摘" " 要: 【目的】挖掘西瓜耐鹽相關(guān)的關(guān)鍵候選基因,為探究西瓜應(yīng)答鹽脅迫的機(jī)制、培育耐鹽西瓜新品種奠定重要基礎(chǔ)?!痉椒ā客ㄟ^對(duì)121份西瓜核心種質(zhì)材料的耐鹽性相關(guān)指標(biāo)進(jìn)行測(cè)定,利用全基因組關(guān)聯(lián)分析(genome-wide association study,GWAS)定位與表型數(shù)據(jù)相關(guān)的單核苷酸多態(tài)性(single nucleotide polymorphisms,SNPs)變異位點(diǎn),并對(duì)候選區(qū)間內(nèi)的基因進(jìn)行功能注釋,最終利用耐鹽材料和鹽敏感材料的轉(zhuǎn)錄組數(shù)據(jù)確定耐鹽相關(guān)的關(guān)鍵候選基因。【結(jié)果】在根表面積指標(biāo)下鑒定出1個(gè)顯著SNP位點(diǎn),在候選區(qū)間內(nèi)獲得23個(gè)基因;在根K+含量指標(biāo)下鑒定出25個(gè)顯著SNP位點(diǎn),在候選區(qū)間內(nèi)獲得25個(gè)基因;在根Na+含量指標(biāo)下鑒定出2個(gè)顯著SNP位點(diǎn),在候選區(qū)間內(nèi)獲得10個(gè)基因;在根可溶性糖含量指標(biāo)下鑒定出1個(gè)顯著SNP位點(diǎn),在候選區(qū)間內(nèi)獲得18個(gè)基因。所有候選基因在150 mmol·L-1 NaCl處理前后的耐鹽和鹽敏感材料中,Cla97C08G145130、Cla97C04G073300和Cla97C01G009540三個(gè)候選基因的表達(dá)量均受鹽脅迫的誘導(dǎo)顯著上調(diào)表達(dá)?!窘Y(jié)論】推測(cè)Cla97C08G145130、Cla97C04G073300和Cla97C01G009540為西瓜耐鹽相關(guān)的關(guān)鍵候選基因,為解析提高西瓜耐鹽性的分子機(jī)制及開發(fā)分子標(biāo)記用于輔助選擇育種奠定了基礎(chǔ)。
關(guān)鍵詞:西瓜;耐鹽性;全基因組關(guān)聯(lián)分析;單核苷酸多態(tài)性;基因挖掘
中圖分類號(hào):S651 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)02-0300-14
Genome-wide association study on salt tolerance of core germplasm resources in watermelon
YUAN Gaopeng1, 2, ZHAO Yanlong1#, SUN Dexi1, 2, GAO Bowen1, LI Weihua1, SHI Mingkun1, ZHANG Jingyu1, 2, ZHU Yingchun1, 2*
(1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, Henan, China; 2Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China)
Abstract: 【Objective】 The watermelon root system is relatively weak and sensitive to salt stress during the seedling stage, which results in a significant decline in both yield and quality. Breeding new salt-tolerant watermelon varieties presents an effective solution to this issue. This study aims to identify key candidate genes associated with salt tolerance in watermelon, thereby providing a crucial foundation for understanding the mechanisms underlying watermelon responses to salt stress and for the cultivation of new salt-tolerant varieties. 【Methods】 The related indexes of salt tolerance of 121 watermelon core germplasm materials were measured, which included 15 C. mucosospermus accessions, 3 C. amarus accessions, 1 C. ecirrhosus accession, 4 C. colocynthis accessions, 10 C. megalospermus accessions and 88 C. lanatus accessions. The phenotypic indicators assessed included above-ground fresh weight, above-ground dry weight, root length, root surface area, chlorophyll content, root proline, root potassium ion (K+) content, root sodium ion (Na+) content, and root soluble sugar content. We employed the FaST-LMM (factored spectrally transformed linear mixed models) method to conduct a genome-wide association study (GWAS) on the phenotypic data, locating and displaying the single nucleotide polymorphisms (SNPs) associated with these phenotypic traits using a Manhattan plot. Additionally, we utilized the watermelon genome (http://cucurbitgenomics.org/organism/21) for gene expression analysis and gene function annotation, ultimately leveraging transcriptome data from both salt-tolerant and salt-sensitive materials to identify key candidate genes related to salt tolerance. 【Results】 The variation of the nine phenotypic data ranged from 9.05% to 91.41%, among which the coefficient of variation of root soluble sugar was the largest 91.41%, the variation range was from 0.03 mg·g-1 to 7.06 mg·g-1 and the average value was 1.08 mg·g-1. The coefficient of variation of chlorophyll content was the smallest 9.05%, the variation range was from 31.35 to 59.87, and the average value was 44.51. There were no significantly related SNP sites in the five indicators of above-ground fresh weight, above-ground dry weight, root length, chlorophyll content and root proline. However, there were SNP sites that were significantly associated with four traits: root surface area, root K+ content, root Na+ content and root soluble sugar content. One significant SNP site located on chromosome 2 was identified under the root surface area index, and twenty-three genes were obtained within the candidate interval, but only twenty genes were found to reach expression levels in salt-tolerant and salt-sensitive materials, and Cla97C02G043360, Cla97C02G043200, Cla97C02G043190, Cla97C02G043250, Cla97C02G043350, Cla97C02G043290 and Cla97C02G043320 were induced by salt stress. Twenty-five significant SNP sites were identified under the root K+ content index, including four SNPs on chromosome 8 and twenty-one SNPs on chromosome 10. There were twenty-five genes were obtained in the candidate interval, and only twelve genes achieved expression levels, among them Cla97C08G145130, Cla97C10G191810, Cla97C08G145090, Cla97C08G145150 and Cla97C08G145120 were induced by salt stress. Two significant SNP sites located on chromosome 1 were identified under the root Na+ content index, and ten genes were obtained in the candidate interval and only seven genes had expression levels, among them Cla97C01G009540, Cla97C01G009490 and Cla97C01G009510 were induced by salt stress. One significant SNP site located on chromosome 4 was identified under the root soluble sugar content index, eighteen genes were obtained in the candidate interval, and seventeen genes had expression levels, among them Cla97C04G073310, Cla97C04G073300, Cla97C04G073240, Cla97C04G073230, Cla97C04G073290, Cla97C04G073280, Cla97C04G073190, Cla97C04G073210 and Cla97C04G073270 were induced by salt stress. In salt-tolerant and salt-sensitive materials before and after 150 mmol·L-1 NaCl treatment, the expression changes of fifty-six candidate genes were analyzed, and nine of them were differentially expressed genes (DEGs). Among them, Cla97C08G145130, Cla97C04G073300, Cla97C01G009540, Cla97C10G191810, Cla97C02G043360, Cla97C02G043190 and Cla97C04G073310 were significantly up-regulated by salt stress, whereas Cla97C04G073170 and Cla97C02G043310 were significantly down-regulated by salt stress. These nine genes can be divided into two classes. It is worth noting that in category I, Cla97C08G145130 (mannan endo-1, 4-beta-mannosidase 1-like, ManA1) showed the most significant changes, and increased by 255.82 and 7.80 times in salt-sensitive and salt-tolerant materials, respectively. It was followed by Cla97C04G073300 (dehydration-responsive element-binding protein 2A, DREB2A) and Cla97C01G009540 (phloem protein 2-like A9, PP2A9), which increased by 31.63 and 9.18 times, 13.10 and 3.56 times in salt-sensitive and salt-tolerant materials, respectively. 【Conclusion】 It was speculated that these three genes may be key candidate genes related to watermelon salt tolerance, which provides a basis for analyzing the molecular mechanism of improving watermelon salt tolerance and developing molecular markers for assisted selection breeding.
Key words: Watermelon; Salt tolerance; Genome-wide association study; Single Nucleotide Polymorphisms; Gene mining
西瓜(Citrullus lanatus)果實(shí)汁多味甜,營(yíng)養(yǎng)豐富,是盛夏季節(jié)消暑、解渴的佳品。中國(guó)是世界第一大西瓜生產(chǎn)國(guó)和消費(fèi)國(guó),西瓜的栽培面積和產(chǎn)量均居世界首位[1]。西瓜幼苗根系柔弱,對(duì)鹽脅迫敏感,土壤鹽含量(w,后同)達(dá)0.3%時(shí)即會(huì)顯著抑制幼苗生長(zhǎng),造成西瓜產(chǎn)量和品質(zhì)嚴(yán)重下降[2]。在西瓜生產(chǎn)中,為了獲得較高產(chǎn)量常進(jìn)行土壤漫灌、盲目地過量施用化肥和多年連作,導(dǎo)致土壤次生鹽漬化逐年加重;另外,近年來(lái)中國(guó)設(shè)施農(nóng)業(yè)迅速發(fā)展,全國(guó)設(shè)施農(nóng)業(yè)面積達(dá)266.67萬(wàn)hm2 [3],隨著西瓜主栽區(qū)反季節(jié)保護(hù)地的栽培面積不斷擴(kuò)大,土壤因長(zhǎng)期得不到雨水淋洗致使鹽分聚集,引起土壤次生鹽漬化,進(jìn)而嚴(yán)重影響西瓜的生長(zhǎng)和發(fā)育。培育耐鹽西瓜新品種是解決這一問題行之有效的方法。探究西瓜應(yīng)答鹽脅迫的機(jī)制、發(fā)掘關(guān)鍵耐鹽基因是培育耐鹽西瓜新品種的重要基礎(chǔ),對(duì)西瓜產(chǎn)業(yè)的安全和可持續(xù)發(fā)展具有重要意義。目前,西瓜耐鹽脅迫研究多集中在外源物質(zhì)的利用、耐鹽品種的篩選以及砧木的應(yīng)用等方面[4-7]。在耐鹽基因的挖掘方面,主要開展了轉(zhuǎn)錄組、代謝組、耐鹽相關(guān)基因表達(dá)模式等工作[8-10]。同時(shí),也有研究發(fā)現(xiàn),多倍體西瓜的耐鹽能力強(qiáng)于同源二倍體西瓜[8],但具體機(jī)制不明確。因此,目前調(diào)控西瓜耐鹽的分子機(jī)制仍不清晰,急需繼續(xù)挖掘調(diào)控西瓜耐鹽性的關(guān)鍵基因。
近年來(lái),通過高質(zhì)量的西瓜基因組組裝結(jié)合大規(guī)?;蚪M重測(cè)序闡明了西瓜果實(shí)品質(zhì)和抗性的選擇馴化過程[11-13]。耐鹽是由多個(gè)基因控制的涉及多種分子和生物學(xué)過程的復(fù)雜數(shù)量性狀[14]。在研究西瓜復(fù)雜表型性狀時(shí),越來(lái)越多的研究人員選擇利用高通量測(cè)序數(shù)據(jù)開展與西瓜性狀相關(guān)的GWAS分析,這極大方便了西瓜育種工作。Dou等[15]利用315份西瓜材料的測(cè)序數(shù)據(jù),關(guān)聯(lián)到與果實(shí)形狀相關(guān)的主效位點(diǎn),并通過F2群體精細(xì)定位確定ClFS1(Cla011257)為控制果實(shí)形狀的候選基因。王學(xué)征等[16]利用62份西瓜種質(zhì)資源對(duì)種子大小性狀進(jìn)行了GWAS分析,檢測(cè)到7個(gè)與種子長(zhǎng)度相關(guān)的SNP位點(diǎn)。高美玲等[17]利用144份西瓜材料關(guān)聯(lián)到3個(gè)與種子百粒質(zhì)量相關(guān)的QTL位點(diǎn)。Gong等[18]利用197份西瓜種質(zhì)關(guān)聯(lián)到4個(gè)與種子大小顯著相關(guān)的SNP位點(diǎn),并篩選到2個(gè)與種子大小相關(guān)的候選基因Cla97C05G104360和Cla97C05G104380。Guo等[11]通過414份西瓜種質(zhì)篩選到與果實(shí)糖含量、果肉顏色、果實(shí)形狀、條紋形狀和種皮顏色相關(guān)的SNP位點(diǎn)。Ren等[19]利用135份西瓜資源關(guān)聯(lián)到與棉子糖顯著相關(guān)的SNP位點(diǎn),篩選到關(guān)鍵的堿性α-半乳糖苷酶基因ClAGA2。
然而,利用GWAS鑒定西瓜耐鹽基因的研究還未見報(bào)道。因此,在西瓜中利用GWAS方法篩選與耐鹽性狀相關(guān)的SNP位點(diǎn),進(jìn)而挖掘耐鹽相關(guān)的關(guān)鍵基因具有重大潛力。筆者利用本團(tuán)隊(duì)前期發(fā)表的西瓜核心種質(zhì)材料的重測(cè)序結(jié)果和鑒定得到的SNP變異位點(diǎn),結(jié)合121份核心種質(zhì)的耐鹽性相關(guān)生理生化指標(biāo)進(jìn)行GWAS分析,挖掘與根表面積、根K+、根Na+和根可溶性糖含量顯著相關(guān)的SNP位點(diǎn),并在區(qū)間內(nèi)篩選與耐鹽相關(guān)的候選基因,以期為解析西瓜耐鹽性的分子機(jī)制、開發(fā)分子標(biāo)記以及選育耐鹽西瓜新品種奠定基礎(chǔ)。
1 材料和方法
1.1 材料
本試驗(yàn)用于GWAS分析的121份西瓜核心種質(zhì)材料包括15份黏籽西瓜(C. mucosospermus),3份飼用西瓜(C. amarus),1份缺須西瓜(C. ecirrhosus),4份藥西瓜(C. colocynthis),10份籽瓜(C. megalospermus)和88份栽培西瓜(C. lanatus),具體信息參考高博文等[7]的報(bào)道。用于GWAS分析的SNP變異數(shù)據(jù)源于Guo等[11]已發(fā)表的文章。用于候選基因表達(dá)量分析的耐鹽材料中石紅和鹽敏感材料PI186489(圖1)以及鹽處理方法參考Zhu等[20]和高博文[21]的報(bào)道。以上西瓜種質(zhì)材料均來(lái)自中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹研究所國(guó)家西甜瓜中期庫(kù)。
1.2 表型數(shù)據(jù)的測(cè)定
2021年6月對(duì)表型數(shù)據(jù)進(jìn)行測(cè)定,其中,地上部鮮質(zhì)量、地上部干質(zhì)量、根長(zhǎng)、根表面積、葉綠素含量的測(cè)定方法參考高博文等[7]的報(bào)道;根脯氨酸含量測(cè)定方法參考高博文[21]的報(bào)道;根鉀離子(K+)含量和鈉離子(Na+)含量的測(cè)定方法參考Zhu等[20]的報(bào)道;根可溶性糖含量采用南京建成生物工程研究所試劑盒(貨號(hào):A145-1-1)測(cè)定,使用分光光度計(jì)讀數(shù)。
1.3 全基因組關(guān)聯(lián)分析
采用FaST-LMM(Factored Spectrally Transformed Linear Mixed Models)方法[22]對(duì)表型數(shù)據(jù)進(jìn)行GWAS分析,定位與表型數(shù)據(jù)相關(guān)的SNP變異位點(diǎn),并由曼哈頓(Manhattan)圖顯示關(guān)聯(lián)位點(diǎn)。橫坐標(biāo)代表染色體位置,縱坐標(biāo)代表p值取以10為底的負(fù)對(duì)數(shù)[-log10(p)],圖上散點(diǎn)(或線條)代表每個(gè)SNP位點(diǎn)對(duì)應(yīng)的-log10(p)。藍(lán)色水平線代表0.01·標(biāo)記量-1對(duì)應(yīng)的值,紅色水平線代表0.1·標(biāo)記量-1對(duì)應(yīng)的值。超過閾值線以上的散點(diǎn)(或線條)即為候選位點(diǎn),并選擇顯著SNP的上下游100 kb區(qū)間作為候選區(qū)間[11]。
1.4 候選基因功能注釋和表達(dá)量分析
使用C. lanatus subsp. vulgaris cv. 97103 V2參考基因組(http://cucurbitgenomics.org/organism/21)進(jìn)行基因表達(dá)量分析和基因功能注釋。FPKM(fragments per kilobase million,每千堿基對(duì)每百萬(wàn)對(duì)應(yīng)基因的讀取數(shù))用于計(jì)算基因表達(dá)水平?;贙EGG(http://www.genome.jp/kegg/)數(shù)據(jù)庫(kù)和GO(http://www.geneontology.org/)數(shù)據(jù)庫(kù)進(jìn)行基因注釋和功能分析。DEGs(differentially expressed genes,差異表達(dá)基因):|差異倍數(shù)|≥2.00,F(xiàn)DR(1 discovery rate,錯(cuò)誤發(fā)現(xiàn)率)≤0.001。
用于基因表達(dá)量分析的數(shù)據(jù)來(lái)源于耐鹽材料中石紅和鹽敏感材料PI186489的轉(zhuǎn)錄組數(shù)據(jù)(NCBI數(shù)據(jù)庫(kù)登錄號(hào)PRJNA844416)[20]。采用TBtools[23]作圖。
2 結(jié)果與分析
2.1 121份西瓜核心種質(zhì)資源表型性狀差異分析
9個(gè)數(shù)量性狀的變異分析結(jié)果如表1所示,其中根可溶性糖含量的變異系數(shù)最大,為91.41%,變異范圍為0.03~7.06 mg·g-1,平均值為1.08 mg·g-1,說明這個(gè)性狀的遺傳多樣性是最豐富的;葉綠素含量(SPAD值)的變異系數(shù)最小,為9.05%,變異范圍為31.35~59.87,平均值為44.51,表明其遺傳變異程度相對(duì)較低。
2.2 西瓜耐鹽性狀的GWAS分析
為了進(jìn)一步確定121份西瓜材料中與耐鹽性狀相關(guān)的SNP位點(diǎn),筆者采用Fast-LMM算法開展關(guān)聯(lián)分析。結(jié)果表明,與地上部鮮質(zhì)量、地上部干質(zhì)量、根長(zhǎng)、葉綠素含量和根脯氨酸含量均沒有顯著相關(guān)的SNP位點(diǎn),而與根表面積及根K+、根Na+和根可溶性糖含量均有顯著相關(guān)的SNP位點(diǎn)。
對(duì)于根表面積,鑒定出1個(gè)顯著的SNP位點(diǎn)(SNP31480842),位于2號(hào)染色體上(圖2-A),在該SNP位點(diǎn)附近(前后各100 kb范圍內(nèi))獲得23個(gè)基因(表2)。利用鹽處理前后的耐鹽材料和鹽敏感材料對(duì)這23個(gè)基因的表達(dá)水平進(jìn)行分析,發(fā)現(xiàn)只有20個(gè)基因具有表達(dá)量,并且Cla97C02G043360、Cla97C02G043200、Cla97C02G043190、Cla97C02G-043250、Cla97C02G043350、Cla97C02G043290和Cla97C02G043320在兩份材料中均受鹽脅迫的誘導(dǎo)上調(diào)表達(dá)(圖2-B),表明這些基因可能響應(yīng)鹽脅迫或與根表面積的大小相關(guān)。
對(duì)于根K+含量,鑒定出25個(gè)顯著SNP位點(diǎn),其中在8號(hào)染色體上鑒定出4個(gè)SNP位點(diǎn)(SNP1534021、SNP1534034、SNP1543221和SNP1591030),在10號(hào)染色體上鑒定出21個(gè)SNP位點(diǎn)(SNP15499967、SNP15500235、SNP15579732、SNP15725425、SNP1-5763480、SNP15764890、SNP15812170、SNP15826-966、SNP15828491、SNP15875980、SNP15903887、SNP15925585、SNP15941986、SNP15942088、SNP1-5991712、SNP16079486、SNP16151054、SNP161793-09、SNP16250312、SNP16271845和SNP16324947)(圖3-A)。在以上SNP位點(diǎn)附近(前后各100 kb范圍內(nèi))獲得25個(gè)基因(表3)。利用鹽處理前后的耐鹽材料和鹽敏感材料對(duì)這23個(gè)基因的表達(dá)水平進(jìn)行分析,發(fā)現(xiàn)只有12個(gè)基因具有表達(dá)量,并且Cla97C08G145130、Cla97C10G191810、Cla97C08G-145090、Cla97C08G145150和Cla97C08G145120在兩份材料中均受鹽脅迫的誘導(dǎo)上調(diào)表達(dá)(圖3-B),表明這些基因可能響應(yīng)鹽脅迫或與根系對(duì)K+的轉(zhuǎn)運(yùn)相關(guān)。
對(duì)于根Na+含量,鑒定出2個(gè)顯著SNP位點(diǎn)(SNP11293147和SNP11301987),均位于1號(hào)染色體上(圖4-A)。在SNP位點(diǎn)附近(前后各100 kb范圍內(nèi))獲得10個(gè)基因(表4)。利用鹽處理前后的耐鹽材料和鹽敏感材料對(duì)這10個(gè)基因的表達(dá)水平進(jìn)行分析,發(fā)現(xiàn)只有7個(gè)基因具有表達(dá)量,并且Cla97C01G009540、Cla97C01G009490和Cla97C01-G009510在兩份材料中均受鹽脅迫的誘導(dǎo)上調(diào)表達(dá)(圖4-B),表明這些基因可能響應(yīng)鹽脅迫。
對(duì)于根可溶性糖含量,鑒定出1個(gè)顯著SNP位點(diǎn)(SNP20908124),位于4號(hào)染色體上(圖5-A)。在SNP位點(diǎn)附近(前后各100 kb范圍內(nèi))獲得18個(gè)基因(表5)。利用鹽處理前后的耐鹽材料和鹽敏感材料對(duì)這18個(gè)基因的表達(dá)水平進(jìn)行分析,發(fā)現(xiàn)有17個(gè)基因具有表達(dá)量,并且Cla97C04G073310、Cla97C04G073300、Cla97C04G073240、Cla97C04G-073230、Cla97C04G073290、Cla97C04G073280、Cla9-7C04G073190、Cla97C04G073210和Cla97C04G073-270在兩份材料中均受鹽脅迫的誘導(dǎo)上調(diào)表達(dá)(圖5-B),表明這些基因可能響應(yīng)鹽脅迫或與可溶性糖的積累相關(guān)。
2.3 西瓜耐鹽相關(guān)關(guān)鍵候選基因的篩選
利用上述區(qū)間內(nèi)獲得的具有表達(dá)量的56個(gè)基因與SCR-vs-STR和TCR-vs-TTR組合獲得的4870個(gè)共有差異表達(dá)基因[20]作韋恩圖分析,以篩選耐鹽相關(guān)的關(guān)鍵候選基因。結(jié)果表明,共得到9個(gè)共有的基因(圖6-A),表明區(qū)間內(nèi)有9個(gè)差異表達(dá)基因。為了進(jìn)一步明確這9個(gè)基因在西瓜響應(yīng)鹽脅迫中的作用,分析了其在鹽脅迫下耐鹽材料和鹽敏感材料中的表達(dá)水平,發(fā)現(xiàn)Cla97C08G145130、Cla97C04G073300、Cla97C01G009540、Cla97C10G191810、Cla97C02G0-43360、Cla97C02G043190和Cla97C04G073310受鹽脅誘導(dǎo)顯著上調(diào)表達(dá),而Cla97C04G073170和Cla97C02G043310受鹽脅誘導(dǎo)顯著下調(diào)表達(dá)。根據(jù)基因的表達(dá)趨勢(shì)可將他們分為兩類(圖6-B),其中Ⅰ類包含4個(gè)基因,Ⅱ類包含5個(gè)基因。值得注意的是,Ⅰ類中Cla97C04G073300(dehydration-responsive element-binding protein 2A,DREB2A)變化最顯著,在鹽敏感材料和耐鹽材料中分別上調(diào)31.63和9.18倍;Ⅱ類中Cla97C08G145130(mannan endo-1,4-beta-mannosidase 1-like,ManA1)和Cla97C01G009540(phloem protein 2-like A9,PP2A9)在鹽敏感材料和耐鹽材料中分別上調(diào)255.82和7.80倍、13.10和3.56倍。推測(cè)他們可能是西瓜耐鹽相關(guān)的關(guān)鍵候選基因,在西瓜響應(yīng)鹽脅迫過程中具有重要作用。
3 討 論
在植物中,鹽脅迫一般通過施加幾個(gè)主要的限制性因素來(lái)抑制植物的生長(zhǎng)和發(fā)育。第一個(gè)限制是滲透脅迫(降低外部水勢(shì)),主要抑制植物吸收水分的能力[24-26]。在宏觀水平上,根細(xì)胞的擴(kuò)張由于膨脹壓力的降低而立即被阻止,為了解決這一問題,植物必須進(jìn)行滲透調(diào)節(jié)[27]。
Chen等[28]研究表明,可溶性糖、K+、Na+含量等指標(biāo)在葫蘆科作物耐鹽中具有重要作用。在本研究中,在可溶性糖、K+、Na+含量指標(biāo)下均獲得與耐鹽相關(guān)的顯著SNP位點(diǎn),表明可溶性糖、K+、Na+在西瓜響應(yīng)鹽脅迫中發(fā)揮著重要作用??扇苄蕴遣粌H為有機(jī)物的合成提供物質(zhì)和能量,而且參與滲透調(diào)節(jié)和細(xì)胞失水后的恢復(fù)過程以及維持蛋白質(zhì)結(jié)構(gòu)的穩(wěn)定。姚銘榕等[29]研究發(fā)現(xiàn),鹽處理后番茄葉片中的可溶性糖含量顯著高于對(duì)照。石婧等[30]在棉花上的研究表明,鹽脅迫下棉花葉片中的可溶性糖含量顯著上升,并且耐鹽品種中可溶性糖含量顯著高于鹽敏感品種。
外源添加可溶性糖可直接或者間接地提高植物對(duì)非生物脅迫的抵抗能力[31]。施加外源糖可以顯著降低小黑麥的相對(duì)電導(dǎo)率,緩解小黑麥?zhǔn)艿降柠}脅迫[32]。另外,在小麥中,低濃度的葡萄糖處理,能夠促進(jìn)鹽脅迫下種子的萌發(fā)以及胚芽鞘和胚根的生長(zhǎng)[33]。外源葡萄糖處理可緩解鹽脅迫下葉綠素含量的下降,保持離子平衡和積累滲透調(diào)節(jié)物質(zhì)Pro,以減少水分的散失,激活抗氧化酶活性,最終提高鹽脅迫下植物的干質(zhì)量[33]。此外,外源葡萄糖能夠抑制鹽脅迫下小麥幼苗細(xì)胞中的Na+積累,同時(shí)促進(jìn)K+的吸收,有利于鹽脅迫下幼苗中的離子平衡[34]。在鹽脅迫下,葡萄糖還具有滲透保護(hù)劑和自由基清除劑的功能,能夠提高水稻對(duì)鹽脅迫的抵抗能力[35]。海藻糖作為可溶性糖的一種,在保護(hù)植物免受非生物脅迫方面發(fā)揮了重要作用,通過減少活性氧的積累減輕高鹽濃度下的氧化應(yīng)激[36]。20 mmol·L-1外源海藻糖顯著改善了鹽脅迫下西瓜幼苗生理狀態(tài),提高了過氧化物酶、超氧化物歧化酶、過氧化氫酶等酶活性以及西瓜根部K+/Na+比值[6]。15 mmol·L-1外源海藻糖能夠提高鹽脅迫下黃秋葵的株高、干質(zhì)量、鮮質(zhì)量和K+含量,降低Na+含量和Na+/K+比值[37]。10 mmol·L-1的海藻糖通過DNA去甲基化、增強(qiáng)抗氧化能力和積累脫落酸來(lái)增強(qiáng)番茄幼苗的耐鹽性[38]。徐婷等[39]對(duì)薄皮甜瓜的研究發(fā)現(xiàn),葉面噴施0.4%海藻糖通過增強(qiáng)抗氧化酶活性來(lái)緩解鹽脅迫對(duì)甜瓜幼苗造成的傷害。在本研究中,可溶性糖含量變異最為豐富,并且在該指標(biāo)下篩選到1個(gè)顯著的SNP位點(diǎn),鹽脅迫后,區(qū)間內(nèi)候選基因DREB2A(Cla97C04G073300)在耐鹽材料和鹽敏感材料中的表達(dá)水平顯著上調(diào),且變化最為明顯,表明DREB2A響應(yīng)鹽脅迫或與可溶性糖的積累相關(guān)。研究表明,在玉米中,ZmDREB2A通過與ZmGOLS2啟動(dòng)子結(jié)合直接調(diào)控ZmGOLS2的表達(dá),促進(jìn)棉子糖積累,進(jìn)而提高玉米的耐鹽性[40];在大豆中,過表達(dá)水稻OsDREB2A能夠調(diào)控一些脅迫響應(yīng)轉(zhuǎn)錄因子和關(guān)鍵基因的表達(dá)水平,積累棉子糖來(lái)增強(qiáng)大豆的耐鹽性[41]。
鹽脅迫施加的第二個(gè)限制因子是離子失衡,通常稱為“離子脅迫”或“離子毒性”[25,42-43]。在大多數(shù)情況下,這種限制與細(xì)胞內(nèi)Na+的過度積累有關(guān)。雖然Na+會(huì)損害植物的代謝,并可能導(dǎo)致植物死亡,但Na+在植物中的靶標(biāo)尚不清楚[44]。Na+毒性體現(xiàn)在對(duì)酶活性具有抑制作用,如細(xì)胞質(zhì)中包含的許多參與初級(jí)代謝、卡爾文循環(huán)、苯丙烷途徑、糖酵解、多胺和淀粉合成的酶。在Na+指標(biāo)下鑒定出2個(gè)顯著性SNP位點(diǎn),區(qū)間內(nèi)基因PP2A9(Cla97C01G009540)的表達(dá)量在耐鹽材料和鹽敏感材料中顯著上調(diào)。研究表明,PP2家族成員編碼的蛋白質(zhì)具有抗逆功能。在高濃度鹽脅迫下,過表達(dá)NtPP2A9L1煙草的抗氧化酶活性、脯氨酸和葉綠素含量顯著提高,丙二醛和過氧化氫含量顯著降低。另外,過表達(dá)NtPP2A9L1顯著上調(diào)活性氧清除相關(guān)基因和應(yīng)激反應(yīng)相關(guān)基因的轉(zhuǎn)錄水平[45]。在黃瓜中,CsPP2-A1-RNAi植株表現(xiàn)出較弱的耐鹽性,而CsPP2-A1過表達(dá)植株始終表現(xiàn)出較強(qiáng)的耐鹽性,驗(yàn)證了CsPP2-A1通過滲透調(diào)節(jié)和活性氧穩(wěn)態(tài)增強(qiáng)黃瓜的耐鹽能力[46]。在檉柳中,過表達(dá)ThPP2的植株中過氧化氫酶活性、超氧化物酶活性及電解質(zhì)和丙二醛含量降低,超氧化物歧化酶、過氧化物酶和過氧化氫酶活性升高。相比之下,RNAi介導(dǎo)的ThPP2的瞬時(shí)沉默在檉柳中具有相反的效果,表明ThPP2通過減少活性氧積累和增強(qiáng)抗氧化酶活性來(lái)調(diào)節(jié)檉柳耐鹽性[47]。因此,推測(cè)西瓜PP2A9基因?qū)ξ鞴夏望}性同樣具有重要作用,其可能通過活性氧穩(wěn)態(tài)、滲透調(diào)節(jié)提高西瓜耐鹽性。但是其如何參與細(xì)胞中Na+的吸收和轉(zhuǎn)運(yùn)還需要進(jìn)一步深入研究。
細(xì)胞質(zhì)中眾多酶的活性除了受Na+調(diào)控外,有許多同時(shí)受K+控制[48]。作為一種主要的無(wú)機(jī)滲透物,K+對(duì)細(xì)胞滲透調(diào)節(jié)和膨脹維持至關(guān)重要[49]。Chakraborty等[50]研究表明,外源K+的施用改善了花生的水分狀況,使其在鹽脅迫下具有更高的生物量和更強(qiáng)的耐鹽性。Na+和K+具有拮抗效應(yīng),Na+顯著抑制植株對(duì)K+的吸收和轉(zhuǎn)運(yùn),導(dǎo)致高濃度鹽條件下K+缺乏[51]。K+含量被認(rèn)為是耐鹽性的關(guān)鍵指標(biāo),其在脅迫信號(hào)轉(zhuǎn)導(dǎo)、離子穩(wěn)態(tài)中起至關(guān)重要的作用[52]。在本研究中,K+含量指標(biāo)下鑒定出的顯著SNP位點(diǎn)最多(25個(gè)),一方面證實(shí)了K+在耐鹽性方面的重要性,另一方面也表明了K+可能參與了西瓜響應(yīng)鹽脅迫的多條調(diào)控途徑。區(qū)間內(nèi)基因ManA1(Cla97C08G145130)在耐鹽材料和鹽敏感材料中的上調(diào)倍數(shù)較高,該基因編碼一個(gè)甘露聚糖內(nèi)切-1,4-β甘露糖苷酶,能夠催化甘露聚糖聚合物中內(nèi)部-1,4-β-甘露糖苷鍵的隨機(jī)水解,釋放短鏈β-1,4-甘露聚糖和甘露聚糖。前人研究表明,該類基因在植物上的作用主要與果實(shí)開裂和成熟相關(guān)[52-53]。但是該基因是如何參與細(xì)胞中K+的吸收和轉(zhuǎn)運(yùn)以及提高耐鹽性的研究還未見報(bào)道,需要進(jìn)一步探索。
4 結(jié) 論
筆者利用121份西瓜核心種質(zhì)材料進(jìn)行GWAS分析,在根表面積及根K+、根Na+和根可溶性糖含量指標(biāo)下篩選到與耐鹽相關(guān)的顯著SNP變異位點(diǎn),并在候選區(qū)間內(nèi)獲得多個(gè)候選基因。研究結(jié)果為解析提高西瓜耐鹽性的分子機(jī)制及開發(fā)分子標(biāo)記用于輔助選擇育種奠定了基礎(chǔ)。
參考文獻(xiàn)References:
[1] FAO. https://www.fao.org/faostat/zh/#data/QCL. 2024.
[2] 陳敏,李海云,呂福堂. 植物耐鹽性研究進(jìn)展[J]. 聊城大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,24(3):47-50.
CHEN Min,LI Haiyun,Lü Futang. Research advances in mechanisms of plant salinity tolerance[J]. Journal of Liaocheng University (Natural Science Edition),2011,24(3):47-50.
[3] 賈麗娟. 糧食主產(chǎn)區(qū)設(shè)施農(nóng)業(yè)用地管控機(jī)制研究:以河南省為例[D]. 鄭州:鄭州大學(xué),2022.
JIA Lijuan. Study on the control mechanism of land for facility agriculture in the main grain producingareas:An example from Henan province[D]. Zhengzhou:Zhengzhou University,2022.
[4] LI H,CHANG J J,CHEN H J,WANG Z Y,GU X R,WEI C H,ZHANG Y,MA J X,YANG J Q,ZHANG X. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis[J]. Frontiers in Plant Science,2017,8:295.
[5] YAN Y Y,WANG S S,WEI M,GONG B,SHI Q H. Effect of different rootstocks on the salt stress tolerance in watermelon seedlings[J]. Horticultural Plant Journal,2018,4(6):239-249.
[6] YUAN G P,SUN D X,AN G L,LI W H,SI W J,LIU J P,ZHU Y C. Transcriptomic and metabolomic analysis of the effects of exogenous trehalose on salt tolerance in watermelon (Citrullus lanatus)[J]. Cells,2022,11(15):2338.
[7] 高博文,孫德璽,袁高鵬,安國(guó)林,李衛(wèi)華,劉君璞,朱迎春. 121份西瓜材料幼苗期耐鹽性鑒定[J]. 果樹學(xué)報(bào),2022,39(9):1597-1606.
GAO Bowen,SUN Dexi,YUAN Gaopeng,AN Guolin,LI Weihua,LIU Junpu,ZHU Yingchun. Identification of salt tolerance of 121 watermelon (Citrullus lanatus L.) germplasm resources[J]. Journal of Fruit Science,2022,39(9):1597-1606.
[8] ZHU H J,ZHAO S J,LU X Q,HE N,GAO L,DOU J L,BIE Z L,LIU W G. Genome duplication improves the resistance of watermelon root to salt stress[J]. Plant Physiology and Biochemistry,2018,133:11-21.
[9] YUAN G P,LIU J P,AN G L,LI W H,SI W J,SUN D X,ZHU Y C. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase (TPS) gene family in watermelon (Citrullus lanatus) and their transcriptional responses to salt stress[J]. International Journal of Molecular Sciences,2021,23(1):276.
[10] LIU Y,ZHANG W H,ELANGO D,LIU H X,JIN D D,WANG X Y,WU Y. Metabolome and transcriptome analysis reveals molecular mechanisms of watermelon under salt stress[J]. Environmental and Experimental Botany,2023,206:105200.
[11] GUO S G,ZHAO S J,SUN H H,WANG X,WU S,LIN T,REN Y,GAO L,DENG Y,ZHANG J,LU X Q,ZHANG H Y,SHANG J L,GONG G Y,WEN C L,HE N,TIAN S W,LI M Y,LIU J P,WANG Y P,ZHU Y C,JARRET R,LEVI A,ZHANG X P,HUANG S W,F(xiàn)EI Z J,LIU W G,XU Y. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits[J]. Nature Genetics,2019,51(11):1616-1623.
[12] DENG Y,LIU S C,ZHANG Y L,TAN J S,LI X P,CHU X,XU B H,TIAN Y,SUN Y D,LI B S,XU Y B,DENG X W,HE H,ZHANG X P. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding[J]. Molecular Plant,2022,15(8):1268-1284.
[13] WU S,SUN H H,GAO L,BRANHAM S,MCGREGOR C,RENNER S S,XU Y,KOUSIK C,WECHTER W P,LEVI A,F(xiàn)EI Z J. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication[J]. Plant Biotechnology Journal,2023,21(10):1926-1928.
[14] YIN W J,LU T Q,CHEN Z G,LU T,YE H F,MAO Y J,LUO Y T,LU M,ZHU X D,YUAN X,RAO Y C,WANG Y X. Quantitative trait locus mapping and candidate gene analysis for salt tolerance at bud stage in rice[J]. Frontiers in Plant Science,2023,13:1041081.
[15] DOU J L,ZHAO S J,LU X Q,HE N,ZHANG L,ALI A,KUANG H H,LIU W G. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.)[J]. Theoretical and Applied Genetics,2018,131(4):947-958.
[16] 王學(xué)征,劉碩,徐雅菲,高啟帆,修洪超,李燕,李亞平,齊國(guó)安,劉識(shí). 西瓜種子大小全基因組關(guān)聯(lián)分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,50(5):26-34.
WANG Xuezheng,LIU Shuo,XU Yafei,GAO Qifan,XIU Hong-chao,LI Yan,LI Yaping,QI Guoan,LIU Shi. Genome-wide association analysis of seed size characters in watermelon[J]. Journal of Northeast Agricultural University,2019,50(5):26-34.
[17] 高美玲,胡創(chuàng)然,袁成志,郭宇,劉秀杰,劉繼秀,高越. 基于GWAS的西瓜種子性狀候選QTL鑒定[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,39(6):721-728.
GAO Meiling,HU Chuangran,YUAN Chengzhi,GUO Yu,LIU Xiujie,LIU Jixiu,GAO Yue. Identification of candidate QTL for watermelon seed traits based on GWAS[J]. Journal of Sichuan Agricultural University,2021,39(6):721-728.
[18] GONG C S,ZHAO S J,YANG D D,LU X Q,ANEES M,HE N,ZHU H J,ZHAO Y,LIU W G. Genome-wide association analysis provides molecular insights into the natural variation of watermelon seed size[J]. Horticulture Research,2022,9:uhab074.
[19] REN Y,LI M Y,GUO S G,SUN H H,ZHAO J Y,ZHANG J,LIU G M,HE H J,TIAN S W,YU Y T,GONG G Y,ZHANG H Y,ZHANG X L,ALSEEKH S,F(xiàn)ERNIE A R,SCHELLER H V,XU Y. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits[J]. The Plant Cell,2021,33(5):1554-1573.
[20] ZHU Y C,YUAN G P,GAO B W,AN G L,LI W H,SI W J,SUN D X,LIU J P. Comparative transcriptome profiling provides insights into plant salt tolerance in watermelon (Citrullus lanatus)[J]. Life,2022,12(7):1033.
[21] 高博文. 西瓜幼苗耐鹽鑒定體系的初步建立及轉(zhuǎn)錄組分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2022.
GAO Bowen. Preliminary establishment of salt tolerance evaluation system and transcriptomic analysis in watermelon seedlings[D]. Beijing:Chinese Academy of Agricultural Sciences,2022.
[22] LIPPERT C,LISTGARTEN J,LIU Y,KADIE C M,DAVIDSON R I,HECKERMAN D. FaST linear mixed models for genome-wide association studies[J]. Nature Methods,2011,8(10):833-835.
[23] CHEN C J,WU Y,LI J W,WANG X,ZENG Z H,XU J,LIU Y L,F(xiàn)ENG J T,CHEN H,HE Y H,XIA R. TBtools-II:A “one for all,all for one” bioinformatics platform for biological big-data mining[J]. Molecular Plant,2023,16(11):1733-1742.
[24] YANG Y Q,GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist,2018,217(2):523-539.
[25] ZHAO C Z,ZHANG H,SONG C P,ZHU J K,SHABALA S. Mechanisms of plant responses and adaptation to soil salinity[J]. The Innovation,2020,1(1):100017.
[26] 薛洋,趙勝杰,何玉敏,王方方,李杰,張林龍,徐志紅,王平勇. 瓜菜作物耐鹽性研究進(jìn)展[J]. 中國(guó)瓜菜,2023,36(12):1-8.
XUE Yang,ZHAO Shengjie,HE Yumin,WANG Fangfang,LI Jie,ZHANG Linlong,XU Zhihong,WANG Pingyong. Research progress on salt tolerance of cucurbits and vegetables[J]. China Cucurbits and Vegetables,2023,36(12):1-8.
[27] MUNNS R,PASSIOURA J B,COLMER T D,BYRT C S. Osmotic adjustment and energy limitations to plant growth in saline soil[J]. New Phytologist,2020,225(3):1091-1096.
[28] CHEN C Y,YU W C,XU X R,WANG Y H,WANG B,XU S Y,LAN Q K,WANG Y. Research advancements in salt tolerance of Cucurbitaceae:From salt response to molecular mechanisms[J]. International Journal of Molecular Sciences,2024,25(16):9051.
[29] 姚銘榕,謝凱玲,張文靜,張文杰,史慶華,劉杰. 兩個(gè)番茄品種幼苗耐鹽性評(píng)價(jià)[J]. 中國(guó)瓜菜,2021,34(8):21-25.
YAO Mingrong,XIE Kailing,ZHANG Wenjing,ZHANG Wenjie,SHI Qinghua,LIU Jie. Evaluation of salt tolerance of two tomato varieties[J]. China Cucurbits and Vegetables,2021,34(8):21-25.
[30] 石婧,劉東洋,張鳳華. 棉花幼苗對(duì)鹽脅迫的生理響應(yīng)與耐鹽機(jī)理[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2020,32(7):1141-1148.
SHI Jing,LIU Dongyang,ZHANG Fenghua. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress[J]. Acta Agriculturae Zhejiangensis,2020,32(7):1141-1148.
[31] 陳宏艷,李小二,李忠光. 糖信號(hào)及其在植物響應(yīng)逆境脅迫中的作用[J]. 生物技術(shù)通報(bào),2022,38(7):80-89.
CHEN Hongyan,LI Xiaoer,LI Zhongguang. Sugar signaling and its role in plant response to environmental stress[J]. Biotechnology Bulletin,2022,38(7):80-89.
[32] 王麗華,李改玲,李晶,左師宇,曹鑫波,佟昊陽(yáng),魏湜. 外源糖對(duì)鹽脅迫下小黑麥幼苗糖代謝的影響[J]. 麥類作物學(xué)報(bào),2017,37(4):548-553.
WANG Lihua,LI Gailing,LI Jing,ZUO Shiyu,CAO Xinbo,TONG Haoyang,WEI Shi. Effect of exogenous sugar on the sugar metabolism in triticale seedling under salt stress[J]. Journal of Triticeae Crops,2017,37(4):548-553.
[33] HU M Y,SHI Z G,ZHANG Z B,ZHANG Y J,LI H. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress[J]. Plant Growth Regulation,2012,68(2):177-188.
[34] NEMATI I,MORADI F,GHOLIZADEH S,ESMAEILI M A,BIHAMTA M R. The effect of salinity stress on ions and soluble sugars distribution in leaves,leaf sheaths and roots of rice (Oryza sativa L.) seedlings[J]. Plant,Soil and Environment,2011,57(1):26-33.
[35] PATTANAGUL W,THITISAKSAKUL M. Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance[J]. Indian Journal of Experimental Biology,2008,46(10):736-742.
[36] MOSTOFA M G,HOSSAIN M A,F(xiàn)UJITA M. Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings:Oxidative damage and co-induction of antioxidant defense and glyoxalase systems[J]. Protoplasma,2015,252(2):461-475.
[37] 劉暢,程玉靜,王小秋,仇亮,劉巖,戴志剛,謝冬微,孫健. 海水脅迫下外源海藻糖對(duì)黃秋葵幼苗耐鹽性的影響[J]. 中國(guó)瓜菜,2023,36(8):84-91.
LIU Chang,CHENG Yujing,WANG Xiaoqiu,QIU Liang,LIU Yan,DAI Zhigang,XIE Dongwei,SUN Jian. Effects of exogenous trehalose on salt tolerance of okra seedlings under seawater stress[J]. China Cucurbits and Vegetables,2023,36(8):84-91.
[38] YAO Y D,YANG Y,PAN Y,LIU Z S,HOU X M,LI Y H,ZHANG H S,WANG C L,LIAO W B. Crucial roles of trehalose and 5-azacytidine in alleviating salt stress in tomato:Both synergistically and independently[J]. Plant Physiology and Biochemistry,2023,203:108075.
[39] 徐婷,周傳余,周超,趙索,武琳琳,譚可菲. 海藻糖對(duì)鹽脅迫下薄皮甜瓜幼苗抗氧化系統(tǒng)的影響[J]. 北方園藝,2014(19):28-30.
XU Ting,ZHOU Chuanyu,ZHOU Chao,ZHAO Suo,WU Linlin,TAN Kefei. Effect of trehalose on antioxidant system of melon seedling under salt stress[J]. Northern Horticulture,2014(19):28-30.
[40] GU L,ZHANG Y M,ZHANG M S,LI T,DIRK L M A,DOWNIE B,ZHAO T Y. ZmGOLS2,a target of transcription factor ZmDREB2A,offers similar protection against abiotic stress as ZmDREB2A[J]. Plant Molecular Biology,2016,90(1/2):157-170.
[41] ZHANG X X,TANG Y J,MA Q B,YANG C Y,MU Y H,SUO H C,LUO L H,NIAN H. OsDREB2A,a rice transcription factor,significantly affects salt tolerance in transgenic soybean[J]. PLoS One,2013,8(12):e83011.
[42] HERNáNDEZ J A,F(xiàn)ERRER M A,JIMéNEZ A,BARCELó A R,SEVILLA F. Antioxidant systems and O2.-/H2O2 production in the apoplast of pea leaves:Its relation with salt-induced necrotic lesions in minor veins[J]. Plant Physiology,2001,127(3):817-831.
[43] BARBA-ESPíN G,CLEMENTE-MORENO M J,áLVAREZ S,GARCíA-LEGAZ M F,HERNáNDEZ J A,DíAZ-VIVANCOS P. Salicylic acid negatively affects the response to salt stress in pea plants[J]. Plant Biology,2011,13(6):909-917.
[44] CHEESEMAN J M. The integration of activity in saline environments:Problems and perspectives[J]. Functional Plant Biology,2013,40(9):759-774.
[45] XING M G,MA Y Y,HOU H,ZHAO C M,XUE R G. Overexpression of Nicotiana tomentosiformis phloem protein 2-like A9-likegene NTPP2A9L enhances tolerance to abiotic stress in transgenic tobacco[J/OL]. Social Science Research Network,2022.
[46] SI Y Y,F(xiàn)AN H F,LU H J,LI Y P,GUO Y T,LIU C,CHAI L A,DU C X. Cucumis sativus PHLOEM PROTEIN 2-A1 like gene positively regulates salt stress tolerance in cucumber seedlings[J]. Plant Molecular Biology,2023,111(6):493-504.
[47] 王培龍,劉中原,張騰倩,唐緋緋,曲冠證,高彩球. 剛毛檉柳ThPP2C基因的克隆和表達(dá)分析[J]. 植物研究,2017,37(3):395-401.
WANG Peilong,LIU Zhongyuan,ZHANG Tengqian,TANG Feifei,QU Guanzheng,GAO Caiqiu. Cloning and expression analysis of ThPP2C gene from Tamarix hispida[J]. Bulletin of Botanical Research,2017,37(3):395-401.
[48] WU H H,ZHANG X C,GIRALDO J P,SHABALA S. It is not all about sodium:Revealing tissue specificity and signalling roles of potassium in plant responses to salt stress[J]. Plant and Soil,2018,431(1):1-17.
[49] SHABALA S. Regulation of potassium transport in leaves:From molecular to tissue level[J]. Annals of Botany,2003,92(5):627-634.
[50] CHAKRABORTY K,BHADURI D,MEENA H N,KALARIYA K. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion,K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars[J]. Plant Physiology and Biochemistry,2016,103:143-153.
[51] ABBASI H,JAMIL M,HAQ A,ALI S,AHMAD R,MALIK Z,PARVEEN. Salt stress manifestation on plants,mechanism of salt tolerance and potassium role in alleviating it:A review[J]. Zemdirbyste-Agriculture,2016,103(2):229-238.
[52] XUE L Z,SUN M T,WU Z,YU L,YU Q H,TANG Y P,JIANG F L. LncRNA regulates tomato fruit cracking by coordinating gene expression via a hormone-redox-cell wall network[J]. BMC Plant Biology,2020,20(1):162.
[53] CHEN Y T,CHENG C Z,F(xiàn)ENG X,LAI R L,GAO M X,CHEN W G,WU R J. Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening[J]. Scientific Reports,2021,11(1):1671.
收稿日期:2024-10-18 接受日期:2024-12-11
基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-25);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-ZFRI,CAAS-ASTIP-WRI);新疆自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023B02017);河南省農(nóng)業(yè)良種聯(lián)合攻關(guān)項(xiàng)目(2022010503)
作者簡(jiǎn)介:袁高鵬,男,副研究員,研究方向?yàn)槲鞴峡鼓婊虻耐诰蚣肮δ茯?yàn)證。E-mail:yuangaopeng@caas.cn。#為共同第一作者。
*通信作者Author for correspondence. E-mail:zhuyingchun@caas.cn