吳 斌,周 偉,何存富
(北京工業(yè)大學(xué)機(jī)電學(xué)院,北京 100124)
相對于超聲、聲發(fā)射等傳統(tǒng)無損檢測手段,超聲Lamb波具有傳播距離長、檢測效率高等優(yōu)點(diǎn),因而在板類結(jié)構(gòu)的健康監(jiān)測中應(yīng)用廣泛[1-3],如對鋼板、復(fù)合材料板、壓力容器、飛機(jī)機(jī)翼、焊縫、粘結(jié)結(jié)構(gòu)等的無損檢測,特別是板類各種焊接組合結(jié)構(gòu)的檢測逐漸成為學(xué)術(shù)界及工程界的熱點(diǎn)[4]。M.Arone[5]利用空氣耦合傳感器對焊接鋁板的焊縫缺陷進(jìn)行了檢測,通過試驗(yàn)證明了Lamb波對檢測焊縫結(jié)構(gòu)缺陷的可行性及其優(yōu)勢;Zheng Fan[6]則利用數(shù)值仿真和試驗(yàn)的方法,通過在焊縫端部激勵Lamb波,證明了焊縫模態(tài)的存在,闡述了Lamb波在焊縫結(jié)構(gòu)傳播中能量束縛(Energy Trapping)的現(xiàn)象及原因。然而,由于Lamb波在板中是沿各個方向傳播的,并且隨著傳播距離的增加會發(fā)生頻散和能量衰減現(xiàn)象,特別是遇到焊縫或肋等結(jié)構(gòu)時還會產(chǎn)生噪聲,給信號分析帶來困難,因而Lamb波穿透焊縫規(guī)律的文章報道較少。
數(shù)值仿真作為一種有效的分析方法在對Lamb波的傳播研究中起到了非常重要的作用[7],通過有限元仿真可以模擬具體的導(dǎo)波模態(tài),研究其傳播特性[8],還可以研究導(dǎo)波模態(tài)與各種復(fù)雜結(jié)構(gòu)相互作用的規(guī)律,為設(shè)計導(dǎo)波試驗(yàn)及工程檢測提供理論依據(jù),大大減少試驗(yàn)的盲目性,提高工作效率。
文中以大型儲罐底板的搭接結(jié)構(gòu)作為模型,利用數(shù)值模擬的方法,通過在板的邊緣加載波結(jié)構(gòu)激勵出單一的基礎(chǔ)模態(tài),分別研究了單一的A0模態(tài)和S0模態(tài)在搭接板中傳播的信號特征和能量反射與透射的規(guī)律,并且研究了搭接長度對信號的影響。
大型儲罐底板在建造過程中是由中幅板通過搭接、對接等方式焊接而成,板與板之間通過角焊縫的搭接是其中一種應(yīng)用較為普遍的接頭方式,如圖1所示。上下底板之間僅靠角焊縫連接,在建立有限元模型過程中,依據(jù)簡化原則,僅將焊縫區(qū)視為理想連接,而由于搭接區(qū)域并沒有直接相連,考慮到波動場的振幅非常小,可視其為自由邊界[9]。模型的材料參數(shù)如表1所示,這里只考慮搭接結(jié)構(gòu)對Lamb波傳播的影響,所以假設(shè)焊縫與其相連的底板有相同的材料參數(shù),且不考慮材料的衰減屬性。劃分網(wǎng)格時,要滿足模擬波動場傳播的基本要求,網(wǎng)格尺寸小于對應(yīng)激勵頻率下最短波長的1/10,同時,時間步長也要小于波傳播一個網(wǎng)格距離所需要的時間。
圖1 儲罐底板及搭接結(jié)構(gòu)示意
表1 有限元模型的材料參數(shù)
在Lamb波的頻散曲線上,任何頻率下都存在至少兩個模態(tài),且模態(tài)通常是頻散的,這意味著在接收到的檢測信號中將會存在多個波包,且大部分時候它們會相互交疊,使信號不易分析。而在數(shù)值模擬中,按模態(tài)的波結(jié)構(gòu)對模型進(jìn)行激勵能得到相應(yīng)單一模態(tài)[10]。其原理如圖2所示,提取某激勵頻率A0或S0的波結(jié)構(gòu)(見圖2(a)),將其面內(nèi)位移Ux和離面位移Uy分別乘以漢寧窗調(diào)制的正弦波(見圖2(b)),作為邊界條件再加載到模型左邊緣相應(yīng)的節(jié)點(diǎn)上(見圖2(c))。
圖2 按波結(jié)構(gòu)加載激勵單—模態(tài)的原理圖
雖然激勵出了單一模態(tài),但在結(jié)構(gòu)中由于模態(tài)轉(zhuǎn)換等原因,還是會產(chǎn)生模態(tài)之間的相互疊加,使得在信號分析時產(chǎn)生困難,因此需要將接收信號中的S0和A0分離開。事實(shí)上,A0模態(tài)具有對稱的離面位移和反對稱的面內(nèi)位移,所以提取模型任一位置(x1)上下表面的離面位移進(jìn)行相加,就會得到只包含A0模態(tài)的信號,相減則得到S0模態(tài)的信號,用公式表達(dá)如下:
相反,S0模態(tài)具有對稱的面內(nèi)位移和反對稱的離面位移,因此對提取的面內(nèi)位移進(jìn)行相加得到了S0模態(tài)的信號,相減則得到了A0模態(tài)的信號。
選取厚3 mm、長600 mm的鋼板作為模型進(jìn)行數(shù)值分析,由于板的厚度較小,考慮到實(shí)際焊接過程中無法做到完全角焊縫連接,因此將模型簡化為較小長度的普通焊縫連接方式,具體尺寸見圖3。
圖3 仿真模型尺寸示意
在模型的左端進(jìn)行單一的S0和A0模態(tài)激勵,分別在上下底板的中點(diǎn)處提取模型的接收信號進(jìn)行分析。
激勵信號是中心頻率為200 kHz,5個周期漢寧窗調(diào)制的正弦波。圖4,5示出了單一A0模態(tài)激勵情況下經(jīng)過式(1)和式(2)計算后得到的接收信號,由于結(jié)構(gòu)的復(fù)雜性,導(dǎo)致板中的信號比較散亂,因此只分析能量相對較大的反射及透射信號。
圖4 200 kHz的A0模態(tài)激勵,下底板中點(diǎn)處的接收信號
圖5 200 kHz的A0模態(tài)激勵,上底板中點(diǎn)處的接收信號
圖4示出了下底板的接收信號,主要包括入射信號及結(jié)構(gòu)的反射信號。圖4(a)示出下底板中點(diǎn)處的A0信號,可以看出,入射信號為單一的A0模態(tài)激勵信號,而反射信號主要有兩部分組成,一是由焊縫反射的回波;二是入射波穿過焊縫后由下底端面反射的回波,焊縫的反射回波明顯要大于下底端面的反射回波,說明焊縫結(jié)構(gòu)反射回了大部分A0模態(tài)。圖4(b)示出入射的A0模態(tài)傳播至焊縫結(jié)構(gòu)后經(jīng)模態(tài)轉(zhuǎn)換變?yōu)镾0模態(tài)的反射信號,同樣有兩個比較明顯的波包,一個是在焊縫處直接反射的S0信號;另一個是傳播至下底端面反射回來的S0信號,但從波包幅值上看能量較小。
圖5示出上底板的透射信號,其中圖5(a)示出透射的A0信號,與反射對應(yīng),一部分由入射波經(jīng)焊縫直接透射到上底板,另一部分則是下底端面的反射回波經(jīng)焊縫透射到上底板;圖5(b)示出模態(tài)轉(zhuǎn)換后經(jīng)焊縫透射到上底板的S0信號。
圖6,7示出單一S0模態(tài)激勵情況下的接收信號。圖6(a)示出下底板的接收信號,其特征與A0模態(tài)激勵近似,與之相比,焊縫反射的S0信號要小于下底端面反射的S0信號,說明以面內(nèi)位移為主的S0模態(tài)在經(jīng)過焊縫結(jié)構(gòu)時,穿透的能量要較A0模態(tài)多,但此時經(jīng)模態(tài)轉(zhuǎn)換后反射的A0模態(tài)信號也比較大,容易對S0信號產(chǎn)生干擾。
圖6 200 kHz的S0模態(tài)激勵,下底板中點(diǎn)處的接收信號
圖7示出透射到上底板的信號。從圖7(a)中可以看出,由焊縫直接透射的S0信號要大于下底端面回波透射的信號,同樣說明S0模態(tài)在經(jīng)過焊縫時透射了較多的能量。圖7(b)示出模態(tài)轉(zhuǎn)換后透射到上底板的A0信號。
通過比較圖4,5中的模態(tài)轉(zhuǎn)換信號可以看出,由A0轉(zhuǎn)換為S0的信號要遠(yuǎn)遠(yuǎn)小于由S0轉(zhuǎn)換為A0的信號。
圖7 200 kHz的S0模態(tài)激勵,上底板中點(diǎn)處的接收信號
總結(jié)以上分析,由于結(jié)構(gòu)的特殊性,導(dǎo)致接收信號比較雜散,無法直接分析導(dǎo)波反射和透射的能力,因此引入反射系數(shù)和透射系數(shù)[11-12]的概念對接收信號進(jìn)行量化處理,以便評價導(dǎo)波在搭接結(jié)構(gòu)中的傳播特性。
文獻(xiàn)[3]詳細(xì)闡述并推導(dǎo)了Lamb波的能量系數(shù),主要有兩種計算方法,一種要用到沿厚度方向上的位移和應(yīng)力;另一種只需要給定位置的表面位移,經(jīng)過對比發(fā)現(xiàn)兩者能很好地吻合,考慮到計算的便捷性,這里利用后者的計算方法并結(jié)合搭接板中的信號特征,定義Lamb波在搭接結(jié)構(gòu)中的反射系數(shù)和透射系數(shù)如下:
反射系數(shù):
透射系數(shù):
其中U代表由式(1),(2)計算得到的單一A0和S0信號波包的最大幅值,無論是計算反射系數(shù)還是透射系數(shù),都使用下底板的入射信號U(in)作為基準(zhǔn);下標(biāo)m代表模態(tài),1為A0模態(tài),2為S0模態(tài);下標(biāo)n代表波包,1為焊縫反射或直接透射的信號波包,2為下底端面反射或透射的信號波包。
圖8示出不同頻率下分別用A0模態(tài)和S0模態(tài)進(jìn)行激勵得到的各波包能量系數(shù)。
圖8 不同頻率單模態(tài)激勵情況下的能量系數(shù)示意
為避免高階模態(tài)對信號分析的影響,只在基礎(chǔ)模態(tài)范圍內(nèi)討論,通過觀察比較可得到如下結(jié)論:
(1)在A0模態(tài)激勵情況下,隨著頻率的增高焊縫反射回下底板的能量(R11)增大,相應(yīng)下底端面回波的能量(R12)和透射到上底板的能量(T11)都在減小,雖然在高頻區(qū)域焊縫透射能量(T11)有所增大,但總能量卻在減小,其中反射的能量呈緩慢下降的趨勢,透射能量下降的幅度較大,且反射能量一直比透射能量大,說明在A0模態(tài)激勵下,低頻要比高頻的穿透焊縫能力強(qiáng),但最多穿越一半的能量,而且模態(tài)轉(zhuǎn)換的能量所占比重極小,可以忽略不計。
(2)在S0模態(tài)激勵情況下,能量主要集中在焊縫直接透射到上底板的S0信號(T21)和下底端面反射的S0信號(R22)上,其中透射S0信號(T21)在低頻占據(jù)絕大部分能量,但隨著頻率增高,下降趨勢明顯,下底端面回波(R22)呈先上升后下降的趨勢,且在高頻占主要地位,而此時模態(tài)轉(zhuǎn)換后透射的A0模態(tài)所占比重也越來越大,說明頻率越高,模態(tài)轉(zhuǎn)換的信號能量越大。同A0模態(tài)類似,S0模態(tài)激勵的總能量也隨頻率的增高而整體下降,其中透射能量下降明顯,而反射能量先上升后下降。
(3)對比A0和S0,在同頻率下,A0激勵在結(jié)構(gòu)中損失的能量要比S0大,且能量大多被焊縫反射,S0在低頻區(qū)域穿透焊縫的能力很強(qiáng),但在高頻時衰減同樣很大,且容易受到模態(tài)轉(zhuǎn)換信號的影響。
根據(jù)標(biāo)準(zhǔn)API 650《鋼制焊接石油儲罐》的要求,搭接長度至少要達(dá)到板厚的5倍以上。在儲罐底板的建造過程中,會依據(jù)實(shí)際情況來確定搭接的長度,由分析可知,搭接結(jié)構(gòu)會影響檢測信號,因此改變上述模型的搭接長度得到各個信號的能量系數(shù)如圖9所示,選擇激勵頻率為200 kHz,通過計算得到A0和S0的波長分別為15.5和26.1 mm。
由圖9可以看出,當(dāng)搭接長度接近入射波長時,會對有些信號產(chǎn)生影響,比如S0模態(tài)激勵時,搭接長度為2 cm和3 cm時沒有焊縫的反射信號(R21);隨著搭接長度的增加,各個接收信號的能量系數(shù)都趨于穩(wěn)定,而且信號之間會拉開距離。由此可知,對搭接結(jié)構(gòu)進(jìn)行檢測時可根據(jù)其搭接長度的不同,采用不同的激勵頻率,如果其相對較短,可選擇較低頻率(波長較長)的信號繞過焊接結(jié)構(gòu),得到比較單一的檢測波形,以便進(jìn)一步信號處理;如果搭接長度相對較長,則可選擇高頻率(波長較短)的信號,利用長距離來拉開焊縫產(chǎn)生信號及底面反射信號,也可適當(dāng)提高信號的分辨率。
以儲罐底板的搭接結(jié)構(gòu)作為模型,對通過焊縫連接的板類組合結(jié)構(gòu)進(jìn)行了仿真試驗(yàn),研究了單一的Lamb波模態(tài)在組合結(jié)構(gòu)中的信號特征以及傳播規(guī)律,得到結(jié)論如下:
圖9 不同搭接長度單模態(tài)激勵情況下的能量系數(shù)示意
(1)由于搭接結(jié)構(gòu)對Lamb波傳播的影響,板中主要出現(xiàn)4種信號,分別為:焊縫直接反射信號、焊縫直接透射信號、下底端面反射信號和下底端面回波通過焊縫透射信號;
(2)不同頻率激勵情況下,低頻Lamb波在搭接結(jié)構(gòu)中損失的能量更少,隨著頻率的增高,S0模態(tài)和A0模態(tài)的能量損失都有增大的趨勢,而同一頻率激勵情況下,A0損失的能量要大于S0,相比而言,低頻S0模態(tài)要比低頻的A0模態(tài)更容易穿透焊縫到達(dá)上底板中,但隨著頻率的增高,這種穿透能力都大幅度下降;
(3)搭接長度對檢測信號的頻率選擇產(chǎn)生一定的影響,可根據(jù)實(shí)際情況使接收信號形成單一的波包,以方便后續(xù)的分析。
[1] 劉增華,何存富,吳斌,等.利用蘭姆波對板狀結(jié)構(gòu)中隱蔽腐蝕缺陷的檢測[J].實(shí)驗(yàn)力學(xué),2005,20(2):166-170.
[2] Benmeddour F,Grondel S,Assaad J.Study of the Fundamental Lamb Modes Interaction with Asymmetrical Discontinuities[J].NDT&E International,2008,41:330-340.
[3] Benmeddour F,Grondel S,Assaad J.Study of the Fundamental Lamb Modes Interaction with Symmetrical Notches[J].NDT&E International,2008,41:1 -9.
[4] Rucka M.Experimental and Numerical Study on Damage Detection in an L-joint Using Guided Wave Propagation[J].Journal of Sound and Vibration,2010,329:1760-1779.
[5] Arone M,Cerniglia D,Nigrelli V.Defect Characterization in Al Welded Joints by Non-contact Lamb Wave Technique[J].Journal of Materials Processing Technology,2006,176:95 -101.
[6] Fan Z,Lowe M J S.Elastic Waves Guided by a Welded Joint in a Plate[J].Proceedings of the Royal Society,2009,465:2053 -2068.
[7] 周正干,馮海偉.超聲導(dǎo)波檢測技術(shù)的研究進(jìn)展[J].無損檢測,2006,28(2):57 -63.
[8] 魏運(yùn)飛,盧超,張在東.薄板聲—超聲檢測時蘭姆波傳播模式的有限元模擬[J].無損檢測,2009,31(7):520-524.
[9] Kleiner D,Edwards C,Sanderson R.Condition Monitoring of Large Oil and Chemical Storage Tanks Using Long Rang Ultrasonic Testing(LRUT)[C].I Mech E Seminar:Storage Tanks,London,16 June 2005.
[10] Terrien N,Osmont D,Royer D.A Combined Finite Element and Modal Decomposition Method to Study the Interaction of Lamb Modes with Micro-defects[J].Ultrasonics,2007,46:74 -88.
[11] Auld BA.Acoustic Fields and Waves in Soilds[M].vol.Ⅱ.New York:Wiley,1973.
[12] Moulin E,Assaad J,Delebarre C.Modeling of Lamb Waves Generated by Integrated Transducers in Composite Plates Using a Coupled Finite Element-normal Modes Expansion Method[J].J Acoust Soc Am 2000,107(1):87-94.