徐索文,劉培慶
(中山大學(xué)藥學(xué)院藥理毒理學(xué)實(shí)驗(yàn)室,廣東廣州 510006)
動(dòng)脈粥樣硬化(atherosclerosis,AS)是一種以動(dòng)脈壁脂質(zhì)蓄積為特征的復(fù)雜病變過(guò)程,也是一種具有慢性炎癥和免疫性特征的病理過(guò)程,是心血管病、中風(fēng)以及外周血管病的主要病因,而泡沫細(xì)胞的形成是動(dòng)脈硬化形成的核心環(huán)節(jié)[1]。巨噬細(xì)胞或平滑肌細(xì)胞(smooth muscle cells,SMC)可以通過(guò)其表面的清道夫受體(scavenger receptors,SR)攝取氧化低密度脂蛋白(oxLDL),而這一過(guò)程不依賴于細(xì)胞內(nèi)膽固醇水平的負(fù)反饋調(diào)節(jié)[2]。
凝集素樣 oxLDL受體1(lectin-like oxLDL receptor-1,LOX-1)[3]屬于E類清道夫家族成員,是第一個(gè)被確定的參與內(nèi)皮細(xì)胞(endothelial cells,EC)功能失調(diào)、SMC凋亡以及巨噬細(xì)胞泡沫化的關(guān)鍵受體,在AS發(fā)生發(fā)展過(guò)程中起著重要的作用。LOX-1屬于多配體受體,受到體內(nèi)(高血壓、AS、缺血再灌注、心肌肥厚等)和體外多種因素(腫瘤壞死因子-α、oxLDL、血管緊張素Ⅱ、剪切力等)的調(diào)節(jié),本文就LOX-1的表達(dá)調(diào)控及其在AS中的作用進(jìn)行綜述。
Sawamura等[3]于1997年首次在牛EC上發(fā)現(xiàn)了LOX-1,它是一種在牛EC上豐富表達(dá)的Ⅱ型單鏈跨膜蛋白,按結(jié)構(gòu)分類,屬于C型植物凝集素(lectin)家族分子。LOX-1的序列和結(jié)構(gòu)分析提示[4],它與已知的A族SR(SR-A)及B族SR(SR-B1),不具結(jié)構(gòu)上的同源性,而與自然殺傷細(xì)胞受體(如CD94和NKR-P1)有高度的同源性,后者具有識(shí)別靶細(xì)胞和激活自然殺傷細(xì)胞的作用。LOX-1先是以一種40 ku前體蛋白的形式合成,隨后其胞外C端區(qū)域的4個(gè)潛在的糖基化位點(diǎn)被糖基化生成48 ku的LOX-1成熟體。LOX-1由4個(gè)蛋白結(jié)構(gòu)域組成[4],分別是一個(gè)短的N端胞質(zhì)結(jié)構(gòu)域、跨膜結(jié)構(gòu)域、頸結(jié)構(gòu)域以及C端的凝集素樣結(jié)構(gòu)域。凝集素樣結(jié)構(gòu)域是個(gè)高度保守的功能區(qū)域,特別是位于該區(qū)域的6個(gè)半胱氨酸殘基具有與配體結(jié)合、內(nèi)化和攝取功能。人LOX-1基因定位于第12號(hào)染色體12p12.3-13.2區(qū),與家族性高血壓相關(guān)基因有重疊,編碼273個(gè)氨基酸。人LOX-1包含6個(gè)外顯子和5個(gè)內(nèi)含子,前3個(gè)外顯子對(duì)應(yīng)于LOX-1的5'-非編碼區(qū)和部分細(xì)胞質(zhì)域、剩余的胞質(zhì)域和跨膜域、頸域,其余3個(gè)外顯子編碼凝集素樣結(jié)構(gòu)域和 3'-非編碼區(qū)。LOX-1 cDNA的3'端非編碼區(qū)含有7個(gè)AUUUA重復(fù),因而它在體內(nèi)的半衰期很短[5]。
LOX-1的生物學(xué)功能[6-9]主要包括:① 介導(dǎo) oxLDL結(jié)合、內(nèi)吞與降解;②介導(dǎo)EC對(duì)衰老細(xì)胞和凋亡細(xì)胞的吞噬;③介導(dǎo) EC及 SMC凋亡;④ 促進(jìn)活性氧(reactive oxygen speices,ROS)的產(chǎn)生;⑤介導(dǎo)單核細(xì)胞-EC黏附;⑥ 介導(dǎo)巨噬細(xì)胞泡沫化;⑦介導(dǎo)血小板-EC的相互作用;⑧介導(dǎo)肝臟清除oxLDL。
LOX-1是一多配體受體[4,10],其配體主要包括化學(xué)修飾的低密度脂蛋白、糖基化終產(chǎn)物、C-反應(yīng)蛋白、衰老的紅細(xì)胞和熱激蛋白-70等。LOX-1具有配體選擇性,如LOX-1只能與修飾的LDL結(jié)合(如oxLDL,乙酰化的LDL,及次氯酸鹽修飾的LDL),而不能與天然LDL結(jié)合。LOX-1通過(guò)其C端凝集素樣結(jié)構(gòu)域與這些配體的結(jié)合提示LOX-1具有廣泛的生理功能,但是LOX-1 N端胞漿域的功能尚不明確,該結(jié)構(gòu)域是否在oxLDL及其他配體激活LOX-1信號(hào)通路中的作用有待進(jìn)一步研究。
LOX-1在體內(nèi)生理?xiàng)l件下表達(dá)于主動(dòng)脈內(nèi)膜及胎盤、肺、腦和肝等富含血管的器官,在胸及頸主動(dòng)脈的AS斑塊中表達(dá)較高。LOX-1在體外最早發(fā)現(xiàn)于培養(yǎng)的主動(dòng)脈內(nèi)皮細(xì)胞,后來(lái)發(fā)現(xiàn),在培養(yǎng)的巨噬細(xì)胞、激活的SMC、血小板、成纖維細(xì)胞、心肌細(xì)胞和關(guān)節(jié)軟骨細(xì)胞也可被誘導(dǎo)表達(dá)。LOX-1分布的廣泛性提示LOX-1與多種心血管疾病密切相關(guān)。LOX-1在生理狀態(tài)下活化狀態(tài)較低,在體外,多種刺激因子可以上調(diào)LOX-1 表達(dá)[4,10-14],包括促動(dòng)脈硬化因子(如oxLDL、非對(duì)稱二甲精氨酸和同型半胱氨酸),促炎因子(如腫瘤壞死因子-α、脂多糖、C-反應(yīng)蛋白、白細(xì)胞介素-1和γ干擾素),促感染因素(如肺炎衣原體感染和人巨細(xì)胞病毒感染),促糖尿病因子(如高糖和糖基化終產(chǎn)物),促高血壓因子(如血管緊張素Ⅱ、內(nèi)皮素-1和醛固酮)以及剪切力等。在體內(nèi)多種疾病狀態(tài)下[4,10,13,15-18](如 AS、高血壓、糖尿病、心肌肥厚、缺血再灌注、肥胖、移植反應(yīng)和肥胖等),LOX-1表達(dá)也明顯上調(diào)。
Nagase等[5]報(bào)道大鼠 LOX-1啟動(dòng)子區(qū)域有TATA盒,CAAT盒以及多個(gè)順式作用元件,如 NF-κB、激活蛋白-1/2(activator protein-1/2,AP-1/2)及剪切應(yīng)力效應(yīng)元件(shear stress response element,SSRE)。Mehta 等[4]的研究結(jié)果提示這些氧化-還原敏感的轉(zhuǎn)錄因子(如NF-κB和AP-1)介導(dǎo)的LOX-1表達(dá)上調(diào)與多條信號(hào)通路有關(guān),如p38MAPK,ERK,PKB/Akt,PKC和PTK等。研究還發(fā)現(xiàn)人LOX-1基因的5'啟動(dòng)子/增強(qiáng)子(約2500 bp)區(qū)域存在TATA盒和CAAT盒(位于轉(zhuǎn)錄起始位點(diǎn)上游 -20 bp~-99 bp),且近端180 bp(-150 bp~+30 bp)對(duì)LOX-1基礎(chǔ)啟動(dòng)子活性至關(guān)重要。后續(xù)研究發(fā)現(xiàn)-1499 bp~-1599 bp區(qū)域是oxLDL誘導(dǎo)人LOX-1啟動(dòng)子激活的核心區(qū)域[]。凝膠遷移和突變實(shí)驗(yàn)證實(shí)在這個(gè)區(qū)域存在Oct-1的結(jié)合位點(diǎn),對(duì)LOX-1的轉(zhuǎn)錄激活很關(guān)鍵,而-2131 bp~-2247 bp啟動(dòng)子區(qū)域?qū)ρ芫o張素Ⅱ誘導(dǎo)的人LOX-1轉(zhuǎn)錄激活是必須的,在這段序列里存在一個(gè)潛在的NF-κB結(jié)合位點(diǎn)。這些研究提示,LOX-1的表達(dá)受多種病理因素的綜合調(diào)節(jié)。
Mehta等[19-20]發(fā)現(xiàn)腎素-血管緊張素-醛固酮系統(tǒng)與oxLDL-LOX-1信號(hào)通路有交互對(duì)話:一方面,oxLDL可通過(guò)LOX-1誘導(dǎo)血管緊張素Ⅱ1型受體(angiotensinⅡ receptor 1,AT1-R)和血管緊張素轉(zhuǎn)換酶表達(dá)增加,另一方面,血管緊張素Ⅱ可以通過(guò)激活A(yù)T1-R,上調(diào)LOX-1的轉(zhuǎn)錄水平,從而促進(jìn)ECoxLDL攝取,加劇內(nèi)皮損傷。這些研究提示,血管緊張素Ⅱ和oxLDL可能通過(guò)相似的細(xì)胞內(nèi)信號(hào)傳導(dǎo)通路促進(jìn)AS的發(fā)生和發(fā)展,說(shuō)明AS和高血壓是密切相關(guān)的。
LOX-1 高表達(dá)于人[21]、大鼠[22]、小鼠[23]和家兔[24]的AS斑塊中,LOX-1對(duì)AS的影響在LOX-1/LDL-R雙敲除小鼠(LOX-1-/-/LDL-R-/-)和 LOX-1 轉(zhuǎn)基因/ApoE 敲除小鼠(LOX-1tg/ApoE-/-)模型中得到證實(shí)[23,25],LOX-1-/-/LDL-R-/-小鼠喂飼高膽固醇飼料(4%膽固醇+10%可可豆油)18周,動(dòng)脈斑塊面積與LDL-R-/-小鼠相比明顯減少,同時(shí)伴有內(nèi)膜厚度減少和內(nèi)皮型一氧化氮合酶(eNOS)表達(dá)增加,提示LOX-1敲除可以通過(guò)改善內(nèi)皮功能對(duì)抗 AS發(fā)展;另外,LOX-1tg/ApoE-/-小鼠較 ApoE-/-小鼠,心臟血管 oxLDL 攝取、內(nèi)皮黏附分子表達(dá)、巨噬細(xì)胞浸潤(rùn)以及AS斑塊面積明顯增加。White等[26]最近發(fā)現(xiàn),LOX-1過(guò)表達(dá)可以顯著增加ApoE-/-小鼠頸總動(dòng)脈斑塊面積,這些研究共同提示,LOX-1是參與內(nèi)皮細(xì)胞功能失調(diào)與泡沫細(xì)胞形成的重要因子。
oxLDL與EC表面的特異性受體LOX-1結(jié)合引起內(nèi)皮活化、功能失調(diào)及內(nèi)皮損傷,從而促進(jìn)AS的發(fā)生發(fā)展。近年來(lái),LOX-1在AS等相關(guān)疾病的重要作用一直受到廣泛關(guān)注。
3.1.1 LOX-1 與內(nèi)皮損傷
血管內(nèi)皮功能失調(diào)被認(rèn)為是AS的起始和關(guān)鍵步驟,大量的研究結(jié)果表明,LOX-1是血管內(nèi)皮功能失調(diào)的分子基礎(chǔ)。Li等[27]發(fā)現(xiàn),LOX-1介導(dǎo) oxLDL誘導(dǎo)的 EC凋亡,主要與上調(diào)Fas,下調(diào)Bcl-2有關(guān)。利用oxLDL與EC共同培育的體外研究發(fā)現(xiàn),EC出現(xiàn)胞體皺縮、胞膜破壞等損傷性改變,同時(shí)細(xì)胞ROS的產(chǎn)生增加,NO的合成減少以及代謝加速,NF-κB被激活,內(nèi)皮素1、細(xì)胞間黏附分子1、血管細(xì)胞黏附分子1和血小板源性生長(zhǎng)因子等表達(dá)上調(diào),但當(dāng)預(yù)先給予LOX-1拮抗劑時(shí),則上述改變不明顯。Xu等[28]新近發(fā)現(xiàn),體內(nèi)給予抗LOX-1抗體以及NADPH氧化酶(NADPH oxidase,Nox)抑制劑apocylin或DPI可恢復(fù) ApoE-/-小鼠冠脈血管內(nèi)皮依賴性血管舒張。由此可見,LOX-1和 Nox介導(dǎo)了oxLDL誘導(dǎo)的內(nèi)皮依賴性冠脈舒張與功能紊亂。
3.1.2 LOX-1 與單核-內(nèi)皮細(xì)胞的黏附
在AS早期,單核細(xì)胞聚集黏附到血管內(nèi)皮。有研究表明[29],當(dāng)人冠狀動(dòng)脈內(nèi)皮細(xì)胞與oxLDL共培養(yǎng)24 h后,單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)顯著增加,加速了單核細(xì)胞向內(nèi)皮細(xì)胞的黏附,而預(yù)先加入LOX-1反義核苷酸48 h則可抑制上述過(guò)程并抑制了oxLDL介導(dǎo)的內(nèi)皮損傷,在這過(guò)程中,MAPK的激活起著關(guān)鍵作用。Li等[30-31]證實(shí),LOX-1介導(dǎo)了高糖和 C-反應(yīng)蛋白誘導(dǎo)的單核-內(nèi)皮細(xì)胞的黏附,這一效應(yīng)可以被LOX-1中和抗體阻斷,而抗細(xì)胞間黏附分子1、抗血管細(xì)胞黏附分子1及抗E選擇素(E-selectin)抗體對(duì)此沒(méi)有影響,提示LOX-1所介導(dǎo)的效應(yīng)是特異性的,且不依賴于黏附分子的表達(dá)。由此可見,LOX-1是誘導(dǎo)單核細(xì)胞與EC黏附的關(guān)鍵因素。
泡沫細(xì)胞的形成是AS發(fā)生發(fā)展的關(guān)鍵環(huán)節(jié)。其機(jī)制是:循環(huán)中的單核細(xì)胞分化成巨噬細(xì)胞,通過(guò)表面表達(dá)多種SR,如CD36,SR-A,LOX-1等,大量攝取 oxLDL,且不受細(xì)胞內(nèi)膽固醇的負(fù)反饋抑制,攝取的oxLDL通過(guò)啟動(dòng)轉(zhuǎn)錄因子過(guò)氧化物酶體增殖活化受體γ,NF-κB等,介導(dǎo)SR的進(jìn)一步增加,從而形成膽固醇攝取的惡性循環(huán),加速泡沫化進(jìn)程。研究表明,LOX-1介導(dǎo)了高糖[8]和二甲基精氨酸[14]誘導(dǎo)的巨噬細(xì)胞oxLDL攝取及泡沫化。由于SMC也可由SR攝取oxLDL成為平滑肌源性泡沫細(xì)胞(SMC-derived foam cell),且SMC也可誘導(dǎo)表達(dá)LOX-1,但是目前關(guān)于LOX-1是否參與平滑肌源性泡沫細(xì)胞的形成仍有待進(jìn)一步深入研究。
AS斑塊破裂及繼發(fā)的血栓形成是急性冠脈綜合征(如急性心肌梗死、心絞痛和卒中等)發(fā)生的病理學(xué)基礎(chǔ)。有研究提示,不穩(wěn)定斑塊患者中EC凋亡及循環(huán)中的內(nèi)皮源性微顆粒大大增加,且EC凋亡可通過(guò)增加內(nèi)皮單層細(xì)胞的通透性以及血管壁脂質(zhì)攝取促進(jìn)AS發(fā)展[32]。大量的研究表明,LOX-1介導(dǎo)多種病理因素誘導(dǎo)的EC凋亡,且LOX-1可以通過(guò)Bax/Bcl-2誘導(dǎo)SMC凋亡,這提示LOX-1可能與不穩(wěn)定斑塊的形成及破裂相關(guān)。Li等[33]研究發(fā)現(xiàn),oxLDL可以時(shí)間和劑量依賴性地上調(diào)人冠脈內(nèi)皮細(xì)胞基質(zhì)金屬蛋白酶-1(matrix metalloproteinase 1,MMP-1)和MMP-3的表達(dá),而預(yù)孵育LOX-1的阻斷抗體(JTX-92)可阻止oxLDL的上述效應(yīng),進(jìn)而提示oxLDL上調(diào)EC中MMP表達(dá)部分是通過(guò)LOX-1介導(dǎo)的[33]。與此一致,格列齊特[34]可抑制通過(guò) ox-LDL-NF-κB-LOX-1下調(diào)MMP-9表達(dá),且通過(guò)上調(diào)蛋白激酶B,下調(diào)胱天蛋白酶3和胱天蛋白酶9表達(dá)從而抑制EC凋亡。這些結(jié)果提示,LOX-1可能通過(guò)介導(dǎo)EC凋亡、SMC凋亡以及上調(diào)MMP表達(dá),參與不穩(wěn)定斑塊的形成。
近年來(lái),越來(lái)越多的研究關(guān)注以LOX-1為靶點(diǎn)的抗AS藥物研發(fā)。傳統(tǒng)的抗AS藥物如他汀類藥物,可以抑制AS斑塊處LOX-1的表達(dá)并且抑制oxLDL誘導(dǎo)的EC中LOX-1表達(dá)上調(diào)、oxLDL攝取、黏附分子的表達(dá)并上調(diào)eNOS的表達(dá)[35-36],由此可見,抑制 LOX-1已成為他汀類藥物抗 AS的重要機(jī)制之一。有研究顯示,普伐他汀可以下調(diào)人巨噬細(xì)胞和平滑肌細(xì)胞LOX-1表達(dá),在Watanabe遺傳性高脂兔AS模型中,普伐他汀50 mg·kg-1顯著下調(diào)主動(dòng)脈根部LOX-1基因和蛋白的表達(dá)[24]。與此一致,Tsuchiya 等[37]最近報(bào)道,辛伐他汀20 mg·kg-1可以減少自發(fā)性大鼠高血壓脂質(zhì)沉積、LOX-1和MCP-1表達(dá)并最終減少炎性巨噬細(xì)胞的浸潤(rùn),這為解釋他汀類藥效多重性提供了一個(gè)新的視角。近期研究證實(shí)[38],丹參活性單體成分丹參酮ⅡA,可以抑制oxLDL誘導(dǎo)的巨噬細(xì)胞ROS產(chǎn)生增加,并且通過(guò)抑制NF-κB與LOX-1啟動(dòng)子NF-κB序列的結(jié)合進(jìn)而下調(diào)LOX-1表達(dá),從而阻止巨噬細(xì)胞膽固醇攝取及泡沫化,從機(jī)制上解釋了丹參酮ⅡA抗AS的新機(jī)制。抑制LOX-1表達(dá)的其他藥物還包括沙坦類鈣通道阻滯劑[19],姜黃素[39],吡格列酮[40],格列齊特[34],阿司匹林[41],柔花酸[42],脂聯(lián)素[43]和表沒(méi)食子兒奈素-3-沒(méi)食子酸(epigallocabechin-3-gallate,EGCG)[44]等。因此,LOX-1 有望成為抗AS藥物的新靶點(diǎn)。
LOX-1是目前第一個(gè)被發(fā)現(xiàn)的可以從細(xì)胞表面釋放可溶性分子的SR??扇苄允荏w可由兩種途徑產(chǎn)生:選擇性剪切編碼跨膜區(qū)域的外顯子以及全長(zhǎng)膜結(jié)合受體被蛋白酶裂解。Murase等[45]證實(shí),在腫瘤壞死因子-α刺激的牛動(dòng)脈內(nèi)皮細(xì)胞首先表達(dá)LOX-1,然后在近胞外區(qū) Arg86-Ser87及Lys89-Ser90兩位點(diǎn)斷裂,分別形成兩個(gè)可溶性LOX-1(LOX-1,sLOX-1)進(jìn)入培養(yǎng)上清中,其相對(duì)分子質(zhì)量為35 ku,這一過(guò)程可被絲氨酸蛋白酶抑制劑-苯甲基磺酰氟所抑制。許多其他的SR的膜蛋白能否在細(xì)胞外域的近膜部位通過(guò)蛋白質(zhì)水解的方式裂解出來(lái)還有待于驗(yàn)證。血漿中可溶性受體濃度與受體表達(dá)水平有關(guān),并能反映體內(nèi)某些疾病的狀態(tài),因此,對(duì)血漿sLOX-1的測(cè)定有助于預(yù)測(cè)AS進(jìn)程。目前,臨床上主要采用ELISA方法檢測(cè)血清或血漿中sLOX-1濃度。Kume等[46-47]新近指出,較高敏C-反應(yīng)蛋白及肌鈣蛋白T,血循環(huán)中的sLOX-1是急性冠脈綜合征患者預(yù)后的更為特異而敏感的生物標(biāo)志物。因此,sLOX-1有望成為臨床上的一種新的診斷指標(biāo)。
LOX-1,血管細(xì)胞廣泛表達(dá)的一種新型SR,能激活與細(xì)胞活化、功能失調(diào)、增殖、凋亡相關(guān)的多條促AS信號(hào)通路,其配體oxLDL,糖基化終產(chǎn)物和C-反應(yīng)蛋白等都是AS及相關(guān)疾病的重要危險(xiǎn)因子。研究開發(fā)對(duì)LOX-1表達(dá)以及LOX-1與oxLDL結(jié)合有特異性調(diào)控作用的藥物將成為抗AS藥物治療的新的發(fā)展趨勢(shì);另外,sLOX-1的檢測(cè)已成為預(yù)防和診斷動(dòng)脈硬化性心血管疾病的一個(gè)新型血清標(biāo)志物。因此,LOX-1將成為AS、糖尿病、心肌肥厚和高血壓新的干預(yù)靶點(diǎn)。
志謝:感謝中國(guó)醫(yī)學(xué)科學(xué)院、中國(guó)協(xié)和醫(yī)科大學(xué)藥物研究所國(guó)家藥物篩選中心杜冠華教授對(duì)本文寫作的指導(dǎo)與建議。
[1]Hansson GK.Inflammation,atherosclerosis,and coronary artery disease[J].N Engl J Med,2005,352(16):1685-1695.
[2]Moore KJ,F(xiàn)reeman MW.Scavenger receptors in atherosclerosis:beyond lipid uptake[J].Arterioscler Thromb Vasc Biol,2006,26(8):1702-1711.
[3]Sawamura T,Kume N,Aoyama T,Moriwaki H,Hoshikawa H,Aiba Y,et al.An endothelial receptor for oxidized low-density lipoprotein[J].Nature,1997,386(6620):73-77.
[4]Mehta JL,Chen J,Hermonat PL,Romeo F,Novelli G.Lectinlike,oxidized low-density lipoprotein receptor-1(LOX-1):a critical player in the development of atherosclerosis and related disorders[J].Cardiovasc Res,2006,69(1):36-45.
[5]Nagase M,Hirose S,F(xiàn)ujita T.Unique repetitive sequence and unexpected regulation of expression of rat endothelial receptor for oxidized low-density lipoprotein(LOX-1)[J].Biochem J,1998,330(Pt 3):1417-1422.
[6]李玉娟, 杜冠華.LOX-1研究進(jìn)展[J].中國(guó)藥理學(xué)通報(bào),2003,19(3):245-248.
[7]Li D,Mehta JL.Intracellular signaling of LOX-1 in endothelial cell apoptosis[J].Circ Res,2009,104(5):566-568.
[8]Li L,Sawamura T,Renier G.Glucose enhances human macrophage LOX-1 expression:role for LOX-1 in glucose-induced macrophage foam cell formation[J].Circ Res,2004,94(7):892-901.
[9]Ishigaki Y,Katagiri H,Gao J,Yamada T,Imai J,Uno K,et al.Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis[J].Circulation,2008,118(1):75-83.
[10]Navarra T,Del Turco S,Berti S,Basta G.The lectin-like oxidized low-density lipoprotein receptor-1 and its soluble form:cardiovascular implications[J].J Atheroscler Thromb,2010,17(4):317-331.
[11]Taye A,Sawamura T,Morawietz H.Aldosterone augments LOX-1-mediated low-density lipoprotein uptake in human umbilical artery endothelial cells[J].Pharmacol Rep,2010,62(2):311-318.
[12]Yoshida T, Koide N, Mori I, Ito H,Yokochi T.Chlamydia pneumoniae infection enhances lectin-like oxidized low-density lipoprotein receptor(LOX-1)expression on human endothelial cells[J].FEMSMicrobiol Lett,2006,260(1):17-22.
[13]Chen M,Masaki T,Sawamura T.LOX-1,the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis[J].Pharmacol Ther,2002,95(1):89-100.
[14]Smirnova IV,Kajstura M,Sawamura T,Goligorsky MS.Asym-metric dimethylarginine upregulates LOX-1 in activated macrophages:role in foam cell formation[J].Am J Physiol Heart Circ Physiol,2004,287(2):H782-H790.
[15]Andersson IJ,Sankaralingam S,Davidge ST.Restraint stress upregulates lectin-like oxidized low-density lipoprotein receptor-1 in aorta of apolipoprotein E-deficient mice[J].Stress,2010,13(5):454-460.
[16]Takanabe-Mori R,Ono K,Sowa N,Wada H,Takaya T,Horie T,et al.Lectin-like oxidized low-density lipoprotein receptor-1 is required for the adipose tissue expression of proinflammatory cytokines in high-fat diet-induced obese mice[J].Biochem Biophys Res Commun,2010,398(3):576-580.
[17]Takaya T,Wada H,Morimoto T,Sunagawa Y,Kawamura T,Takanabe-Mori R,et al.Left ventricular expression of lectin-like oxidized low-density lipoprotein receptor-1 in failing rat hearts[J].Circ J,2010,74(4):723-729.
[18]Ueno T,Kaname S,Takaichi K,Nagase M,Tojo A,Onozato ML,et al.LOX-1,an oxidized low-density lipoprotein receptor,was upregulated in the kidneys of chronic renal failure rats[J].Hypertens Res,2003,26(1):117-122.
[19]Chen J,Li D,Schaefer R,Mehta JL.Cross-talk between dyslipidemia and renin-angiotensin system and the role of LOX-1 and MAPK in atherogenesis studies with the combined use of rosuvastatin and candesartan[J].Atherosclerosis,2006,184(2):295-301.
[20]Li D,Saldeen T,Romeo F,Mehta JL.Oxidized LDL upregulates angiotensinⅡtype 1 receptor expression in cultured human coronary artery endothelial cells:the potential role of transcription factor NF-kappaB[J].Circulation,2000,102(16):1970-1976.
[21]Kataoka H,Kume N,Miyamoto S,Minami M,Moriwaki H,Murase T,et al.Expression of lectin-like oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions[J].Circulation,1999,99(24):3110-3117.
[22]Nakano A,Inoue N,Sato Y,Nishimichi N,Takikawa K,F(xiàn)ujita Y,et al.LOX-1 mediates vascular lipid retention under hypertensive state[J].J Hypertens,2010,28(6):1273-1280.
[23]Mehta JL,Sanada N,Hu CP,Chen J,Dandapat A,Sugawara F,et al.Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet[J].Circ Res,2007,100(11):1634-1642.
[24]Hofnagel O,Luechtenborg B,Eschert H,Weissen-Plenz G,Severs NJ,Robenek H.Pravastatin inhibits expression of lectin-like oxidized low-density lipoprotein receptor-1(LOX-1)in Watanabe heritable hyperlipidemic rabbits:a new pleiotropic effect of statins[J].Arterioscler Thromb Vasc Biol,2006,26(3):604-610.
[25]Inoue K,Arai Y,Kurihara H,Kita T,Sawamura T.Overexpression of lectin-like oxidized low-density lipoprotein receptor-1 induces intramyocardial vasculopathy in apolipoprotein E-null mice[J].Circ Res,2005,97(2):176-184.
[26]White SJ,Sala-Newby GB,Newby AC.Overexpression of scavenger receptor LOX-1 in endothelial cells promotes atherogenesis in the ApoE(- /- )mouse model[J].Cardiovasc Pathol,doi:10.1016/J.Carpath.2010.08.007.
[27]Li D,Yang B,Mehta JL.Ox-LDL induces apoptosis in human coronary artery endothelial cells:role of PKC,PTK,bcl-2,and Fas[J].Am J Physiol,1998,275(2 Pt 2):H568-H576.
[28]Xu X,Gao X,Potter BJ,Cao JM,Zhang C.Anti-LOX-1 rescues endothelial function in coronary arterioles in atherosclerotic ApoE knockout mice[J].Arterioscler Thromb Vasc Biol,2007,27(4):871-877.
[29]Li D,Mehta JL.Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells[J].Circulation,2000,101(25):2889-2895.
[30]Li L,Roumeliotis N,Sawamura T,Renier G.C-reactive protein enhances LOX-1 expression in human aortic endothelial cells:relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction[J].Circ Res,2004,95(9):877-883.
[31]Li L, Sawamura T, Renier G.Glucose enhances endothelial LOX-1 expression:role for LOX-1 in glucose-induced human monocyte adhesion to endothelium[J].Diabetes,2003,52(7):1843-1850.
[32]Tricot O,Mallat Z,Heymes C,Belmin J,Lesèche G,Tedgui A.Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques[J].Circulation,2000,101(21):2450-2453.
[33]Li D,Liu L,Chen H,Sawamura T,Ranganathan S,Mehta JL.LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells[J].Circulation,2003,107(4):612-617.
[34]Li L,Renier G.The oral anti-diabetic agent,gliclazide,inhibits oxidized LDL-mediated LOX-1 expression,metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells[J].Atherosclerosis,2009,204(1):40-6.
[35]Chen XP,Zhang TT,Du GH.Lectin-like oxidized low-density lipoprotein receptor-1,a new promising target for the therapy of atherosclerosis[J]?Cardiovasc Drug Rev,2007,25(2):146-161.
[36]Kang BY,Mehta JL.Rosuvastatin attenuates AngⅡ-mediated cardiomyocyte hypertrophy via inhibition of LOX-1[J].J Cardiovasc Pharmacol Ther,2009,14(4):283-291.
[37]Tsuchiya A,Nagotani S,Hayashi T,Deguchi K,Sehara Y,Yamashita T,et al.Macrophage infiltration,lectin-like oxidized-LDL receptor-1,and monocyte chemoattractant protein-1 are reduced by chronic HMG-CoA reductase inhibition[J].Curr Neurovasc Res,2007,4(4):268-273.
[38]Xu SW,Tang FT,Le K,Lan T,Shen XY,Huang HQ,et al.TranshinoneⅡ-a inhibits acidized low-density-lipoprtein induced LOX-1 expression in murine macrophages by reduction of intracellular reactive oxygen species and NF-kappa B activation[J].Circulation,2010,122(2):e178.
[39]Kang BY,Khan JA,Ryu S,Shekhar R,Seung KB,Mehta JL.Curcumin reduces angiotensinⅡ-mediated cardiomyocyte growth via LOX-1 inhibition[J].Cardiovasc Pharmacol,2010,55(2):176-183.
[40]Mehta JL,Hu B,Chen J,Li D.Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation[J].Arterioscler Thromb Vasc Biol,2003,23(12):2203-2208.
[41]Marwali MR,Hu CP,Mohandas B,Dandapat A,Deonikar P,Chen J,et al.Modulation of ADP-induced platelet activation by aspirin and pravastatin:role of lectin-like oxidized low-density lipoprotein receptor-1,nitric oxide,oxidative stress,and insideout integrin signaling[J].J Pharmacol Exp Ther,2007,322(3):1324-1332.
[42]Lee WJ,Ou HC,Hsu WC,Chou MM,Tseng JJ,Hsu SL,et al.Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression,ROS generation,and inflammation in human endothelial cells[J].J Vasc Surg,2010,52(5):1290-1300.
[43]Chen X,Zhang H,McAfee S,Zhang C.The reciprocal relationship between adiponectin and LOX-1 in the regulation of endothelial dysfunction in ApoE knockout mice[J].Am J Physiol Heart Circ Physiol,2010,299(3):H605-H612.
[44]Ou HC,Song TY,Yeh YC,Huang CY,Yang SF,Chiu TH,et al.EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling[J].J Appl Physiol,2010,108(6):1745-1756.
[45]Murase T,Kume N,Korenaga R,Ando J,Sawamura T,Masaki T,et al.Fluid shear stress transcriptionally induces lectin-like oxidized LDL receptor-1 in vascular endothelial cells[J].Circ Res,1998,83(3):328-333.
[46]Kume N,Mitsuoka H,Hayashida K,Tanaka M,Kominami G,Kita T.Soluble lectin-like oxidized LDL receptor-1(sLOX-1)as a sensitive and specific biomarker for acute coronary syndromecomparison with other biomarkers[J].J Cardiol,2010,56(2):159-165.
[47]Kume N,Mitsuoka H,Hayashida K,Tanaka M,Kita T.Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts prognosis after acute coronary syndrome-a pilot study[J].Circ J,2010,74(7):1399-1404.