【摘要】 在中樞神經(jīng)系統(tǒng)當(dāng)中,小膠質(zhì)細(xì)胞約占細(xì)胞總數(shù)的10%,它們是神經(jīng)系統(tǒng)中的主要免疫細(xì)胞,負(fù)責(zé)免疫監(jiān)測、炎癥應(yīng)答和清除有害物質(zhì)。當(dāng)神經(jīng)系統(tǒng)遭受損傷、感染或炎癥刺激時(shí),小膠質(zhì)細(xì)胞會(huì)被激活為巨噬細(xì)胞樣態(tài),并釋放炎癥介質(zhì)和細(xì)胞因子。這些分子可以引導(dǎo)免疫細(xì)胞的遷移、調(diào)節(jié)炎癥反應(yīng),并參與修復(fù)和恢復(fù)過程。文章主要針對(duì)神經(jīng)系統(tǒng)炎癥反應(yīng)中小膠質(zhì)細(xì)胞激活以及作用機(jī)制,深入闡述神經(jīng)系統(tǒng)炎癥反應(yīng)過程,以及在一些特定神經(jīng)系統(tǒng)疾病中小膠質(zhì)細(xì)胞發(fā)揮的作用。
【關(guān)鍵詞】 神經(jīng)系統(tǒng)炎癥反應(yīng);小膠質(zhì)細(xì)胞;M1型極化;M2型極化
The mechanism of microglial polarization in the inflammatory response of the nervous system
CAO Wenda1, HU Nana1, LI Lei1, YAO Lihe2, WANG Tianhong2, GU Youquan2
(1.First Clinical Medical School of Lanzhou University, Lanzhou 730030, China; 2.Department of Neurology, First Hospital of Lanzhou University, Lanzhou 730030, China)
Corresponding author: GU Youquan, E-mail: guyq@lzu.edu.cn
【Abstract】 In the central nervous system, microglia account for about 10% of the total number of cells. They are the main immune cells in the nervous system, responsible for immune surveILlance, inflammatory response, and removal of harmful substances. When the nervous system is damaged, infected, or inflammatory, microglia are activated into macrophage-like cells and release inflammatory mediators and cytokines. These molecules can guide the migration of immune cells, regulate inflammatory responses, and participate in the repair and recovery process. In this review, we mainly focus on the activation and mechanism of microglia in the inflammatory response of the nervous system, further explain the inflammatory response process of the nervous system and the role of microglia in some specific neurological diseases.
【Key words】 Inflammatory response in the nervous system; Microglial; M1 polarization; M2 polarization
神經(jīng)系統(tǒng)是人體高度復(fù)雜和精密的系統(tǒng),在維持身體的正常功能和應(yīng)對(duì)外界刺激中起著至關(guān)重要的作用。神經(jīng)系統(tǒng)中的炎癥反應(yīng)是其應(yīng)對(duì)損傷、感染和疾病的重要自我保護(hù)機(jī)制,在這一過程中,小膠質(zhì)細(xì)胞扮演了關(guān)鍵角色[1]。神經(jīng)系統(tǒng)炎癥反應(yīng)過程涉及神經(jīng)系統(tǒng)中的小膠質(zhì)細(xì)胞、神經(jīng)元、星形膠質(zhì)細(xì)胞、外周免疫細(xì)胞,以及細(xì)胞因子、趨化因子和補(bǔ)體系統(tǒng)的參與,這些因素引發(fā)細(xì)胞免疫及體液免疫協(xié)同參與的免疫反應(yīng)。神經(jīng)元損傷后釋放出大量炎性介質(zhì)和損傷相關(guān)分子模式(damage-associated molecular patterns,DAMPs),DAMPS通過與浸潤的巨噬細(xì)胞或小膠質(zhì)細(xì)胞膜上的Toll樣受體(toll-like receptor,TLR)結(jié)合,激活免疫細(xì)胞內(nèi)部處于靜息狀態(tài)的核轉(zhuǎn)錄因子-κB,具有啟動(dòng)轉(zhuǎn)錄活性的核轉(zhuǎn)錄因子-κB亞基轉(zhuǎn)移至細(xì)胞核,啟動(dòng)促炎因子的轉(zhuǎn)錄與表達(dá)過程,這是巨噬細(xì)胞或小膠質(zhì)細(xì)胞引發(fā)損傷性炎癥反應(yīng)的關(guān)鍵效應(yīng)分子[2]。創(chuàng)傷性腦損傷、感染、衰老、毒性代謝產(chǎn)物、自身免疫以及遺傳風(fēng)險(xiǎn)等因素均可引發(fā)無菌性神經(jīng)炎癥。無菌性神經(jīng)炎癥在多種神經(jīng)退行性疾病和神經(jīng)系統(tǒng)急性損傷進(jìn)程中發(fā)揮了重要的病理生理作用[1]。
小膠質(zhì)細(xì)胞作為先天免疫系統(tǒng)中的關(guān)鍵細(xì)胞,是中樞神經(jīng)系統(tǒng)中的主要免疫細(xì)胞,約占腦實(shí)質(zhì)細(xì)胞總數(shù)的10%~15%。在中樞神經(jīng)系統(tǒng)發(fā)生炎癥反應(yīng)后,小膠質(zhì)細(xì)胞是最早對(duì)炎癥反應(yīng)做出應(yīng)答的非神經(jīng)元細(xì)胞[3],其被激活進(jìn)而轉(zhuǎn)化為M1型(促炎)或M2型(抗炎)表型。激活的M1型小膠質(zhì)細(xì)胞使促炎性細(xì)胞因子白介素-1β(interleukin,IL-1β)、前列腺素E2(prostaglandin E2,PGE2)、腫瘤壞死因子(tumor necrosis factor-α,TNF-α)等大量表達(dá),并且誘導(dǎo)環(huán)氧合酶2(cyclooxygenase-2,COX-2)和誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表達(dá),產(chǎn)生高氧化應(yīng)激產(chǎn)物活性氧簇(reactive oxygen species,ROS)、一氧化氮(nitricoxide,NO)等,導(dǎo)致神經(jīng)炎癥和中樞神經(jīng)系統(tǒng)損傷[4]。因此M1型小膠質(zhì)細(xì)胞可提高氧化產(chǎn)物及促炎因子的產(chǎn)生或表達(dá),擴(kuò)大炎癥反應(yīng),引起神經(jīng)元凋亡。而M2型又稱選擇性激活型,該型小膠質(zhì)細(xì)胞處于發(fā)揮免疫保護(hù)作用的狀態(tài)以保護(hù)神經(jīng)元[5]。此外,小膠質(zhì)細(xì)胞在組織發(fā)育、結(jié)構(gòu)完善、神經(jīng)環(huán)境維持以及組織修復(fù)過程中也發(fā)揮著重要的調(diào)節(jié)作用。因此,小膠質(zhì)細(xì)胞在受到外界環(huán)境刺激后,由經(jīng)典激活途徑極化成M1型小膠質(zhì)細(xì)胞通常被認(rèn)為會(huì)加重腦損傷,而由選擇性激活途徑極化成M2型小膠質(zhì)細(xì)胞則具有神經(jīng)保護(hù)特性,兩者共同參與神經(jīng)退行性疾病、缺血性腦卒中以及多發(fā)性硬化等疾病的病理過程。本文針對(duì)小膠質(zhì)細(xì)胞激活后不同分型在神經(jīng)系統(tǒng)炎癥反應(yīng)中的作用進(jìn)行闡述,從而了解小膠質(zhì)細(xì)胞在這些疾病的炎癥反應(yīng)中具體作用機(jī)制,針對(duì)神經(jīng)系統(tǒng)炎癥反應(yīng)中小膠質(zhì)細(xì)胞極化的具體過程進(jìn)行分析總結(jié),為認(rèn)識(shí)和預(yù)測相關(guān)治療靶點(diǎn)提供參考,為新的疾病診治提供另一種思路。
1 小膠質(zhì)細(xì)胞極化類型被激活后的作用
1.1 M1型小膠質(zhì)細(xì)胞
1.1.1 產(chǎn)生促炎因子
作為中樞神經(jīng)系統(tǒng)中的促炎細(xì)胞,M1型小膠質(zhì)細(xì)胞在創(chuàng)傷、缺血、再灌注損傷等因素的刺激作用下釋放促炎細(xì)胞因子,促進(jìn)炎癥反應(yīng)進(jìn)而造成損傷。研究表明,M1型小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中促炎細(xì)胞因子的主要來源之一,會(huì)釋放干擾素γ(interferon-γ,IFN-γ)、TNF-α、IL-6、IL-12、IL-1α以及IL-1β等促炎細(xì)胞因子,這些因子均會(huì)引發(fā)中樞神經(jīng)系統(tǒng)中的無菌性炎癥反應(yīng),并導(dǎo)致炎癥反應(yīng)持續(xù)加?。?]。
1.1.2 加劇炎癥反應(yīng)過程
小膠質(zhì)細(xì)胞與外周單核細(xì)胞具有相似的表型特征,其可通過TLR、NOD樣受體(nucleotide binding,oligomerization domain-like receptors,NLR)等一系列免疫受體來識(shí)別機(jī)體內(nèi)的有害刺激。其中NLR家族蛋白3(NLRP3) 炎癥小體作為NOD樣受體家族中的重要成員,主要集中在小膠質(zhì)細(xì)胞中,并在炎癥反應(yīng)中起關(guān)鍵調(diào)控作用,其激活過程可能與小膠質(zhì)細(xì)胞的極化過程密切相關(guān)[6]。NLRP3炎性小體可促進(jìn)活性半胱氨酸天冬氨酸特異蛋白酶1(Caspase-1)的產(chǎn)生,進(jìn)而促進(jìn)IL-1β和 IL-18的生成。NLRP1、NLRP3 和含CARD結(jié)構(gòu)蛋白4(NLR family CARD domain-containing protein 4,NLRC4)的復(fù)合體可促進(jìn)Caspase-1 的激活,此過程可促進(jìn)促炎細(xì)胞因子的釋放從而激活相關(guān)炎癥反應(yīng)的發(fā)生[7]。
因此,激活后的M1型小膠質(zhì)細(xì)胞可釋放多種促炎因子,進(jìn)而加重中樞神經(jīng)系統(tǒng)的炎癥反應(yīng)。首先,小膠質(zhì)細(xì)胞可通過相關(guān)免疫受體,如NLRP3炎癥小體,促炎細(xì)胞因子的釋放從而激活相關(guān)炎癥反應(yīng)的發(fā)生。小膠質(zhì)細(xì)胞在極化為M1型小膠質(zhì)細(xì)胞后,其吞噬功能明顯減弱。隨后,M1型小膠質(zhì)細(xì)胞可通過產(chǎn)生多種炎癥介質(zhì)促進(jìn)神經(jīng)元的炎癥級(jí)聯(lián)反應(yīng)的發(fā)生,導(dǎo)致中樞神經(jīng)系統(tǒng)炎癥反應(yīng)的擴(kuò)大和延續(xù),進(jìn)而導(dǎo)致神經(jīng)元損傷,并阻礙神經(jīng)元的修復(fù)過程。
1.2 M2型小膠質(zhì)細(xì)胞
1.2.1 M2型小膠質(zhì)細(xì)胞抗炎作用
在中樞神經(jīng)系統(tǒng)發(fā)生感染時(shí),小膠質(zhì)細(xì)胞首先會(huì)極化為M1型小膠質(zhì)細(xì)胞,促進(jìn)體內(nèi)炎癥反應(yīng)的發(fā)生。隨著炎癥反應(yīng)的發(fā)展,小膠質(zhì)細(xì)胞表面標(biāo)志物表達(dá)發(fā)生變化,從而極化為M2型小膠質(zhì)細(xì)胞,幫助修復(fù)炎癥反應(yīng)中受損的組織[8]。研究顯示,M2型小膠質(zhì)細(xì)胞中的精氨酸酶1(arginase-1,Arg-1)、甘露糖受體CD206、抗炎因子IL-10以及CC趨化因子配體17(CC chemokine ligand 17,CCL17)和CCL12的表達(dá)水平較小膠質(zhì)細(xì)胞有所上調(diào),上述這些分子在抗炎反應(yīng)和組織修復(fù)中均發(fā)揮著重要作用[9]。M2型小膠質(zhì)細(xì)胞可通過釋放IL-10、IL-1、轉(zhuǎn)化生長因子-β(transforming growth factor beta,TGF-β) 和Arg-1等抗炎因子降低體內(nèi)炎癥因子的水平,通過IL-10促進(jìn)體內(nèi)細(xì)胞凋亡,并通過吞噬損傷部位的壞死細(xì)胞碎片來減輕局部炎癥反應(yīng),進(jìn)而促進(jìn)體內(nèi)炎癥消退和腦組織的恢復(fù)。在中樞神經(jīng)系統(tǒng)損傷后,M2型小膠質(zhì)細(xì)胞會(huì)參與到體內(nèi)修復(fù)過程中,M2小膠質(zhì)細(xì)胞參與上調(diào)Arg-1的表達(dá),與iNOS競爭精氨酸底物,下調(diào)NO水平,從而減少活性氧對(duì)神經(jīng)元組織的損傷,并參與損傷修復(fù)[10]。因此小膠質(zhì)細(xì)胞極化狀態(tài)紊亂可能會(huì)引發(fā)慢性神經(jīng)退行性疾病、中樞神經(jīng)系統(tǒng)自身免疫性疾病與創(chuàng)傷、腦卒中等的發(fā)生。
1.2.2 M2型小膠質(zhì)細(xì)胞分化亞型
在不同微環(huán)境條件下,M2型小膠質(zhì)細(xì)胞可進(jìn)一步分化為M2a、M2b和M2c 3種亞型[10]。M2a型小膠質(zhì)細(xì)胞和M2b型小膠質(zhì)細(xì)胞具有重要的免疫調(diào)節(jié)作用,M2c型小膠質(zhì)細(xì)胞卻可以抑制免疫反應(yīng)。研究顯示,當(dāng)發(fā)生中樞神經(jīng)系統(tǒng)炎癥反應(yīng)時(shí),IL-4或IL-13可激活M2a型小膠質(zhì)細(xì)胞,然后表達(dá)更高水平的CD206,并產(chǎn)生CCL24、CCL22、CCL17和CCL18,招募嗜酸性粒細(xì)胞、嗜堿性粒細(xì)胞和輔助性T細(xì)胞參與免疫調(diào)節(jié)[11]。M2b 型小膠質(zhì)細(xì)胞由IL-1、脂多糖和免疫復(fù)合物誘導(dǎo)產(chǎn)生,參與免疫調(diào)節(jié),生成IL-1、IL-6和TNF-α,也能分泌CCL1招募調(diào)節(jié)性T細(xì)胞[12]。M2c型小膠質(zhì)細(xì)胞表達(dá)獨(dú)特的表面受體,如CD163和CD206,并分泌大量的細(xì)胞因子,包括IL-10和TGF-β,抑制免疫反應(yīng)、參與組織修復(fù)和基質(zhì)重建[12]。
2 神經(jīng)系統(tǒng)退行性疾病炎癥反應(yīng)中小膠質(zhì)細(xì)胞的作用
2.1 阿爾茨海默病炎癥反應(yīng)病理機(jī)制與小膠質(zhì)細(xì)胞極化
在神經(jīng)退行性疾病中,神經(jīng)炎癥反應(yīng)通常是一個(gè)慢性過程,對(duì)疾病的發(fā)展具有重要推動(dòng)作用。阿爾茨海默病(Aizheimer’s disease,AD)是最常見的神經(jīng)退行性疾病,其會(huì)逐漸導(dǎo)致患者進(jìn)行性癡呆,具有較高的致殘率和病死率[13]。AD發(fā)病機(jī)制尚無確切的定論,現(xiàn)主要有以下幾種假說:β-淀粉樣蛋白(amyloid β-protein,Aβ)異常沉積;微管相關(guān)蛋白Tau蛋白過度磷酸化;氧化應(yīng)激;炎性反應(yīng);胰島素信號(hào)傳導(dǎo)通路障礙。研究表明,神經(jīng)炎癥通過激活小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞參與AD的病理生理過程[14]。小膠質(zhì)細(xì)胞激活可以對(duì)抗神經(jīng)炎癥介導(dǎo)的AD誘導(dǎo)的神經(jīng)病理損傷[15]。
在AD早期,甚至在老年斑形成之前,活化的小膠質(zhì)細(xì)胞就通過減少Aβ沉積,有效減輕Tau蛋白過度磷酸化,促進(jìn)神經(jīng)營養(yǎng)因子的分泌,進(jìn)而發(fā)揮保護(hù)神經(jīng)系統(tǒng)作用[16-17]。研究顯示,小膠質(zhì)細(xì)胞在AD病理機(jī)制中具有雙重作用。一方面,患者老年斑中大量小膠質(zhì)細(xì)胞激活后可表現(xiàn)出吞噬功能,它們通過吞噬作用以助消除Aβ聚集。小膠質(zhì)細(xì)胞還可通過清道夫受體的表達(dá)發(fā)揮作用,清道夫受體分為清道夫受體A類(scavenger receptor class A,SR-A)與SR-B,發(fā)揮清除凋亡細(xì)胞和保護(hù)神經(jīng)的作用,從而延緩AD的發(fā)展。另一方面,Aβ與Tau蛋白的過度聚集會(huì)激活NLRP3炎性小體,促使小膠質(zhì)細(xì)胞從靜息狀態(tài)轉(zhuǎn)變?yōu)榇傺谞顟B(tài),造成其異常自噬、產(chǎn)生活性氧,進(jìn)一步加劇炎癥反應(yīng)的進(jìn)程。另外小膠質(zhì)細(xì)胞通過TLR的表達(dá)、補(bǔ)體系統(tǒng)的異常激活對(duì)神經(jīng)元造成損傷和Aβ的積累[18-19]。因此,持續(xù)的神經(jīng)炎癥會(huì)導(dǎo)致小膠質(zhì)細(xì)胞激活,并加劇Aβ的沉積,引發(fā)神經(jīng)元損傷。Aβ是重要的神經(jīng)毒性因素,可以激活小膠質(zhì)細(xì)胞和神經(jīng)炎癥反應(yīng)的發(fā)生[20]。
另有研究顯示,Tau蛋白低聚物和原纖維可以提供足夠刺激誘導(dǎo)小膠質(zhì)細(xì)胞發(fā)生形態(tài)改變并增加IL的表達(dá)[14]。不同種類的Aβ聚集體可以激活小膠質(zhì)細(xì)胞并釋放細(xì)胞因子導(dǎo)致神經(jīng)元功能障礙和死亡[21]。
神經(jīng)炎癥反應(yīng)在AD的發(fā)病進(jìn)程中可能起到驅(qū)動(dòng)作用,抗炎治療可能為治療AD的其中一種方法。但是,目前多數(shù)大型抗炎藥物治療AD的臨床試驗(yàn)均提示無明顯改善作用[22]。一項(xiàng)臨床隨機(jī)對(duì)照研究顯示,采用非甾體類抗炎藥物治療攜帶ApoE4等位基因的輕中度AD患者有助于改善其認(rèn)知功能[23]。另一研究顯示,在AD患者出現(xiàn)癥狀之前應(yīng)用非甾體類抗炎藥物對(duì)于認(rèn)知功能確有保護(hù)作用,但在認(rèn)知功能損害后應(yīng)用則是有害的[24]。
2.2 帕金森病中小膠質(zhì)細(xì)胞極化與炎癥因子產(chǎn)生
帕金森?。≒arkinson’s disease,PD)是較為常見的一種神經(jīng)退行性疾病。其主要病因是由于大腦黑質(zhì)致密部多巴胺能神經(jīng)元的喪失以及細(xì)胞內(nèi)α-突觸核蛋白(α-synuclein,α-syn)的聚集,而成熟的中樞神經(jīng)系統(tǒng)中小膠質(zhì)細(xì)胞分布不均勻,黑質(zhì)中密度最高,所以小膠質(zhì)細(xì)胞活化在PD的發(fā)生及病理發(fā)展中起重要作用。神經(jīng)炎癥是多巴胺能神經(jīng)元變性和PD發(fā)生的關(guān)鍵起始步驟,神經(jīng)炎癥促使小膠質(zhì)細(xì)胞活化,并表達(dá)iNOS和還原型輔酶Ⅱ氧化酶[25]。
小膠質(zhì)細(xì)胞的激活發(fā)生在PD的早期,并在整個(gè)病程中持續(xù)存在[26]。神經(jīng)元損傷可能影響細(xì)胞外基質(zhì)成分,從而激活小膠質(zhì)細(xì)胞,促進(jìn)炎癥因子的產(chǎn)生。具體為當(dāng)α-syn在細(xì)胞外積聚且未被及時(shí)清除時(shí),其可以通過細(xì)胞表面以及內(nèi)體膜上的模式識(shí)別受體(pattern recognition receptors,PRR)激活小膠質(zhì)細(xì)胞,導(dǎo)致炎癥細(xì)胞因子的釋放[27]。進(jìn)而,活化的小膠質(zhì)細(xì)胞可產(chǎn)生自由基,引起細(xì)胞壞死和凋亡,還可抑制神經(jīng)元傳遞,導(dǎo)致多巴胺神經(jīng)元的退化和死亡,損害中樞神經(jīng)系統(tǒng)。Cheng等[28]的研究顯示,小鼠腦內(nèi)小膠質(zhì)細(xì)胞缺乏自噬相關(guān)基因5Atg5時(shí)會(huì)導(dǎo)致小膠質(zhì)細(xì)胞的自噬缺陷,從而引發(fā)PD樣癥狀。人類和細(xì)胞模型研究表明,從細(xì)胞中釋放的α-syn能夠被先天免疫細(xì)胞識(shí)別,從而促進(jìn)炎癥反應(yīng)并加劇體內(nèi)氧化應(yīng)激反應(yīng)。此外,錯(cuò)誤折疊的α-syn還可直接激活小膠質(zhì)細(xì)胞,促進(jìn)氧化應(yīng)激反應(yīng)的發(fā)生并誘導(dǎo)促炎細(xì)胞因子TNF-α的生成和釋放[29]。
綜上,在探究PD小膠質(zhì)細(xì)胞激活機(jī)制的過程中,許多研究者通過調(diào)節(jié)小膠質(zhì)細(xì)胞的活化以期改善PD引起的神經(jīng)損傷。因此,靶向小膠質(zhì)細(xì)胞活化狀態(tài)的藥物能夠?qū)⑿∧z質(zhì)細(xì)胞從M1型轉(zhuǎn)變?yōu)镸2型,進(jìn)而有效減輕帕金森病神經(jīng)損傷 [30]。也通過抑制小膠質(zhì)細(xì)胞的有害促炎神經(jīng)毒性同時(shí)加強(qiáng)其有益的抗炎保護(hù)功能來調(diào)控小膠質(zhì)細(xì)胞的活化狀態(tài)[30]。一項(xiàng)動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)牛磺酸可以通過調(diào)節(jié)mac1和Src-Erk信號(hào)通路,降低小鼠海馬小膠質(zhì)細(xì)胞NADPH氧化酶表達(dá)水平,從而改善學(xué)習(xí)和記憶功能受損情況[31]。因此,通過干預(yù)小膠質(zhì)細(xì)胞的激活狀態(tài)來調(diào)節(jié)其功能,可為治療帕金森病提供一種新的治療策略。
2.3 多發(fā)性硬化中小膠質(zhì)細(xì)胞極化可能的炎性致病機(jī)制
多發(fā)性硬化(multiple sclerosis,MS)是中樞神經(jīng)系統(tǒng)炎性脫髓鞘疾病。目前病因未闡明,發(fā)病機(jī)制與自身免疫性反應(yīng)有關(guān)。研究表明,MS患者的小膠質(zhì)細(xì)胞通過炎癥反應(yīng)釋放大量的活性氧簇作用于髓鞘,破壞其線粒體呼吸鏈導(dǎo)致能量代謝異常,最后造成組織損傷引發(fā)脫髓鞘[32]。在MS的疾病過程中,小膠質(zhì)細(xì)胞充當(dāng)著常駐免疫效應(yīng)細(xì)胞,通過不同的極化狀態(tài)(M1型和M2型)參與疾病的進(jìn)展和調(diào)節(jié)。M1型小膠質(zhì)細(xì)胞可協(xié)調(diào)慢性炎癥反應(yīng),造成破壞性影響。然而,M2型小膠質(zhì)細(xì)胞也可以通過清除病變部位的有害分子及壞死細(xì)胞碎片,并通過分泌營養(yǎng)和生長因子來促進(jìn)髓鞘修復(fù)。在疾病的急性期,M1型小膠質(zhì)細(xì)胞的比例顯著增加,導(dǎo)致強(qiáng)烈的局部炎癥反應(yīng)和髓鞘損傷。在慢性期,盡管部分M2型小膠質(zhì)細(xì)胞試圖進(jìn)行修復(fù),但M1型小膠質(zhì)細(xì)胞在激活后會(huì)產(chǎn)生NO和TNF-α等細(xì)胞因子產(chǎn)生持續(xù)炎癥刺激而導(dǎo)致修復(fù)無法完成。這些細(xì)胞因子可能對(duì)中樞神經(jīng)系統(tǒng)細(xì)胞中髓鞘的少突膠質(zhì)細(xì)胞和神經(jīng)元產(chǎn)生損害[33]。相關(guān)動(dòng)物實(shí)驗(yàn)研究表明,M1型小膠質(zhì)細(xì)胞的炎癥活動(dòng)會(huì)損害髓磷脂并破壞軸突和突觸活性。然而,M2型小膠質(zhì)細(xì)胞強(qiáng)大的吞噬和組織重塑能力有助于支持內(nèi)源性修復(fù)機(jī)制。因此在MS病程中,M1型及M2型小膠質(zhì)細(xì)胞存在于MS髓鞘病變進(jìn)展的各個(gè)階段[34]。
小膠質(zhì)細(xì)胞的極化在MS的病理過程中扮演著至關(guān)重要的角色。M1型細(xì)胞的促炎作用和M2型細(xì)胞的抗炎修復(fù)功能之間的平衡失調(diào)是MS病程進(jìn)展的重要機(jī)制。深入了解小膠質(zhì)細(xì)胞極化的分子機(jī)制,有望為MS的治療提供新的靶點(diǎn)和策略。
3 腦血管疾病中的炎癥反應(yīng)
3.1 小膠質(zhì)細(xì)胞極化與缺血性腦卒中的炎癥反應(yīng)過程
腦卒中分為缺血性腦卒中和出血性腦卒中,缺血性卒中約占85%,缺血性腦卒中具有發(fā)病率高、致死率高和復(fù)發(fā)率高等特點(diǎn),會(huì)引起神經(jīng)細(xì)胞炎癥改變,缺血后神經(jīng)細(xì)胞炎癥是決定患者遠(yuǎn)期預(yù)后的關(guān)鍵因素[35]。腦組織缺血后,神經(jīng)元發(fā)生廣泛性壞死,釋放出大量炎性介質(zhì)和DAMPs,DAMPs和小膠質(zhì)細(xì)胞表面的TLR4受體結(jié)合,激活腦內(nèi)小膠質(zhì)細(xì)胞和外周巨噬細(xì)胞,吞噬死亡細(xì)胞的碎片[36]。其中,小膠質(zhì)細(xì)胞活化可通過清除細(xì)胞碎片和恢復(fù)組織完整性來修復(fù)受損的腦部,但是腦卒中后存活的神經(jīng)元也會(huì)釋放吞噬信號(hào),此時(shí)劇烈的小膠質(zhì)細(xì)胞活化會(huì)導(dǎo)致缺血性梗死病灶的繼發(fā)性擴(kuò)大和神經(jīng)系統(tǒng)病變的惡化。研究表明,缺血神經(jīng)元會(huì)促使小膠質(zhì)細(xì)胞極化發(fā)展為M1型小膠質(zhì)細(xì)胞。M1型小膠質(zhì)細(xì)胞也會(huì)加劇氧葡萄糖缺乏從而造成神經(jīng)元死亡。而局部小膠質(zhì)細(xì)胞在缺血性卒中的早期階段呈現(xiàn)為M2型,保護(hù)神經(jīng)元免受缺氧、缺糖的影響[37]。研究顯示,轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3,STAT3)是小膠質(zhì)細(xì)胞極化和炎癥反應(yīng)的關(guān)鍵介質(zhì),其可通過調(diào)節(jié)小膠質(zhì)細(xì)胞的極化在缺血性腦卒中模型中發(fā)揮重要的神經(jīng)保護(hù)作用,非受體型酪氨酸蛋白激酶2(janus kinase 2,JAK2)/STAT3信號(hào)通路可調(diào)節(jié)腦缺血再灌注期間的小膠質(zhì)細(xì)胞極化。其中,STAT3主要引起小膠質(zhì)細(xì)胞M2型極化,當(dāng)中樞神經(jīng)系統(tǒng)發(fā)生缺血再灌注損傷時(shí),體內(nèi)炎癥反應(yīng)程度加劇,而M2型小膠質(zhì)細(xì)胞則可通過降低缺血后活性氧的水平,并增加谷胱甘肽(glutathione,GSH)和血紅素加氧酶-1(heme oxygenase-1,HO-1)的含量來發(fā)揮重要的抗氧化作用,進(jìn)而降低體內(nèi)炎癥反應(yīng)程度,從而減輕腦損傷[38]。小膠質(zhì)細(xì)胞在缺血性腦卒中的病理過程中發(fā)揮了關(guān)鍵作用。M1型小膠質(zhì)細(xì)胞的促炎作用和M2型小膠質(zhì)細(xì)胞的抗炎修復(fù)功能之間的平衡失調(diào),是腦卒中病程進(jìn)展和預(yù)后不良的重要機(jī)制。
小膠質(zhì)細(xì)胞極化與缺血性腦卒中病理變化關(guān)聯(lián)密切,因此針對(duì)這些細(xì)胞的預(yù)處理療法可能是治療缺血性卒中的策略之一。通過誘導(dǎo)M2型小膠質(zhì)細(xì)胞的產(chǎn)生保護(hù)神經(jīng)元免受缺血性損傷可能是針對(duì)缺血性卒中的有效保護(hù)性治療[39]。除此之外,一項(xiàng)動(dòng)物實(shí)驗(yàn)顯示,在小鼠大腦中動(dòng)脈缺血模型中給予IL-13可顯著縮小病變體積,減輕CD45+白細(xì)胞的浸潤,并促進(jìn)缺血區(qū)域內(nèi)的小膠質(zhì)細(xì)胞M2型活化,IL-13的存在可增強(qiáng)體內(nèi)和體外的小膠質(zhì)細(xì)胞/巨噬細(xì)胞的抗炎反應(yīng),減少缺血引起的腦細(xì)胞死亡,并改善感覺和運(yùn)動(dòng)功能[40]。
3.2 小膠質(zhì)細(xì)胞極化在出血性腦卒中炎癥反應(yīng)中的作用
腦出血占所有腦卒中的10%~15%[41]。腦出血患者血腫形成后的損傷組織、凋亡細(xì)胞釋放的物質(zhì)及析出的血液成分均會(huì)引起小膠質(zhì)細(xì)胞活化[42]。小膠質(zhì)細(xì)胞一方面通過啟動(dòng)自噬,減輕腦出血后繼發(fā)性損傷,而自噬的過度激活則導(dǎo)致腦損傷加重;另一方面,通過炎癥小體途徑產(chǎn)生炎癥因子破壞血腦屏障,最終形成腦出血后炎癥。
在腦出血病程中,小膠質(zhì)細(xì)胞極化為M1型可誘導(dǎo)各種炎癥因子的產(chǎn)生。一項(xiàng)大鼠腦出血模型研究顯示,與M1型小膠質(zhì)細(xì)胞相關(guān)的IL-1β、IL-6、TNF和iNOS等炎癥因子的mRNA在急性期上調(diào),其表達(dá)的相應(yīng)蛋白質(zhì)水平也同樣升高[43]。而M2型小膠質(zhì)細(xì)胞除可增強(qiáng)小膠質(zhì)細(xì)胞吞噬作用外,還可誘導(dǎo)巨噬細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)及STAT3抑制促炎性因子的產(chǎn)生[44]。目前,關(guān)于腦出血后小膠質(zhì)細(xì)胞自噬和炎癥相互作用的相關(guān)研究報(bào)道較少,不能進(jìn)行全面分析。腦出血后小膠質(zhì)細(xì)胞極化的機(jī)制尚未明確,如何抑制M1型小膠質(zhì)細(xì)胞激活,促進(jìn)M2型小膠質(zhì)細(xì)胞激活,需待進(jìn)一步驗(yàn)證。
4 結(jié)語與展望
綜上所述,在神經(jīng)系統(tǒng)炎癥反應(yīng)中,小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)的主要免疫細(xì)胞,其作用不僅限于維持正常的生理功能,在病理?xiàng)l件下的反應(yīng)和調(diào)節(jié)能力也同樣重要。慢性神經(jīng)炎癥的激活導(dǎo)致炎癥介質(zhì)的過量產(chǎn)生,導(dǎo)致神經(jīng)元功能障礙和退化,這與多種神經(jīng)系統(tǒng)疾病有關(guān),包括PD、AD、MS和腦血管病。小膠質(zhì)細(xì)胞在神經(jīng)系統(tǒng)炎癥反應(yīng)中具有重要的調(diào)節(jié)作用。理解并干預(yù)小膠質(zhì)細(xì)胞的活化機(jī)制,有望為臨床治療帶來新的進(jìn)展,特別是在應(yīng)對(duì)神經(jīng)退行性疾病和急性神經(jīng)損傷方面。此外,由于小膠質(zhì)細(xì)胞介導(dǎo)神經(jīng)炎癥,因此其可能是治療神經(jīng)系統(tǒng)非細(xì)菌性炎癥反應(yīng)的治療靶點(diǎn),但目前尚缺少深入研究和干預(yù)研究,仍未發(fā)現(xiàn)抗炎癥新藥的研究項(xiàng)目,相信未來進(jìn)一步探討小膠質(zhì)細(xì)胞在不同病理狀態(tài)下的具體作用機(jī)制后,能夠開發(fā)更有效的治療藥物。通過調(diào)控小膠質(zhì)細(xì)胞的極化狀態(tài),可能為神經(jīng)退行性疾病、腦血管疾病和其他神經(jīng)系統(tǒng)疾病的治療提供新的思路。通過誘導(dǎo)細(xì)胞向小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞分化的細(xì)胞療法也有望被用于抑制或調(diào)節(jié)免疫反應(yīng),減輕炎癥程度,從而改善病程進(jìn)展。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] 黃南渠, 金海, 石京山, 等. 白藜蘆醇抑制小膠質(zhì)細(xì)胞激活在神經(jīng)炎癥中的研究進(jìn)展[J]. 中國藥學(xué)雜志, 2018, 53(2):85-91. DOI: 10.11669/cpj.2018.02.001.
HUANG N Q, JIN H, SHI J S, et al. Research progress of resveratrol inhibiting microglial activation in neuroinflammation[J].
Chin Pharm J, 2018, 53(2): 85-91. DOI: 10.11669/cpj.
2018.02.001.
[2] 張建文, 王萍, 任超, 等. 缺血性卒中中后期炎癥反應(yīng)機(jī)制研究進(jìn)展與新藥研發(fā)的契機(jī)[J]. 中國藥理學(xué)通報(bào), 2019, 35(4): 468-473. DOI: 10.3969/j.issn.1001-1978.2019.04.005.
ZHANG J W, WANG P, REN C, et al. Advance in mechanism study of inflammation in post-ischemic stroke and opportunity of new drug development[J]. Chin Pharmacol Bull, 2019, 35(4): 468-473. DOI: 10.3969/j.issn.1001-1978.2019.04.005.
[3] 王佳, 張麗, 隗和儒, 等. 趨化因子和小膠質(zhì)細(xì)胞在阿爾茨海默病神經(jīng)炎癥中的作用研究進(jìn)展[J]. 中國比較醫(yī)學(xué)雜志, 2021, 31(6): 139-147. DOI: 10.3969/j.issn.1671-7856.
2021.06.022.
WANG J, ZHANG L, WEI H R, et al. Progress in research on the role of chemokines and microglia in the neuroinflammation of Alzheimer’s disease[J]. Chin J Comp Med, 2021, 31(6): 139-147. DOI: 10.3969/j.issn.1671-7856.2021.06.022.
[4] GOLDMANN T, PRINZ M. Role of microglia in CNS autoimmunity[J]. Clin Dev Immunol, 2013, 2013: 208093. DOI: 10.1155/2013/208093.
[5] KAUR G, HAN S J, YANG I, et al. Microglia and central nervous system immunity[J]. Neurosurg Clin N Am, 2010,
21(1): 43-51. DOI: 10.1016/j.nec.2009.08.009.
[6] OLCUM M, TASTAN B, KISER C, et al. Microglial NLRP3 inflammasome activation in multiple sclerosis[J]. Adv Protein Chem Struct Biol, 2020, 119: 247-308. DOI: 10.1016/bs.
apcsb.2019.08.007.
[7] ORECCHIONI M, GHOSHEH Y, PRAMOD A B, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10: 1084. DOI: 10.3389/fimmu.2019.01084.
[8] CHEN Y, HU M, WANG L, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877: 173090. DOI: 10.1016/j.ejphar.2020.173090.
[9] ZHU D, JOHNSON T K, WANG Y, et al. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb[J]. Stem Cell Res Ther, 2020, 11(1): 162. DOI: 10.1186/s13287-020-01669-9.
[10] 史旭, 李瑞語, 張兵, 等. 小膠質(zhì)細(xì)胞極化介導(dǎo)炎癥反應(yīng)在脊髓損傷中的作用[J]. 中國組織工程研究, 2023, 27(1): 121-129.
SHI X, LI R Y, ZHANG B, et al. Effect of inflammatory reaction mediated by microglia polarization in spinal cord injury[J].
Chin J Tissue Eng Res, 2023, 27(1): 121-129.
[11] WANG J, HE W, ZHANG J. A richer and more diverse future for microglia phenotypes[J]. Heliyon, 2023, 9(4): e14713. DOI: 10.1016/j.heliyon.2023.e14713.
[12] MADO H, ADAMCZYK-SOWA M, SOWA P. Role of microglial cells in the pathophysiology of MS: synergistic or
antagonistic[J]. Int J Mol Sci, 2023, 24(3): 1861. DOI: 10.3390/ijms24031861.
[13] LI F, MA Q, ZHAO H, et al. L-3-n-Butylphthalide reduces ischemic stroke injury and increases M2 microglial
polarization[J]. Metab Brain Dis, 2018, 33(6): 1995-2003. DOI: 10.1007/s11011-018-0307-2.
[14] KWON H S, KOH S H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. DOI: 10.1186/s40035-020-00221-2.
[15] AYYUBOVA G. Dysfunctional microglia and tau pathology in Alzheimer’s disease[J]. Rev Neurosci, 2022, 34(4): 443-458. DOI: 10.1515/revneuro-2022-0087.
[16] GUAN Y H, ZHANG L J, WANG S Y, et al. The role of microglia in Alzheimer’s disease and progress of treatment[J]. Ibrain, 2022, 8(1): 37-47. DOI: 10.1002/ibra.12023.
[17] 王丁, 張海波, 宮平, 等. 小膠質(zhì)細(xì)胞在阿爾茨海默病中的作用及機(jī)制[J]. 中國新藥雜志, 2018, 27(10): 1144-1148.
WANG D, ZHANG H B, GONG P, et al. Pathological roles and mechanisms of microglia in Alzheimer’s disease[J]. Chin J New Drugs, 2018, 27(10): 1144-1148.
[18] GRATHWOHL S A, K?LIN R E, BOLMONT T, et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia[J]. Nat Neurosci, 2009,
12(11): 1361-1363. DOI: 10.1038/nn.2432.
[19] ARD M D, COLE G M, WEI J, et al. Scavenging of Alzheimer’s amyloid? -protein by microglia in culture[J]. J Neurosci Res, 1996, 43(2): 190-202. DOI: 10.1002/(sici)1097-4547(19960115)43: 2lt;190 : : aid-jnr7gt;3.0.co; 2-b.
[20] LENG F, EDISON P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here[J]. Nat Rev Neurol, 2021, 17: 157-172. DOI: 10.1038/s41582-020-00435-y.
[21] LU?IūNAIT? A, MCMANUS R M, JANKUNEC M, et al. Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia[J]. J Neurochem, 2020, 155(6): 650-661. DOI: 10.1111/jnc.14945.
[22] 李慧源, 姜源, 孫曉紅. 阿爾茨海默病炎性反應(yīng)機(jī)制的研究進(jìn)展[J]. 中國臨床研究, 2016, 29(1): 130-132. DOI: 10.13429/j.cnki.cjcr.2016.01.041.
LI H Y, JIANG Y, SUN X H. et al. Research progress on the inflammatory mechanisms of Alzheime’s disease [J]. Chin J Clin Res, 2016, 29(1): 130-132. DOI: 10.13429/j.cnki.cjcr.2016.01.041.
[23] PASQUALETTI P, BONOMINI C, DAL FORNO G, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease[J]. Aging Clin Exp Res, 2009, 21(2): 102-110. DOI: 10.1007/BF03325217.
[24] BREITNER J C, BAKER L D, MONTINE T J, et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial[J]. Alzheimers Dement, 2011, 7(4): 402-411. DOI: 10.1016/j.jalz.2010.12.014.
[25] DORSZEWSKA J, KOWALSKA M, PRENDECKI M, et al. Oxidative stress factors in Parkinson’s disease[J]. Neural Regen Res, 2021, 16(7): 1383-1391. DOI: 10.4103/1673-5374.300980.
[26] JANDA E, BOI L, CARTA A R. Microglial phagocytosis and its regulation: a therapeutic target in Parkinson’s disease[J].
Front Mol Neurosci, 2018, 11: 144. DOI: 10.3389/fnmol.
2018.00144.
[27] GAO C, JIANG J, TAN Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359. DOI: 10.1038/s41392-023-01588-0.
[28] CHENG J, LIAO Y, DONG Y, et al. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice[J]. Autophagy, 2020,
16(12): 2193-2205. DOI: 10.1080/15548627.2020.1719723.
[29] LI Y, XIA Y, YIN S, et al. Targeting microglial α-synuclein/TLRs/NF-kappaB/NLRP3 inflammasome axis in Parkinson’s disease[J]. Front Immunol, 2021, 12: 719807. DOI: 10.3389/fimmu.2021.719807.
[30] SUBRAMANIAM S R, FEDEROFF H J. Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease[J].
Front Aging Neurosci, 2017, 9: 176. DOI: 10.3389/fnagi.2017.
00176.
[31] WANG K, SHI Y, LIU W, et al. Taurine improves neuron injuries and cognitive impairment in a mouse Parkinson’s disease model through inhibition of microglial activation[J].
Neurotoxicology, 2021, 83: 129-136. DOI: 10.1016/j.neuro.2021.01.002.
[32] CIGNARELLA F, FILIPELLO F, BOLLMAN B, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis[J]. Acta Neuropathol, 2020, 140(4): 513-534. DOI: 10.1007/s00401-020-02193-z.
[33] PRINEAS J W, LEE S. Microglia subtypes in acute, subacute, and chronic multiple sclerosis[J]. J Neuropathol Exp Neurol, 2023, 82(8): 674-694. DOI: 10.1093/jnen/nlad046.
[34] DISTéFANO-GAGNé F, BITARAFAN S, LACROIX S, et al. Roles and regulation of microglia activity in multiple sclerosis: insights from animal models[J]. Nat Rev Neurosci, 2023,
24(7): 397-415. DOI: 10.1038/s41583-023-00709-6.
[35] YUAN Q, YUAN Y, ZHENG Y, et al. Anti-cerebral ischemia reperfusion injury of polysaccharides: a review of the mechanisms[J]. Biomed Pharmacother, 2021, 137: 111303. DOI: 10.1016/j.biopha.2021.111303.
[36] LYU J, XIE D, BHATIA T N, et al. Microglial/Macrophage polarization and function in brain injury and repair after
stroke[J]. CNS Neurosci Ther, 2021, 27(5): 515-527. DOI: 10.1111/cns.13620.
[37] HU X, LI P, GUO Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J]. Stroke, 2012, 43(11): 3063-3070. DOI: 10.1161/STROKEAHA.112.659656.
[38] ZHONG Y, GU L, YE Y, et al. JAK2/STAT3 axis intermediates microglia/macrophage polarization during cerebral ischemia/reperfusion injury[J]. Neuroscience, 2022, 496: 119-128. DOI: 10.1016/j.neuroscience.2022.05.016.
[39] RAWLINSON C, JENKINS S, THEI L, et al. Post-ischaemic immunological response in the brain: targeting microglia in ischaemic stroke therapy[J]. Brain Sci, 2020, 10(3): 159. DOI: 10.3390/brainsci10030159.
[40] KOLOSOWSKA N, KEUTERS M H, WOJCIECHOWSKI S, et al.
Peripheral administration of IL-13 induces anti-inflammatory microglial/macrophage responses and provides neuroprotection in ischemic stroke[J]. Neurotherapeutics, 2019, 16(4): 1304-1319. DOI: 10.1007/s13311-019-00761-0.
[41] HOSTETTLER I C, SEIFFGE D J, WERRING D J. Intracerebral hemorrhage: an update on diagnosis and
treatment[J]. Expert Rev Neurother, 2019, 19(7): 679-694. DOI: 10.1080/14737175.2019.1623671.
[42] YOU T, CHENG Y, ZHONG J, et al. Roflupram, a phosphodiesterase 4 inhibitior, suppresses inflammasome activation through autophagy in microglial cells[J]. ACS Chem Neurosci, 2017, 8(11): 2381-2392. DOI: 10.1021/acschemneuro.
7b00065.
[43] LIU D L, ZHAO L X, ZHANG S, et al. Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage[J]. Int Immunopharmacol, 2016, 41: 82-89. DOI: 10.1016/j.intimp.
2016.10.025.
[44] 嚴(yán)美茹, 張燕平, 羅瑞琦, 等. PI3K/Akt信號(hào)通路與腦出血的研究進(jìn)展[J]. 新醫(yī)學(xué), 2022, 53(5): 310-313. DOI: 10.3969/j.issn.0253-9802.2022.05.002.
YAN M R, ZHANG Y P, LUO R Q, et al. Research progress on PI3K/Akt signaling pathway and cerebral hemorrhage[J].
J New Med, 2022, 53(5): 310-313. DOI: 10.3969/j.issn.0253-
9802.2022.05.002.
(責(zé)任編輯:洪悅民)