāng)于我國規(guī)范的風(fēng)振系數(shù))的值在1.8左右,比采用國內(nèi)規(guī)范所得結(jié)果要大20%左右。
根據(jù)文獻[4]中所述,對干字型輸電塔架分別采用理論計算與荷載規(guī)范中的計算式進行計算,兩者所得趨勢,除個別質(zhì)量突變點外,是一致的,規(guī)范所得風(fēng)振系數(shù)值要略偏于保守,由此可知采用日本規(guī)范所得風(fēng)影響因子計算結(jié)構(gòu)所受風(fēng)荷載將更為保守。
表2 不同規(guī)范三腳塔風(fēng)振系數(shù)值
表3 不同規(guī)范四腳塔風(fēng)振系數(shù)值
2)自振周期誤差對風(fēng)振系數(shù)計算結(jié)果的影響
由表1可看出,第2塔形采用Staad有限元分析所得自振周期與采用式(1)所得結(jié)果相差較大,現(xiàn)將兩者計算所得風(fēng)振系數(shù)進行對比,如表4。從表4可看出,Staad所得自振周期與經(jīng)驗公式計算值相差24%,但最終所得風(fēng)振系數(shù)相差8%左右。由此可見采用式(1)計算自振周期,最終所得到得風(fēng)振系數(shù)的誤差范圍是可以接受的,與采用Staad所得結(jié)果相差較小。
表4 不同自振周期所得風(fēng)振系數(shù)值對比(采用《荷載規(guī)范》方法)
通過對不同規(guī)范下風(fēng)振系數(shù)計算結(jié)果進行比較,可得到以下結(jié)論:
1)采用荷載規(guī)范所建議的自振周期計算式(1)(系數(shù)取0.013),所得格構(gòu)式避雷塔自振周期與采用Staad軟件所得結(jié)果,除第2塔型略有誤差外,其他3種塔型均符合較好。
2)采用式(1)計算所得格構(gòu)式避雷塔自振周期進行風(fēng)振系數(shù)計算,其所得結(jié)果與采用Staad軟件所得結(jié)果相差較小,因此采用式(1)所得格構(gòu)式避雷塔自振周期進行風(fēng)振系數(shù)計算在工程上是可行的。
3)分別采用荷載規(guī)范和高聳規(guī)范計算所得四種格構(gòu)式避雷塔的風(fēng)振系數(shù)值是一致的,其值均隨高度的增加而增大;同時可知高度在35 m及以下的格構(gòu)式避雷塔,其風(fēng)振系數(shù)加權(quán)平均值在1.5左右。
4)采用高聳規(guī)范計算避雷塔架的風(fēng)振系數(shù),取值較為方便,更適合工程中應(yīng)用。
5)日本規(guī)范算出的陣風(fēng)影響因子(相當(dāng)于我國規(guī)范的風(fēng)振系數(shù))的值在1.8左右,較國內(nèi)規(guī)范大20%左右,比較偏于保守。
6)文獻5中所述格構(gòu)式避雷塔整體風(fēng)振系數(shù)取值為1.5是比較合適的。
[1]GB500092—2006建筑結(jié)構(gòu)荷載規(guī)范[S].北京:中國建筑工業(yè)出版社.
[2]GB50135—2006高聳結(jié)構(gòu)設(shè)計規(guī)范[S].北京:中國建筑工業(yè)出版社.
[3] 張相庭.結(jié)構(gòu)風(fēng)工程:理論.規(guī)范.實踐[M].北京:中國建筑工業(yè)出版社.2006.
[4] 吳海洋,王開明,馮云巍.基于準(zhǔn)穩(wěn)定理論輸電塔風(fēng)振系數(shù)計算方法[J].電力建設(shè),2009(6):36-38.
[5] 中國電力設(shè)計院變電架構(gòu)設(shè)計手冊[M].武漢:中南電力設(shè)計院.2006.