陸海波1,鄧四清2,方 逵3,謝 進(jìn)4
?
一種二元有理插值曲面的兩個(gè)性質(zhì)和點(diǎn)控制問(wèn)題
(1. 湘南學(xué)院數(shù)學(xué)系,湖南郴州423000;2. 韶關(guān)學(xué)院數(shù)學(xué)與信息科學(xué)學(xué)院,廣東韶關(guān) 512005;3. 湖南農(nóng)業(yè)大學(xué)信息科學(xué)技術(shù)學(xué)院,湖南長(zhǎng)沙 410128;4. 合肥學(xué)院數(shù)理系,安徽合肥 230601)
文獻(xiàn)[22]中已經(jīng)構(gòu)造了一種基于函數(shù)值的帶參數(shù)的二元有理插值樣條,它是分子為雙四次、分母為雙二次的有理樣條。論文研究了該種二元有理插值樣條的有界性,給出了插值的逼近表達(dá)式,討論了插值曲面形狀的點(diǎn)控制問(wèn)題。在插值條件不變的情況下,插值區(qū)域內(nèi)任一點(diǎn)插值函數(shù)的值可以根據(jù)設(shè)計(jì)的需要通過(guò)對(duì)參數(shù)的選取修改,從而達(dá)到插值曲面局部修改的目的。
二元插值;二元有理樣條;參數(shù);計(jì)算機(jī)輔助幾何設(shè)計(jì)
曲線曲面的構(gòu)造和數(shù)學(xué)描述是計(jì)算機(jī)輔助幾何設(shè)計(jì)中的核心問(wèn)題?,F(xiàn)在已有很多這種方法,如多項(xiàng)式樣條方法、B樣條及非均勻有理B樣條(NURBS)方法、Bézier方法等等。這些方法已廣泛應(yīng)用于工業(yè)產(chǎn)品的形狀設(shè)計(jì),如飛機(jī)、汽車(chē)、輪船的外形設(shè)計(jì)。通常來(lái)說(shuō),多項(xiàng)式樣條方法一般都是插值型方法,插值曲線和插值曲面均通過(guò)插值點(diǎn)。構(gòu)造這些多項(xiàng)式樣條,其插值條件除插值點(diǎn)處的函數(shù)值外,一般還需要表示方向的導(dǎo)數(shù)值。但在很多實(shí)際問(wèn)題中,導(dǎo)數(shù)值是很難得到的。同時(shí),多項(xiàng)式樣條方法的一個(gè)缺點(diǎn)是它的整體性質(zhì),在插值條件不變的情況下,在“插值函數(shù)關(guān)于插值條件的唯一性”的約束下,無(wú)法進(jìn)行所構(gòu)造的曲線曲面的整體或局部修改。 NURBS方法和Bézier方法是所謂的非插值型方法,用這些方法所構(gòu)造出來(lái)的曲線曲面一般不通過(guò)給定的點(diǎn),給定的點(diǎn)是作為控制點(diǎn)出現(xiàn)的,通過(guò)給定點(diǎn)的變動(dòng)控制插值曲線曲面的形狀。因此,如果能設(shè)計(jì)出一種方法,它兼顧以上兩種類(lèi)型方法的優(yōu)點(diǎn),即既是插值型的,又能進(jìn)行局部或整體修改,同時(shí)又是在便于獲取的插值數(shù)據(jù)下使插值函數(shù)具有簡(jiǎn)潔的顯示表示,將是非常有意義的。
樣條插值是曲線曲面設(shè)計(jì)中強(qiáng)有力的工具,十多年來(lái),有理三次插值曲線曲面以及它們?cè)谛螤羁刂浦械膽?yīng)用已引起了廣泛的興趣。有理四次插值樣條由于其構(gòu)造所花費(fèi)的計(jì)算量太大以及在使用上的不方便而讓人們忽視了其重要的應(yīng)用價(jià)值,因此以前很少有人研究它們。但近年來(lái),有理四次插值樣條是比較熱門(mén)的研究課題。實(shí)際上,在某些情況下有理四次插值樣條有其獨(dú)特的應(yīng)用效果,比如葉懋冬建立的一種具有局部插值性質(zhì)的分母為二次的有理四次樣條,即一個(gè)剖分子區(qū)間上的有理插值式只與鄰近區(qū)間上的插值點(diǎn)有關(guān),一個(gè)插值節(jié)點(diǎn)上的數(shù)值變動(dòng)只影響其鄰近的局部范圍;閔杰等構(gòu)造了一種分母為線性的有理四次插值樣條,研究得到了該種有理四次插值樣條不但具有三次多項(xiàng)式的插值精度而且具有獨(dú)特的逼近性質(zhì);Wang等先構(gòu)造了一種有理四次插值樣條,討論了插值樣條的保單調(diào)性、連續(xù)性以及逼近性質(zhì),然后將其推廣到有理雙四次插值曲面;張彩明等討論了連續(xù)的四次樣條曲面插值。鄧四清等研究了一種空間曲面插值問(wèn)題,給出一種新的矩形分劃上的僅基于函數(shù)值的分片二元有理插值樣條的構(gòu)造方法,每片中帶有關(guān)于方向兩個(gè)參數(shù)和關(guān)于方向的兩個(gè)參數(shù),是分子為雙四次、分母為雙二次的有理函數(shù);導(dǎo)出了關(guān)于插值曲面的光滑性定理,該定理指出,當(dāng)選取其中關(guān)于方向的兩個(gè)參數(shù)滿(mǎn)足一定條件時(shí),插值曲面在插值區(qū)域光滑。更有趣的是,當(dāng)關(guān)于方向的兩個(gè)參數(shù)滿(mǎn)足某種條件時(shí),插值函數(shù)可表示為矩陣形式,并且這種表示具有對(duì)稱(chēng)性,最后還討論了插值基函數(shù)的性質(zhì)。該文研究了此種二元有理插值的邊界性質(zhì)和點(diǎn)控制問(wèn)題。證明了無(wú)論參數(shù)取何正值,在給定的插值區(qū)域內(nèi)插值函數(shù)均有界,稱(chēng)之為插值有界性。同時(shí),給出了插值的逼近表達(dá)式,且表達(dá)式與參數(shù)無(wú)關(guān)。在給定插值數(shù)據(jù)不變的條件下,選擇適當(dāng)?shù)膮?shù)可于插值區(qū)域內(nèi)修改任意點(diǎn)插值函數(shù)值,可將此應(yīng)用于在實(shí)際設(shè)計(jì)中,不改變插值數(shù)據(jù)而修改插值曲面。
此處
且
此處
且
本文的如下部分,作者總假定分劃是等距的,即考慮矩形插值域上的等距矩形分劃,即對(duì)所有的和,有,記之為,且,記之為。對(duì)任一和所有,假設(shè)常數(shù)且=常數(shù),分別記之為與,對(duì)任一,假設(shè)另一組參數(shù),對(duì)所有的亦分別為常數(shù),分別記之為,。于是由文獻(xiàn)[22]知,由式(1)定義的插值函數(shù)可以表示為
其中
(4)
(6)
且
這里
(8)
且
證 明 由式(7)和式(8)得
(10)
同理可得
(12)
令
又
(14)
從而由式(10)知
即定理的結(jié)論成立。
于是有
由式(7)和式(9),得
于是有
從而由式(13)及式(14),有如下的逼近定理:
一般而言,在插值區(qū)域內(nèi),插值曲面的形狀依賴(lài)于插值數(shù)據(jù)。由于插值的唯一性,若插值數(shù)據(jù)給定,則插值曲面的形狀便固定。但是,對(duì)于由式(2)所定義的插值,因其含有參數(shù),故在插值數(shù)據(jù)不變的情況下,當(dāng)參數(shù)變化時(shí)插值函數(shù)也隨之變化。因此,插值曲面隨參數(shù)改變而改變?;诖颂攸c(diǎn),通過(guò)選擇適當(dāng)?shù)膮?shù)能夠修改插值曲面的形狀。
令
所以
(17)
(19)
(20)
(22)
(23)
(25)
將式(17)~式(25)代入式(16),并整理得
(26)
記
則式(26)變?yōu)?/p>
定理3 “中央點(diǎn)-平均值”控制問(wèn)題有解的充分條件是方程式(27)存在正參數(shù)解,,和。
對(duì)二元插值而言,通過(guò)插值數(shù)據(jù)確定插值函數(shù)表達(dá)式的邊界值非常困難,而得到二元插值函數(shù)誤差估計(jì)的表達(dá)式更為困難,這兩個(gè)問(wèn)題該文分別由定理1和定理2圓滿(mǎn)解決。此外,該文還建立了中央點(diǎn)控制的方法,對(duì)任意給定的實(shí)數(shù),由式(16)可以衍生出多種不同的表達(dá)式,因此,通過(guò)“中央點(diǎn)-平均值”控制問(wèn)題的解決,同樣也可以得到多種控制的方案。
[1] Farin G. Curves and surfaces for computer aided geometric design: a practical guide [M]. Academic press, 1988. 28-54.
[2] Foley T A. Local control of interval tension using weighted splines [J]. Computer Aided Geometric Design, 1986, 3(2): 281-294.
[3] Bézier P E. The mathematical basis of the UNISURF CAD system [R]. Butterworth, London, 1986.
[4] Dierck P, Tytgat B. Generating the Bézier points of-spline curve [J]. Computer Aided Geometric Design, 1989, 6(2): 279-291.
[5] Piegl L. On NURBS: a survey [J]. IEEE Computer Graphics and Application, 1991, 11(1): 55-71.
[6] Nielson G M. CAGD’s Top Ten: What to watch [J]. IEEE Computer Graphics and Automation, 1993, 13(1): 35-37.
[7] Kouichi Konno, Hiroaki Chiyokura. An approach of designing and controlling free-form surfaces by using NURBS boundary gregory patches [J]. Computer Aided Geometric Design, 1996, 13(4): 825-849.
[8] Laurie M Wilcox. First and second contributions to surface interpolation [J]. Vision Research, 1999, 39: 2335-2347.
[9] Lin R S. Real-time surface interpolator for 3D parametric surface machining on 3-axis machine tools [J]. Machine Tools and Manufacture, 2000, 40: 1513-1526.
[10] Jiang D H, Liu H N, Wang W G. Test a modified surface wind interpolation scheme for complex terrain in a stable atmosphere [J]. Atmospheric Environment, 2001, 35: 4877-4885.
[11] Peter Comninos. An interpolating piecewise bicubic surface with shape parameters [J]. Computer and Graphics, 2001, 25(4): 463-481.
[12] Rainer Müller. Universal parametrization and interpolation on cubic surfaces [J]. Computer Aided Geometric Design, 2002, 19(4): 479-502.
[13] Duan Qi, Djidjeli K, Price W G, et al. A rational cubic spline based on function values [J]. Computer and Graphics, 1998, 22(4): 479-486.
[14] Duan Qi, Wang L, Twizell E H. A new bivariate rational interpolation based on function values [J]. Information Sciences, 2004, 166: 181-191.
[15] Duan Qi, Zhang Yunfeng, Twizell E H. A bivariate rational interpolation and the properties [J]. Applied Mathematics and Computation, 2006, 179: 190-199.
[16] Duan Qi, Zhang Huanling, Zhang Yunfeng, et al. Bounded property and point control of a bivariate rational interpolating surface [J]. Computers and Mathematics with Applications, 2006, 52: 975-984.
[17] 葉懋冬. 關(guān)于具局部插值性質(zhì)的樣條[J]. 計(jì)算數(shù)學(xué), 1984, 6(2): 138-147.
[18] 閔 杰, 陳邦考. 一種四次有理插值樣條及其逼近性質(zhì)[J]. 高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào), 2007, 29(1): 57-62.
[19] Wang Qiang, Tan Jieqing. Rational quartic spline involving shape parameters [J]. Journal of Information and Computational Science, 2004, 1(1): 127-130.
[20] Wang Qiang, Tan Jieqing. Shape preserving piecewise rational biquartic surfaces [J]. Journal of information and Computational Science, 2006, 3(2): 295-302.
[21] 張彩明, 汪嘉業(yè).連續(xù)的四次樣條曲面插值[J]. 中國(guó)科學(xué)(E輯), 2003, 33(2): 116-126.
[22] 方 逵, 鄧四清, 謝 進(jìn), 等. 一種新的二元有理插值及其性質(zhì)[J]. 工程圖學(xué)學(xué)報(bào), 2010, 31(4): 116-122.
Two Properties and Point Control of Bivariate Rational Interpolating Surface
LU Hai-bo, DENG Si-qing, FANG Kui, XIE Jin
( 1. Department of Mathematics, Xiangnan University, Chenzhou Hunan 423000,China;2. School of Mathematics and Information Science, Shaoguan University, Shaoguan Guangdong 512005, China;3. School of Information Science and Technology, Hunan Agricultural University, Changsha Hunan 410128, China;4. Department of Mathematics and Physics, Hefei University, Hefei Anhui 230601, China )
A bivariaterational interpolation spline with parameters was created in an earlier work which was based on function values only, and this spline is a rational one with biquartic numerator and biquadratic denominator. This paper discusses the spline’s boundary property, the approximation expression of the interpolation and the point control method of the interpolating surface. It is proved that the values of the interpolating function in the interpolation region are bounded no matter what the parameters might be, which is called the boundary property of the interpolation. Also, the approximation expression of the interpolation are derived, which does not depend on the parameters. More important is that the values of the interpolating function at any point in the interpolating region can be modified under the condition that the interpolating data are not changed by selecting the suitable parameters, so the interpolation surface can be modified for the given interpolation data when needed in practical design.
bivariate interpolation; bivariate rational spline; parameter; computer aided geometric design
TP 391;O 241.3
A
1003-0158(2011)03-0028-07
2008-10-13
國(guó)家自然科學(xué)基金資助項(xiàng)目(60773110);湘南學(xué)院科研資助項(xiàng)目(2010Y060);湖南省科技計(jì)劃資助項(xiàng)目(2008FJ3046);韶關(guān)學(xué)院校級(jí)重點(diǎn)扶持學(xué)科建設(shè)項(xiàng)目;湖南省高??萍紕?chuàng)新團(tuán)隊(duì)計(jì)劃支持項(xiàng)目;安徽省教育廳自然科研資助項(xiàng)目(KJ2008B250)
陸海波(1962-),男,湖南耒陽(yáng)人,副教授,主要研究方向?yàn)橛?jì)算機(jī)輔助幾何設(shè)計(jì)。