国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

例談圓錐曲線(xiàn)中非對(duì)稱(chēng)問(wèn)題的處理策略

2023-08-11 00:38金保源
中學(xué)數(shù)學(xué)研究 2023年3期
關(guān)鍵詞:韋達(dá)非對(duì)稱(chēng)思路

金保源

在圓錐曲線(xiàn)問(wèn)題中,將直線(xiàn)方程與曲線(xiàn)方程聯(lián)立后,消去x或y,得到方程再結(jié)合韋達(dá)定理來(lái)進(jìn)行其它運(yùn)算是常見(jiàn)的解題思路,但是在某些問(wèn)題中可能會(huì)涉及需要計(jì)算兩根系數(shù)不相同的代數(shù)式.像這種“非對(duì)稱(chēng)”的韋達(dá)定理結(jié)構(gòu),通常是無(wú)法根據(jù)韋達(dá)定理直接求出的,大部分學(xué)生遇到這樣的問(wèn)題束手無(wú)策.本文以一道高三調(diào)研試題為例,提出了非對(duì)稱(chēng)韋達(dá)問(wèn)題常見(jiàn)的六種解決思路,供讀者參考.

解決問(wèn)題時(shí),只有我們真正把握住問(wèn)題的本質(zhì),才能真正的理解問(wèn)題進(jìn)而解決問(wèn)題.“不對(duì)稱(chēng)”憑借線(xiàn)性運(yùn)算、作商、乘方等可變?yōu)槟軌颉爸苯印睉?yīng)用韋達(dá)的“對(duì)稱(chēng)”情況,這是本文解法的思想根源.一般地,高中解幾試題中的所謂“不對(duì)稱(chēng)”其實(shí)也屬于“對(duì)稱(chēng)”,這是由二次曲線(xiàn)本身所決定的,其不對(duì)稱(chēng)僅僅是代數(shù)形式上“不直接”.在教學(xué)中,教師只有從更深的角度揭露本質(zhì),才能真正讓學(xué)生在數(shù)學(xué)學(xué)習(xí)中得到樂(lè)趣,開(kāi)拓學(xué)生眼界,開(kāi)闊學(xué)生思維,培育學(xué)生優(yōu)秀的個(gè)性,真正達(dá)到培養(yǎng)學(xué)生數(shù)學(xué)核心素養(yǎng)的目的.[JP]

參考文獻(xiàn)

[1]劉紫陽(yáng).解析幾何中的非對(duì)稱(chēng)問(wèn)題的處理策略[J].中學(xué)生理科應(yīng)試,2019(11):16-18.

[2]高用.例談圓錐曲線(xiàn)中的非對(duì)稱(chēng)問(wèn)題[J].中學(xué)數(shù)學(xué)研究(華南師大),2021(1):24-27.

猜你喜歡
韋達(dá)非對(duì)稱(chēng)思路
不同思路解答
方程之思——從丟番圖到韋達(dá)
圓錐曲線(xiàn)中“韋達(dá)結(jié)構(gòu)與準(zhǔn)韋達(dá)結(jié)構(gòu)”問(wèn)題探析
圓錐曲線(xiàn)中“韋達(dá)結(jié)構(gòu)與準(zhǔn)韋達(dá)結(jié)構(gòu)”問(wèn)題探析
非對(duì)稱(chēng)Orlicz差體
拓展思路 一詞多造
換個(gè)思路巧填數(shù)
韋達(dá)遞降(升)法及其應(yīng)用
點(diǎn)數(shù)不超過(guò)20的旗傳遞非對(duì)稱(chēng)2-設(shè)計(jì)
思路一變 輕松賺錢(qián)
靖州| 佛坪县| 北宁市| 衡阳县| 潍坊市| 新疆| 宜君县| 榆中县| 山东省| 贡嘎县| 万载县| 庄浪县| 大港区| 林州市| 城固县| 香港 | 岳阳市| 广西| 会东县| 阳春市| 长乐市| 睢宁县| 枣强县| 福贡县| 梅河口市| 德清县| 武邑县| 慈利县| 奈曼旗| 钟山县| 长春市| 喜德县| 五大连池市| 广宗县| 咸宁市| 贵德县| 漳州市| 虞城县| 黎川县| 庆安县| 吉林市|