劉穎勛,權(quán)富生,王進(jìn)科,白學(xué)堯
1 西北農(nóng)林科技大學(xué)動(dòng)物醫(yī)學(xué)院,楊凌 712100
2 東南大學(xué) 生物電子學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,南京 210096
核因子-κB (Nuclear factor-κB,NF-κB) 是一類重要的轉(zhuǎn)錄因子,參與正常細(xì)胞的多種生物學(xué)活動(dòng)。NF-κB的異?;罨c腫瘤、炎癥、自身免疫以及胚胎畸形發(fā)育等眾多疾病發(fā)生密切相關(guān)[1-3]。NF-κB信號(hào)轉(zhuǎn)導(dǎo)通路可能成為臨床相關(guān)疾病基因治療的一個(gè)新的作用靶點(diǎn)。寡核苷酸誘騙子 (ODNs decoy) 是一種能從轉(zhuǎn)錄水平對(duì)基因表達(dá)進(jìn)行有效調(diào)控的新策略[4-5]。寡核苷酸誘騙子調(diào)控基因表達(dá)的機(jī)理是將含有某個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn) (DNA-binding site) 的寡核苷酸導(dǎo)入細(xì)胞內(nèi),與核內(nèi)具有DNA結(jié)合活性的轉(zhuǎn)錄因子結(jié)合,削弱轉(zhuǎn)錄因子與基因組DNA中其靶點(diǎn)的結(jié)合,從而抑制了轉(zhuǎn)錄因子對(duì)下游靶基因的轉(zhuǎn)錄活性。目前,使用脂質(zhì)體、陽(yáng)離子多聚物、納米粒子攜帶寡核苷酸誘騙子進(jìn)入細(xì)胞的效率已經(jīng)很高[6-8]。Griesenbach等[9]采用脂質(zhì)體作載體轉(zhuǎn)導(dǎo) NF-κB ODNs decoy,認(rèn)為雖然ODNs很容易被細(xì)胞捕獲,但由于聚集在細(xì)胞質(zhì)中,并不能有效抑制核內(nèi)NF-κB的活性及其下游基因的表達(dá)。因此,ODNs decoy導(dǎo)入細(xì)胞后是否進(jìn)入細(xì)胞核,是其發(fā)揮調(diào)控轉(zhuǎn)錄因子活性的關(guān)鍵[10]。近年來實(shí)驗(yàn)證實(shí),核定位信號(hào)肽 (Nuclear localization signal,NLS) 能引導(dǎo)蛋白質(zhì)、DNA、ODNs和化學(xué)治療藥物等外源性生物大分子進(jìn)入細(xì)胞核[11-12]。Ludtke等[13]分別構(gòu)建生物素(Biotin) 修飾的ODNs和親合素 (Streptavidin) 修飾的NLS多肽,利用biotin-streptavidin特異性結(jié)合反應(yīng)將NLS與不同大小的DNA片段連接起來,通過顯微注射將NLS-DNA連接物導(dǎo)入HeLa細(xì)胞中,增加了DNA片段的入核效率。Sakaguchi等[14]構(gòu)建了“谷胱甘肽-S-轉(zhuǎn)移酶 (GST)-7個(gè)精氨酸殘基-GAL4 DNA結(jié)合域-NLS”組成的轉(zhuǎn)導(dǎo)體系,在功能性蛋白質(zhì)GST和多肽NLS介導(dǎo)下,攜帶ODNs穿越細(xì)胞質(zhì)膜,進(jìn)入細(xì)胞核。本研究采用 Sulfo-SMCC 異源雙功能交聯(lián)試劑將末端NH2修飾的誘騙子ODNs和末端巰基修飾 NLS寡肽共價(jià)連接,形成NLS-ODNs decoy;以脂質(zhì)體包埋NLS-ODNs decoy轉(zhuǎn)染HeLa細(xì)胞,觀察NLS介導(dǎo)的ODNs decoy入核效率,考察NLS-ODNs decoy對(duì)核內(nèi)NF-κB活性的抑制作用。
宮頸癌HeLa細(xì)胞株,購(gòu)自中國(guó)科學(xué)院上海細(xì)胞研究所。實(shí)驗(yàn)所用的NF-κB ODNs decoy和NLS多肽均由上海英俊生物技術(shù)有限公司合成,序列及末端修飾見表1。DMEM培養(yǎng)基、TransME脂質(zhì)體轉(zhuǎn)染試劑為美國(guó) Gibco產(chǎn)品。小牛血清由杭州四季青生物工程技術(shù)研究所生產(chǎn)。腫瘤壞死因子 (TNF-α)購(gòu)自美國(guó)Peprotech公司。IllustraTMNICK 核酸純化柱,美國(guó)Amersham公司產(chǎn)品。Sulfo-SMCC交聯(lián)試劑 (4-(N-maleimidomethyl)-cyclohexane-1-carboxylic acid N-hydroxysuccinimide ester,SMCC) 為美國(guó)Sigma公司產(chǎn)品。DNA凝膠回收試劑盒購(gòu)自QIAGEN公司。
表1 NLS多肽及ODNs的序列及末端修飾Table 1 Sequences and modifications of the NLS peptide and ODNs
1.2.1 雙鏈寡核苷酸復(fù)性
將構(gòu)成ODNs decoy及EMSA ODNs的兩條序列互補(bǔ)寡核苷酸 (見表1) 分別溶解在TEN緩沖液(10 mmol/L Tris·HCl,pH 8.0;1 mmol/L EDTA;100 mmol/L NaCl) 中,再等摩爾混合,95℃水浴5 min,然后緩慢降至室溫,形成雙鏈寡核苷酸(ds-ODNs),4℃保存?zhèn)溆谩?/p>
1.2.2 NLS-ODNs結(jié)合物的制備
復(fù)性后的 ODNs decoy與 40倍過量的 Sulfo-SMCC交聯(lián)試劑 (以二甲基甲酰胺制成 30 mmol/L的儲(chǔ)存液) 混合,室溫下反應(yīng)2 h;未反應(yīng)的SMCC通過Nick核酸純化柱除去?;厥盏腛NDs decoy與NLS多肽 (以無菌水制成2.5 mmol/L的儲(chǔ)存液) 按照1∶10摩爾數(shù)比例混勻,室溫下反應(yīng)過夜[13]。反應(yīng)產(chǎn)物進(jìn)行1.5%瓊脂糖凝膠,回收純化NLS-ONDs decoy連接物。純化產(chǎn)物再次用瓊脂糖凝膠電泳檢測(cè)。
1.2.3 細(xì)胞培養(yǎng)
HeLa細(xì)胞用含10% (V/V) 小牛血清、100 U/mL青霉素、100 μg/mL 鏈霉素的DMEM培養(yǎng)液培養(yǎng),培養(yǎng)箱溫度為 37℃,CO2濃度為 5%。當(dāng)細(xì)胞融合度達(dá)到 90%后,棄原培養(yǎng)液,再用磷酸鹽緩沖液(PBS) 洗滌2次后,0.25%胰酶消化傳代繼續(xù)培養(yǎng)。
1.2.4 NF-κB decoy ODNs轉(zhuǎn)染細(xì)胞
轉(zhuǎn)染前24 h,取生長(zhǎng)狀況良好的HeLa細(xì)胞,經(jīng)胰酶消化制成細(xì)胞懸液,調(diào)整細(xì)胞密度為5×104個(gè)/mL,每孔200 μL接種于96孔板,CO2培養(yǎng)箱中培養(yǎng)過夜。NF-κB decoy ODNs轉(zhuǎn)染細(xì)胞按照TransME 轉(zhuǎn)染試劑使用說明進(jìn)行,在無菌Eppendorf管中按 1∶25體積比混合 TransME 試劑和無血清DMEM培養(yǎng)液,輕輕吹打混勻,室溫下放置15 min;再將TransME混合液加入decoy ODNs溶液至終濃度0.5 μg/μL,室溫放置10 min,即可用于細(xì)胞轉(zhuǎn)染。細(xì)胞隨機(jī)分成 6組,分別為:不轉(zhuǎn)染對(duì)照組、TransME轉(zhuǎn)染組 (無 ODNs)、decoy ODNs轉(zhuǎn)染組(無 TransME)、TransME/decoy ODNs轉(zhuǎn)染組、TransME/NLS-decoy ODNs轉(zhuǎn)染組。
1.2.5 NLS-ODNs連接物對(duì)細(xì)胞生長(zhǎng)的影響
MTT法檢測(cè)各種轉(zhuǎn)染對(duì)細(xì)胞生長(zhǎng)的影響。細(xì)胞轉(zhuǎn)染后24 h更換培養(yǎng)液,每孔加入180 μL無血清DMEM培養(yǎng)液和20 μL MTT (5 mg/mL),繼續(xù)培養(yǎng)4 h。輕輕吸除孔內(nèi)培養(yǎng)液,每孔加入150 μL DMSO溶解甲瓚鹽。用酶標(biāo)儀讀取 570 nm波長(zhǎng)吸光度值(OD)。
1.2.6 熒光顯微鏡觀察ODNs細(xì)胞內(nèi)分布
轉(zhuǎn)染 ODNs 24 h后,將細(xì)胞用4℃預(yù)冷PBS洗滌3次,經(jīng)4%多聚甲醛固定后用DAPI染色顯示細(xì)胞核。在熒光顯微鏡下分別用可見光、綠色光通道(550 nm) 和紫外光通道 (358 nm) 觀察細(xì)胞并拍照記錄。隨機(jī)選取若干個(gè)視野,分別計(jì)算ODNs轉(zhuǎn)染細(xì)胞和進(jìn)入細(xì)胞核的效率。
1.2.7 HeLa細(xì)胞的誘導(dǎo)、核蛋白提取
HeLa細(xì)胞轉(zhuǎn)染24 h后,用10 ng/mL的TNF-α誘導(dǎo) 40 min,0.25%胰酶消化并收集各組細(xì)胞。以4℃預(yù)冷 PBS清洗 2次,將細(xì)胞團(tuán)塊重新懸浮于400 μL 4℃預(yù)冷溶液A (10 mmol/L HEPES,pH 7.9,10 mmol/L KCl,1.5 mmol/L MgCl2,1 mmol/L DTT,0.4 mmol/L PMSF) 中,冰上腫脹15 min,再加入20 μL 10% NP-40,高速振蕩10 s,12 000×g離心30 s。棄上清,沉淀重新懸浮于 4℃預(yù)冷溶液 B (20 mmol/L HEPES,pH 7.9,420 mmol/L NaCl,1.5 mmol/L MgCl2,0.2 mmol/L EDTA,0.5 mmol/L PMSF,25% Glycerol) 中,冰浴振蕩 30 min,12 000×g離心15 min。轉(zhuǎn)移上清,Bradford法測(cè)定核蛋白濃度。
1.2.8 凝膠電泳遷移率變化分析 (EMSA)
10 μg HeLa細(xì)胞核蛋白與生物素 (Biotin) 標(biāo)記的dsDNA探針 (見表1 EMSA ODNs,EO) 在5倍DNA結(jié)合緩沖液 (50 mmol/L Tris·HCl,pH 7.5,250 mmol/L NaCl,2.5 mmol/L EDTA,15 mmol/L MgCl2,5% Glycerol,2.5 mg/mL BSA,0.25% NP-40,0.25 mmol/L DTT) 中,室溫孵育1 h。競(jìng)爭(zhēng)性實(shí)驗(yàn)中,HeLa細(xì)胞核蛋白與所需數(shù)量的競(jìng)爭(zhēng)性dsDNA (表1 Competitive ODNs,CO) 及非特異性競(jìng)爭(zhēng)dsDNA (表1 Nonspecific competitive ODNs,NO)混合,室溫孵育 30 min后,再加入生物素標(biāo)記的dsDNA探針,室溫下繼續(xù)孵育1 h。反應(yīng)產(chǎn)物上樣于6%非變性聚丙烯酰胺凝膠,100 V電泳2 h。凝膠dsDNA電轉(zhuǎn)印到尼龍膜。尼龍膜經(jīng)紫外交聯(lián)、洗滌、封閉處理后,使用過氧化物酶 (HRP) 標(biāo)記的鏈霉親合素 (Streptavidin) 及HRP化學(xué)發(fā)光底物 (ECL)進(jìn)行化學(xué)發(fā)光檢測(cè)[15]。X-光片顯影結(jié)果經(jīng)凝膠成像系統(tǒng)掃描后,分析遷移帶積分灰度值。
1.2.9 統(tǒng)計(jì)學(xué)方法
NLS-ODNs連接物純化前后的電泳結(jié)果見圖1。ODNs由于共價(jià)結(jié)合了NLS多肽,分子量增大,改變了其在凝膠中的遷移率。通過DNA凝膠純化試劑盒回收純化滯后帶,可完全除去游離的ODNs和NLS。
圖1 純化前后的NLS-ODNs連接物的凝膠電泳檢測(cè)Fig. 1 Gel electrophoresis of the NLS-ODNs ligation products before and after purification. 1: ligation reaction of NLS peptide, decoy ODNs and Sulfo-SMCC; 2: purified NLS-ODNs conjugate.
以空白組調(diào)零后的各組 OD值代表細(xì)胞的生長(zhǎng)活力。MTT比色實(shí)驗(yàn)結(jié)果顯示 (圖2),與對(duì)照組細(xì)胞相比,各實(shí)驗(yàn)組的細(xì)胞生長(zhǎng)活力無統(tǒng)計(jì)學(xué)顯著性差異 (P>0.05)。表明各種轉(zhuǎn)染處理對(duì)細(xì)胞活力沒有顯著影響。
圖2 各轉(zhuǎn)染組對(duì)HeLa細(xì)胞活力的影響Fig. 2 Effect of transfection group on HeLa cell viability. N: negative; T: TransME; ND: naked DO; TD: TransME+DO; TND: TransME+NLS-DO.
不同轉(zhuǎn)染組細(xì)胞的倒置熒光顯微鏡觀察結(jié)果見圖3、圖4。實(shí)驗(yàn)結(jié)果表明裸ODNs組直接轉(zhuǎn)染細(xì)胞的效率很低 (圖 3B,圖 4B),ODNs用脂質(zhì)體(TransME) 包埋后,轉(zhuǎn)染率顯著提高,但進(jìn)入細(xì)胞的ODNs主要分布在細(xì)胞質(zhì)中,而細(xì)胞核中的分布不明顯 (圖3F,圖4F)。將ODNs共價(jià)連接NLS肽后,再用脂質(zhì)體包埋轉(zhuǎn)染細(xì)胞時(shí),NLS-ODNs大量進(jìn)入細(xì)胞,在細(xì)胞質(zhì)中呈現(xiàn)圍核分布,但同時(shí)細(xì)胞核中也出現(xiàn)明顯的分布 (圖3J,圖4J)。隨機(jī)選取若干個(gè)視野,統(tǒng)計(jì)約100個(gè)細(xì)胞 (表2),TransME和TransME/NLS-ODNs組細(xì)胞轉(zhuǎn)染率分別高達(dá) 100%和97.2%,TransME/NLS-ODNs組ODNs進(jìn)入細(xì)胞核的百分率 (17.9%) 顯著高于其他兩組。結(jié)果顯示用NLS修飾decoy ODNs可顯著提高decoy ODNs進(jìn)入細(xì)胞核的效率。
表2 不同轉(zhuǎn)染方式對(duì)ODNs進(jìn)入HeLa細(xì)胞核效率的影響Table 2 Effect of transfection group on rate of ODNs nuclear translocation in HeLa cells
提取未轉(zhuǎn)染處理及各種轉(zhuǎn)染處理細(xì)胞的核抽提物 (核蛋白),用凝膠遷移實(shí)驗(yàn)分析核抽提物中NF-κB的活性,電泳EMSA檢測(cè)結(jié)果見圖5。圖6為3次EMSA檢測(cè)結(jié)果的積分灰度值統(tǒng)計(jì)結(jié)果。結(jié)果顯示,NLS修飾的decoy ODNs可顯著抑制TNF-α誘導(dǎo)的HeLa細(xì)胞核內(nèi)NF-κB的活性。
圖3 各轉(zhuǎn)染組中ODNs轉(zhuǎn)染HeLa細(xì)胞24 h后的熒光顯微觀察Fig. 3 ODNs transfection efficiency on HeLa cells after 24 h. (A-D) Naked ODNs. (E-H) TransME/ODNs. (I-L) TransME/ NLS-ODNs. (A, E, I) Cells under sunlight. (B, F, J) Fluorescence (exciting at 550 nm). (C, G, K) Fluorescence (exciting at 358 nm). (D, H, L) Combination of the Cy3 and DAPI fluorescence.
圖4 各轉(zhuǎn)染組中ODNs轉(zhuǎn)染HeLa細(xì)胞24 h后的單細(xì)胞熒光顯微觀察Fig. 4 ODNs transfection efficiency on HeLa cells after 24 h with single-cell analysis. (A-D) naked ODNs. (E-H) TransME/ODNs. (I-L) TransME/NLS-ODNs. (A, E, I) Cells under sunlight. (B, F J) Fluorescence (exciting at 550 nm). (C, G, K) Fluorescence (exciting at 358 nm). (D, H, L) Combination of the Cy3 and DAPI fluorescence.
轉(zhuǎn)錄因子誘騙子策略是利用人工合成的與轉(zhuǎn)錄因子具有高親和力的寡核苷酸競(jìng)爭(zhēng)性結(jié)合轉(zhuǎn)錄因子,使其喪失與內(nèi)源性基因結(jié)合的能力,從轉(zhuǎn)錄水平調(diào)節(jié)基因表達(dá)[4,16]。Decoy技術(shù)不僅是研究轉(zhuǎn)錄調(diào)控機(jī)理的強(qiáng)有力的工具,同時(shí)也為基因治療的臨床應(yīng)用提供了新的途徑[5]。如何將decoy ODNs有效地轉(zhuǎn)運(yùn)到靶細(xì)胞中,尤其是細(xì)胞核中,發(fā)揮調(diào)控作用是 decoy技術(shù)的關(guān)鍵問題。研究證實(shí),在載體中加入核定位信號(hào)多肽可以明顯改善載體的入核效率。本研究采用異源雙功能交聯(lián)試劑 (Sulfo-SMCC) 共價(jià)交聯(lián)末端經(jīng)氨基修飾的 ODNs和經(jīng)巰基修飾的NLS寡肽,以脂質(zhì)體轉(zhuǎn)染 NLS-ODNs連接物進(jìn)入HeLa細(xì)胞,在NLS介導(dǎo)下,提高ODNs進(jìn)入細(xì)胞核的效率,增強(qiáng)其對(duì)核轉(zhuǎn)錄因子的調(diào)控作用。
圖5 各轉(zhuǎn)染組對(duì)TNF-誘導(dǎo)HeLa細(xì)胞核內(nèi)NF-κB活性調(diào)節(jié)分析Fig. 5 Effect of transfection group on activity of NF-κB in TNF-α inducing HeLa nucleus. 1: negative; 2?4: nuclear extract (NE) with 10×, 5×, 1× CO, respectively; 5: NE with 5× NO; 6: NE; 7?10: NE from cells transfected with TransME, DO, TransME/DO and TransME/NLS-DO, respectively.
圖6 各轉(zhuǎn)染組對(duì)TNF-α誘導(dǎo)HeLa細(xì)胞核內(nèi)NF-κB活性調(diào)節(jié)分析Fig. 6 Effect of transfection group on activity of NF-κB in TNF-α inducing HeLa nucleus. N: negative; T: TransME; ND: naked DO; TD: TransME/DO; TND: TransME/NLS-DO.
Sulfo-SMCC是目前較好的生物大分子交聯(lián)試劑,由于其擁有 2個(gè)反應(yīng)基團(tuán),可以與標(biāo)記有不同活性基團(tuán)的生物大分子反應(yīng),從而盡可能減少交聯(lián)中不期望的同源多聚體或自身交聯(lián)物的形成[17]。同時(shí),細(xì)胞活力的MTT測(cè)定結(jié)果說明,用于共價(jià)連接NLS-ODNs的SMCC對(duì)細(xì)胞生長(zhǎng)未產(chǎn)生顯著抑制,因此,SMCC可作為制備NLS-ODNs連接物的良好交聯(lián)劑。
以往研究者多采用聚丙烯酰胺凝膠電泳分離純化 NLS-ODNs 連接物[13,18],本研究嘗試?yán)?1.5%瓊脂糖凝膠電泳分離純化NLS-ODNs連接物。由于NLS多肽在TBE為電解質(zhì)的瓊脂糖凝膠中不發(fā)生遷移 (數(shù)據(jù)未顯示),因此游離的 NLS和 NLS-ODNs連接物在凝膠中可徹底分離。選用DNA凝膠回收試劑盒,經(jīng)過簡(jiǎn)單的膠回收就可以純化出 NLS-ODNs連接物。
脂質(zhì)體 TransME轉(zhuǎn)染試劑轉(zhuǎn)染效率高,TransME/ODNs組的ODNs聚集在細(xì)胞質(zhì),進(jìn)入細(xì)胞核的效率很低,而TransME/NLS-ODNs組的ODNs在核內(nèi)分布明顯。但同時(shí)TransME/NLS-ODNs組在細(xì)胞質(zhì)中存在著較多的分布,其原因可能是NLS-ODNs連接物包裹在脂質(zhì)體中,未被核轉(zhuǎn)運(yùn)因子(Importin α) 識(shí)別[19]。如何進(jìn)一步提高NLS-ODNs的入核效率,仍是今后需要研究的問題。
REFERENCES
[1] Baldwin AS Jr. Series introduction: the transcription factor NF-κB and human disease. J Clin Invest, 2001, 107(1): 3?6.
[2] Torchinsky A, Toder V. To die or not to die: the function of the transcription factor NF-κB in embryos exposed to stress. Am J Reprod Immunol, 2004, 51(2): 138?143.
[3] Tripathi P, Aggarwal A. NF-κB transcription factor: a key player in the generation of immune response. Curr Sci India, 2006, 90(4): 519?531.
[4] Boizgatti M, Bezzerri V, Mancini I, et al. Silencing of genes coding for transcription factors: biological effects of decoy oligonucleotides on cystic fibrosis bronchial epithelial cells. Minerva Biotecnol, 2008, 20(2): 79?83.
[5] Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Investig, 2000, 106(9): 1071?1075.
[6] De Rosa G, Maiuri MC, Ungaro F, et al. Enhanced intracellular uptake and inhibition of NF-κB activation by decoy oligonucleotide released from PLGA microspheres. J Gene Med, 2005, 7(6): 771?781.
[7] Hu Y, Wang HF, Sun WQ, et al. Regulation of tissue factor expression in brain microvascular endothelial cells by PLA nanoparticles coating NF-κB decoy oligonucleotides. Chin J Hematol, 2005, 26(9): 534?538.胡豫, 王華芳, 孫望強(qiáng), 等. 聚乳酸納米粒介導(dǎo) decoy片段調(diào)控大鼠腦微血管內(nèi)皮細(xì)胞組織因子表達(dá)的體外研究. 中華血液學(xué)雜志, 2005, 26(9): 534?538.
[8] Zhong RD, Zhou J, Liao LQ, et al. Liposome mediated NF-κB decoy ODN inhibits expression of inflammatory factor and injury of lungs in a rat model of severe acute pancreatitis. Chin J Gen Surg, 2007, 22(6): 453?456.鐘榮德, 周杰, 廖柳清, 等. 脂質(zhì)體介導(dǎo) NF-κB decoy ODN對(duì)重癥急性胰腺炎大鼠肺炎癥因子 mRNA表達(dá)和肺損傷的影響. 中華普通外科雜志, 2007, 22(6): 453?456.
[9] Griesenbach U, Cassady RL, Cain RJ, et al. Cytoplasmic deposition of NF-κB decoy oligonucleotides is insufficient to inhibit bleomycin-induced pulmonary inflammation. Gene Ther, 2002, 9(16): 1109?1115.
[10] Bene A, Kurten RC, Chambers TC. Subcellular localization as a limiting factor for utilization of decoy oligonucleotides. Nucleic Acids Res, 2004, 32(19): e142.
[11] Eguchi A, Furusawa H, Yamamoto A, et al. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles. J Control Release, 2005, 104(3): 507?519.
[12] Opanasopit P, Rojanarata T, Apirakaramwong A, et al. Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes. Int J Pharm, 2009, 382(1/2): 291?295.
[13] Ludtke JJ, Zhang GF Sebestyen MG, et al. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J Cell Sci, 1999, 112(12): 2033?2041.
[14] Sakaguchi M, Nukui T, Sonegawa H, et al. Targeted disruption of transcriptional regulatory function of p53 by a novel efficient method for introducing a decoy oligonucleotide into nuclei. Nucleic Acids Res, 2005, 33(9): e88.
[15] Hua D, Li ML, Wang JK. A comparison between two chemiluminescent electrophoresis mobility shift assay (EMSA) methods. J Biomed Eng Res, 2007, 26(2): 111?115.華東, 李敏俐, 王進(jìn)科. 兩種化學(xué)發(fā)光電泳遷移率變動(dòng)分析技術(shù)的比較. 生物醫(yī)學(xué)工程研究, 2007, 26(2): 111?115.
[16] Isomura I, Morita A. Regulation of NF-κB signaling by decoy oligodeoxynucleotides. Microbiol Immunol, 2006, 50(8): 559?563.
[17] Chen P, Wang J, Hope K, et al. Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med, 2006, 47(5): 827?836.
[18] Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA, 1999, 96(1): 91?96.
[19] Fontes MRM, Teh T, Kobe B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J Mol Biol, 2000, 297(5): 1183?1194.