馬秉洲
現(xiàn)代教育觀點(diǎn)認(rèn)為,數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),即思維活動(dòng)的教學(xué)。如何在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力,養(yǎng)成良好思維品質(zhì)是教學(xué)改革的一個(gè)重要課題。本文談?wù)劤踔袑W(xué)生數(shù)學(xué)思維的培養(yǎng)的幾點(diǎn)嘗試。
一、要善于調(diào)動(dòng)學(xué)生內(nèi)在的思維能力
培養(yǎng)興趣,促進(jìn)思維。興趣是最好的老師,也是每個(gè)學(xué)生自覺(jué)求知的內(nèi)動(dòng)力。教師要精心設(shè)計(jì)每節(jié)課,要使每節(jié)課形象、生動(dòng),有意創(chuàng)造動(dòng)人的情境,設(shè)置誘人的懸念,激發(fā)學(xué)生思維的火花和求知的欲望,并使同學(xué)們認(rèn)識(shí)到數(shù)學(xué)在四化建設(shè)中的重要地位和作用。經(jīng)常指導(dǎo)學(xué)生運(yùn)用已學(xué)的數(shù)學(xué)知識(shí)和方法解釋自己所熟悉的實(shí)際問(wèn)題。新教材中安排的“想一想”、“讀一讀”不僅能擴(kuò)大知識(shí)面,還能提高同學(xué)的學(xué)習(xí)興趣,是比較受歡迎的題材。適當(dāng)分段,分散難點(diǎn),創(chuàng)造條件讓學(xué)生樂(lè)于思維。如列方程解應(yīng)用題是學(xué)生普遍感到困難的內(nèi)容之一,主要困難在于掌握不好用代數(shù)方法分析問(wèn)題的思路,習(xí)慣用小學(xué)的算術(shù)解法,找不出等量關(guān)系,列不出方程。因此,我在教列代數(shù)式時(shí)有意識(shí)地為列方程的教學(xué)作一些準(zhǔn)備工作,啟發(fā)同學(xué)從錯(cuò)綜復(fù)雜的數(shù)量關(guān)系中去尋找已知與未知之間的內(nèi)在聯(lián)系。通過(guò)畫(huà)草圖列表,配以一定數(shù)量的例題和習(xí)題,使同學(xué)們能逐步尋找出等量關(guān)系,列出方程。并在此基礎(chǔ)進(jìn)行提高,指出同一題目由于思路不一樣,可列出不同的方程。這樣大部分同學(xué)都能較順利地列出方程,碰到難題也會(huì)進(jìn)行積極的分析思維。
鼓勵(lì)學(xué)生獨(dú)立思維。初中生受經(jīng)驗(yàn)思維的影響,思維容易雷同,缺乏探索精神。因而要多鼓勵(lì)學(xué)生敢于發(fā)表不同的見(jiàn)解。例如比較大小,用“<”號(hào)連接下列各數(shù)1615、1211、9691、3229,大部分同學(xué)都根據(jù)以往經(jīng)驗(yàn),利用通分,化為同分母進(jìn)行比較,因而使計(jì)算量大,但也有一些聰明的學(xué)生已看出分子96分別是16、12、32的整數(shù)倍,只要使分子相同就可作比較。對(duì)這種同學(xué)應(yīng)該贊揚(yáng)與肯定,促進(jìn)學(xué)生思維的廣闊性。
二、要教會(huì)學(xué)生思維的方法
孔子說(shuō):“學(xué)而不思則罔,思而不學(xué)則殆”。恰當(dāng)?shù)厥久鲗W(xué)思關(guān)系,才能取得良好的效果。在數(shù)學(xué)學(xué)習(xí)中要使學(xué)生思維活躍,就要教會(huì)學(xué)生分析問(wèn)題的基本方法,這樣有利于培養(yǎng)學(xué)生的正確思維方式。
要學(xué)生善于思維,必須重視基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),沒(méi)有扎實(shí)的雙基,思維能力是得不到提高的。數(shù)學(xué)概念、定理是推理論證和運(yùn)算的基礎(chǔ),準(zhǔn)確地理解概念、定理是學(xué)好數(shù)學(xué)的前提。在教學(xué)過(guò)程中要提高學(xué)生觀察分析、由表及里、由此及彼的認(rèn)識(shí)能力。
在例題課中要把解(證)題思路的發(fā)現(xiàn)過(guò)程作為重要的教學(xué)環(huán)節(jié)。不僅要學(xué)生知道該怎樣做,還要讓學(xué)生知道為什么要這樣做,是什么促使你這樣做,這樣想的。這個(gè)發(fā)現(xiàn)過(guò)程可由教師引導(dǎo)學(xué)生完成,或由教師講出自己的尋找過(guò)程。
在數(shù)學(xué)練習(xí)中,要認(rèn)真審題,細(xì)致觀察,對(duì)解題起關(guān)鍵作用的隱含條件要有挖掘的能力。學(xué)會(huì)從條件到結(jié)論或從結(jié)論到條件的正逆兩種分析方法。對(duì)一個(gè)數(shù)學(xué)題,首先要能判斷它是屬于哪個(gè)范圍的題目,涉及到哪些概念、定理、或計(jì)算公式。在解(證)題過(guò)程中盡量要學(xué)會(huì)數(shù)學(xué)語(yǔ)言、數(shù)學(xué)符號(hào)的運(yùn)用。
初中數(shù)學(xué)研究對(duì)象大致可分為兩類(lèi),一類(lèi)是研究數(shù)量關(guān)系的,另一類(lèi)是研究空間形式的,即“代數(shù)”、“幾何”。要使同學(xué)們熟練地掌握一些重要的數(shù)學(xué)方法,主要有配方法、換之法、待定系數(shù)法、綜合法、分析法及反證法等。
三、要培養(yǎng)學(xué)生良好的思維品質(zhì)
在學(xué)生初步學(xué)會(huì)如何思維和掌握一定的思維方法后,應(yīng)加強(qiáng)思維能力的訓(xùn)練及思維品質(zhì)的培養(yǎng)。
要注意培養(yǎng)思維的條理性與敏捷性。根據(jù)解題目標(biāo),確定解題方向。要訓(xùn)練學(xué)生思維清晰,條理清楚,遇到問(wèn)題能按一定順序去分析、思考,對(duì)復(fù)雜問(wèn)題應(yīng)訓(xùn)練學(xué)生善于于局部到整體再?gòu)恼w到局部的思維方法。學(xué)生在思維過(guò)程中,要能迅速發(fā)現(xiàn)問(wèn)題和解決問(wèn)題。
要注意培養(yǎng)思維的嚴(yán)密性和靈活性。每個(gè)公式,法則、定理都有它的來(lái)龍去脈,都有使它成立的前提條件,都有它特定的使用范圍,要做到言必有據(jù)。選擇一些習(xí)題讓學(xué)生先做,再針對(duì)學(xué)生思維中的漏洞進(jìn)行教學(xué)分析。例:K是什么數(shù)時(shí),方程KX2-(2K+1)X+K=0有兩個(gè)不相等的實(shí)數(shù)根?很多同學(xué)只注意由△=[-(2K+1)]2-4K?K=4K2+4K+1-4K2=4K+1>0,推得K>-14。而如果把K>-14作為本題答案那就錯(cuò)了,因?yàn)楫?dāng)K=0時(shí),原方程不是二次方程,所以在K>-14還得把K=0這個(gè)值排除。正確的答案應(yīng)是-14<K<0或K>0時(shí),原方程有兩個(gè)不相等的實(shí)數(shù)根。
在復(fù)習(xí)時(shí)要精選一些有代表性、鞏固性和靈活性的習(xí)題,從各種不同角度,尋求不同的解(證)法,進(jìn)行“一題多解”的訓(xùn)練,還可改變條件進(jìn)行“一題多變”和“多題一解”的訓(xùn)練。這是綜合運(yùn)用數(shù)學(xué)知識(shí)和方法提高解題能力的重要措施。培養(yǎng)學(xué)生思維能力的方法是多種多樣的,要使學(xué)生思維活躍,最根本的一條,就是要調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,教師要善于啟發(fā)、引導(dǎo)、點(diǎn)撥、解疑,使學(xué)生變學(xué)為思。
當(dāng)然,良好的思維品質(zhì)不是一朝一夕就能形成的,但只要根據(jù)學(xué)生實(shí)際情況,通過(guò)各種手段,堅(jiān)持不懈,持之以恒,就必定會(huì)有所成效。