摘 要:目的:分析人乳、羊乳和牛乳的外泌體miRNA表達譜,并分析其潛在的功能。方法:基于GEO數(shù)據(jù)庫,分析牛乳、羊乳、人乳中miRNA表達譜。基于multiMiR軟件包預(yù)測人乳、牛乳、羊乳共同表達的miRNA的靶基因并利用基因本體分析(GO分析)、KEGG數(shù)據(jù)庫富集等方法分析人乳、牛乳、羊乳中共同表達的miRNA的靶基因參與的功能。結(jié)果:在40個人乳樣本中,共檢測到1 898個miRNA,其中1 850個為特異性表達。相比之下,28個牛乳樣本中有132個已知miRNA,其中83個特異性表達;而3個羊乳樣本則表達了84個miRNA,其中28個為特異性表達。牛乳和羊乳有27個共同表達的miRNA,人乳和羊乳有26個,而人乳和牛乳則有19個。3種乳汁中共同表達的miRNA僅有3種,分別是miR-107,miR-22-3p和miR-30a-5p。另外,let-7家族和miR-148家族在人乳、牛乳和羊乳中均高表達。人乳、牛乳和羊乳中高表達的miRNA均參與蛋白代謝、mRNA代謝、組蛋白修飾相關(guān)的功能。而人乳、牛乳中共同表達的miRNA參與細胞周期、蛋白質(zhì)加工相關(guān)的功能。結(jié)論:人乳、羊乳和牛乳miRNA存在明顯差異,但有一些共同表達的miRNA。這些共同表達的miRNA在物種間保守,并且參與一些重要的生物功能。
關(guān)鍵詞:外泌體;母乳;微小核糖核酸
miRNA Expression Profile and Functional Analysis of Human Milk, Bovine Milk and Goat Milk
ZENG Xiaoling1, ZHANG Jihua2, MA Ling2, WANG Jiaqi1, LI Wei1, WANG Wenxian3*
(1.Hunan Nutritional and Health Products Engineering and Technology Research Center, Changsha 410000, China; 2.Child Health Care Medical Division, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China; 3.Department of Clinical Nutrition, School of Medicine and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China)
Abstract: Objective: To analyze the expression profiles of exosome miRNA in human milk, goat milk and bovine milk, and to analyze their potential functions. Method: miRNA expression profiles in bovine milk, goat milk and human milk were analyzed based on GEO database. multiMiR software package is used to predict the target genes of miRNA co-expressed in bovine milk, human milk and goat milk, and to analyze the participation functions of the target genes of miRNA co-expressed in bovine milk, human milk and goat milk by gene ontology analysis (GO analysis) and KEGG database enrichment. Result: In 40 human milk samples, a total of 1 898 miRNAs were detected, of which 1 850 were specifically expressed. In contrast, there were 132 known miRNAs in 28 milk samples, 83 of which were specifically expressed; three goat milk samples expressed 84 miRNAs, of which 28 were specifically expressed. There were 27 miRNAs co-expressed in bovine and goat milk, 26 in human and goat milk, and 19 in human and bovine milk. 3 miRNAs were co-expressed in the three kinds of milk, namely miR-107, miR-22-3p and miR-30a-5p. In addition, let-7 family and miR-148 family were highly expressed in human milk, bovine milk and goat milk. The highly expressed miRNAs in human milk, bovine milk and goat milk are involved in proteasomal protein catabolic process, regulation of mRNA metabolic process and histone modification. The miRNAs co-expressed in human milk and bovine milk are involved in cell cycle and protein processing in endoplasmic reticulum. Conclusion: There are significant differences in miRNA between human milk, goat milk and bovine milk, but there are some common miRNA. These co-expressed miRNAs are conserved across species and are involved in several important biological functions.
Keywords: exosome; human milk; miRNA
乳汁是哺乳動物母親為新生兒提供營養(yǎng)和免疫保護的重要物質(zhì),哺乳是哺乳動物特有的一種行為,對新生兒的喂養(yǎng)至關(guān)重要[1-2]。人乳、羊乳和牛乳作為常見的哺乳動物乳汁,不僅在營養(yǎng)成分上存在差異,而且在生物活性物質(zhì)方面也有所不同[3]。近年來,外泌體miRNA因其在細胞間通訊和基因表達調(diào)控中的重要作用而受到廣泛關(guān)注。外泌體miRNA是一類小分子非編碼RNA,能通過外泌體在細胞間傳遞,影響受體細胞的基因表達和功能[4]。因此,研究不同乳汁中外泌體miRNA的表達譜及其潛在功能,對于了解乳汁的營養(yǎng)價值和生物活性具有重要意義。
盡管已有研究開始關(guān)注于單一乳汁中外泌體miRNA的表達和功能,但對不同乳汁中外泌體miRNA的比較研究仍然較少[5]。此外,由于物種間的生物學(xué)差異,不同乳汁中外泌體miRNA的表達譜可能存在顯著差異,但也可能有一些保守的表達模式。這些保守的miRNA可能在哺乳動物乳汁的生物學(xué)功能中起重要作用。因此,本研究旨在通過分析人乳、羊乳和牛乳的外泌體miRNA表達譜,識別特異性和共同表達的miRNA,并進一步探討這些miRNA的潛在功能。為實現(xiàn)這一目標,基于GEO數(shù)據(jù)庫中的miRNA表達數(shù)據(jù),采用multiMiR軟件包預(yù)測共同表達miRNA的靶基因,并利用基因本體分析(GO分析)和KEGG數(shù)據(jù)庫富集分析等方法,探究這些miRNA在不同乳汁中的功能。通過這些分析,期望揭示不同乳汁中外泌體miRNA的表達差異,以及它們在哺乳動物乳汁中的保守性和生物學(xué)意義,為開發(fā)新型功能性食品和深入了解乳汁的營養(yǎng)價值提供理論依據(jù)。
1 對象和方法
1.1 研究對象
研究對象來自GEO數(shù)據(jù)庫,其中人乳樣本來自16個健康產(chǎn)婦的成熟乳,所有產(chǎn)婦年齡在33±2.4歲,所有樣本在產(chǎn)后3~15個月取材[6]。羊乳樣本來自于內(nèi)蒙古農(nóng)業(yè)和畜牧業(yè)科學(xué)研究院,樣本來自3只鄂爾多斯綿羊,年齡為2歲,取材時間為哺乳中期。牛乳樣本來源于4只健康奶牛,分別在第1天、第
4天早上和晚上取的乳汁。
1.2 研究方法
1.2.1 人乳、羊乳、牛乳外泌體miRNA數(shù)據(jù)下載
人乳外泌體miRNA表達譜來源于GSE216498,羊乳miRNA表達譜來源于GSE143779,牛乳外泌體miRNA來源于GSE232617。GEO數(shù)據(jù)框中分別下載以上3個數(shù)據(jù)集的miRNA表達量數(shù)據(jù),分別進行歸一化處理。
1.2.2 miRNA靶基因預(yù)測
本研究使用multiMiR軟件包預(yù)測sRNA測序結(jié)果中所有miRNA的靶基因,所有結(jié)果均用于GO富集和KEGG富集分析。
1.2.3 富集分析
以基因本體(GO)數(shù)據(jù)庫為參考,預(yù)測了人乳、牛乳、羊乳外泌體中miRNA的功能特性。以《京都基因組百科全書》(KEGG)數(shù)據(jù)庫為參考,對樣本溶液中目標基因所涉及的通路進行統(tǒng)計和比較。富集程度的顯著性采用Fisher檢驗,同時采用Holm、Sidak、Bonferroni等方法降低假陽性率。
2 結(jié)果與分析
2.1 人乳、牛乳、羊乳miRNA的表達情況
人乳共40個樣本,測出1 898個已知的miRNA;牛乳共28個樣本,測出132個已知的miRNA;羊乳共3個樣本,測出84個已知的miRNA;各組樣本的miRNA全局表達情況如圖1(a)(b)(c)所示。以人乳、牛乳、羊乳miRNA表達情況繪制Upset圖來展示其交集情況。人乳中特異性表達的miRNA有1 850個,牛乳中特異性表達的miRNA有83個,羊乳中特異性表達的miRNA有28個。牛乳和羊乳共同表達的miRNA有27個,人乳和羊乳共同表達的miRNA有26個,人乳和牛乳共同表達的miRNA有19個。人乳、牛乳、羊乳共同表達的miRNA有3個,分別是miR-107、miR-22-3p、miR-30a-5p,詳見圖2。miR-107可以在多種人類細胞中發(fā)揮多種調(diào)控作用,如增殖,血管生成和脂質(zhì)代謝,并可能在各種疾病中,如神經(jīng)退行性疾病和癌癥中發(fā)生改變[7-8]。miR-107的一個已知靶基因是NF1,其是一種腫瘤抑制基因,它在許多類型的癌癥中被發(fā)現(xiàn)有突變。miR-107可通過直接靶向NF1的3’UTR來降低其表達[9]。miR-22-3p可以通過影響mRNA的穩(wěn)定性和翻譯來參與基因表達的轉(zhuǎn)錄后調(diào)控。miR-22-3p可以調(diào)控多種功能,如增殖,血管生成和脂質(zhì)代謝,并可能在各種疾病中,如神經(jīng)退行性疾病和癌癥中發(fā)生改變[10]。miR-22-3p在人乳外泌體中豐富,可能有助于腸道發(fā)育,因為乳外泌體中的microRNAs能夠抵抗嬰兒的胃腸道消化[11]。miR-30a-5p屬于miR-30a家族,研究表明miR-30a家族參與免疫細胞的發(fā)育。miR-30a通過靶向Th17發(fā)育過程中的關(guān)鍵調(diào)節(jié)因子IL-21R抑制Th17分化[12]。
柱狀圖表示交集大小,條形圖表示集合大小,矩陣表示集合之間的交疊,矩陣的列表示每種交集組合,對應(yīng)于柱狀圖的橫坐標;矩陣的行表示集合,對應(yīng)于條形圖的縱坐標。
圖2 人乳、牛乳、羊乳miRNA表達Upset圖
2.2 不同物種乳汁中共同高表達的miRNA
由圖3可知,miR-148a家族和let-7家族在人乳、牛乳、羊乳中均有高表達。人乳中高表達的是miR-148a-3p,牛乳和羊乳中高表達的是miR-148a。對于let-7家族,人乳中高表達的是let-7f-5p;牛乳中高表達的是let-7a-5p、let-7b、let-7c和let-7f;羊乳中高表達的是let-7b、let-7a、let-7c、let-7i和let-7f。據(jù)報道,MiR-148a-3p與能量代謝、胰島素信號傳導(dǎo)和脂肪生成途徑有關(guān)[13-15]。let-7家族是人類最早發(fā)現(xiàn)的miRNA,在序列和功能上高度跨物種保守。它最初被發(fā)現(xiàn)與干細胞的增殖、發(fā)育和分化有關(guān)[16]。近年來,也有報道稱let-7及其家族參與了神經(jīng)炎癥相關(guān)疾病的免疫調(diào)節(jié)[17]。
2.3 高表達miRNA靶基因GO富集
由圖4可知,雖然人乳、牛乳、羊乳高表達miRNA種類不一致,但是從靶基因的GO富集結(jié)果來看,可以看到不同物種的乳中高表達的miRNA的靶基因基本上參與蛋白代謝(Proteasomal protein catabolic process)、mRNA代謝(Regulation of mRNA metabolic process)、組蛋白修飾(Histone modification)相關(guān)的功能。但是人乳外泌體miRNA的靶基因還參與子宮內(nèi)胚胎發(fā)育(In utero embryonic development)。這主要是miR-181a-5p、miR-26a-5p、miR-92a-3p、miR-30家族、let-7f-5p和miR-22-3p的作用。
2.4 高表達miRNA靶基因KEGG通路富集
由圖5可知,人乳、牛乳中高表達的miRNA的靶基因基本上都有在蛋白質(zhì)加工(Protein processing in endoplasmic reticulum)、細胞周期(Cell cycle)等通路上富集。
2.5 共同表達的miRNA靶基因GO富集
由圖6可知,基因本體分析(GO分析)顯示人乳、牛乳和羊乳中共同表達的miRNA靶基因主要與細胞周期(Cell cycle)、蛋白質(zhì)加工(Protein processing in endoplasmic reticulum)通路相關(guān)。說明這些基因可能在細胞生命周期的調(diào)控、蛋白質(zhì)合成和加工等關(guān)鍵生物學(xué)過程中發(fā)揮重要作用。
2.6 共同表達的miRNA靶基因KEGG通路富集
由圖7可知,人乳、牛乳、羊乳中共同表達的miRNA的靶基因富集在有絲分裂細胞周期階段轉(zhuǎn)換(Mitotic cell cycle phase transition)、染色體分離(Chromosome segregation)、蛋白酶體介導(dǎo)的蛋白質(zhì)分解過程(Proteasome-mediated ubiquitin-dependent protein catabolic process)、有絲分裂核分裂(Mitotic nuclear divisio)、DNA復(fù)制(DNA replication)和加工相關(guān)的通路上,說明這些miRNA的靶基因直接或間接地參與了細胞的基本生命過程,行使基本的生物學(xué)功能。
3 結(jié)論與討論
在牛乳和羊乳中,已鑒定出的miRNA種類相對較少,而人乳中已鑒定出的miRNA種類則較為豐富。由于人類miRNA基因組的研究更為深入和廣泛,已被命名的已知miRNA數(shù)量較多,因此在與參考基因組比對時,能夠識別出較多的已知miRNA種類。相比之下,牛乳和羊乳的miRNA研究相對較少,導(dǎo)致已知的miRNA種類有限,因此在比對過程中識別出的miRNA種類也相應(yīng)較少。另外有些高表達的miRNA在人乳、牛乳和羊乳中具有特異性的表達,如miR-22-3p只在人乳中特異性高表達,miR-21在羊乳中特異性高表達,而miR-3596在牛乳中特異性高表達。miR-22-3p與脂質(zhì)代謝和神經(jīng)系統(tǒng)調(diào)節(jié)有關(guān)[18-19],miR-21參與炎癥調(diào)節(jié)[20],而miR-3596在產(chǎn)后的奶牛肝臟中高表達,可能參與奶牛產(chǎn)后的代謝狀態(tài)改變[21]。
在人乳、牛乳和羊乳中,共同存在并表達著特定的miRNA,如miR-107、miR-22-3p以及miR-30a-5p。這些miRNA在跨物種層面上被檢測到,表明它們在生物過程中的普遍性和潛在的關(guān)鍵作用。然而,盡管miR-22-3p在上述3種乳汁中均有表達,但其在人乳中的表達水平明顯高于牛乳和羊乳。這一現(xiàn)象揭示了人乳、牛乳和羊乳在miRNA表達譜上存在的物種特異性及生理學(xué)差異。進一步推測,miR-22-3p在人乳中的高表達可能與特定的乳腺組織或細胞類型緊密相關(guān),并且這種差異在不同哺乳動物物種之間可能表現(xiàn)得更為顯著。
本研究采用人乳、牛乳和羊乳3種不同來源的樣本,通過深度挖掘GEO數(shù)據(jù)庫中的miRNA表達數(shù)據(jù),進行了大規(guī)模的miRNA表達譜分析,為全面解析不同物種的乳汁中miRNA的表達模式提供了堅實的依據(jù)。除了探討miRNA的表達譜之外,本文還對其潛在生物學(xué)功能進行分析,進一步加深了對人乳、牛乳和羊乳中miRNA表達情況的了解。通過識別不同乳汁中共同表達的miRNA,本研究揭示了這些miRNA在物種間的共同性與差異性,為未來的研究提供了有價值的線索。
參考文獻
[1]MANINGAT P D,SEN P,RIJNKELS M,et al.Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome[J].Physiological genomics,2009,37(1):12-22.
[2]PUPPEL K,GO??BIEWSKI M,GRODKOWSKI G,
et al.Composition and factors affecting quality of bovine colostrum: a review[J].Animals,2019,9(12):1070.
[3]HENNE W M,STENMARK H,EMR S D.Molecular mechanisms of the membrane sculpting ESCRT pathway[J].Cold Spring Harbor Perspectives in Biology,2013,5(9):a016766.
[4]MELNIK B C,SCHMITZ G J B P,ENDOCRINOLOGY R C,et al.MicroRNAs:milk’s epigenetic regulators[J].Best Practice amp; Research Clinical Endocrinology amp; Metabolism,2017,31(4):427-442.
[5]GOLAN‐GERSTL R,ELBAUM SHIFF Y,MOSHAYOFF V,et al.Characterization and biological function of milk‐derived miRNAs[J].Molecular Nutrition amp; Food Research2017,61(10):1700009.
[6]ZONNEVELD M I,VAN HERWIJNEN M J C,F(xiàn)ERNANDEZ‐GUTIERREZ M M,et al.Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses[J].Journal of Extracellular Vesicles,2021,10(5):e12071.
[7]TURCO C,DONZELLI S,F(xiàn)ONTEMAGGI G.miR-15/107 microRNA gene group: characteristics and functional implications in cancer[J].Frontiers in Cell and Developmental Biology,2020,8:427.
[8]WANG S,ZHU W,XU J,et al.Interpreting the MicroRNA-15/107 family: interaction identification by combining network based and experiment supported approach[J].BMC Medical Genetics,2019,20:96.
[9]WANG S,MA G,ZHU H,et al.miR-107 regulates tumor progression by targeting NF1 in gastric cancer[J].Scientific Reports,2016,6(1):36531.
[10]ZHANG T,CHEN Y,LIN W,et al.Prognostic and immune-infiltrate significance of miR-222-3p and its target genes in thyroid cancer[J].Frontiers in Genetics,2021,12:710412.
[11]JIANG R,L?NNERDAL B.Milk-Derived miR-22-3p Promotes proliferation of human intestinal epithelial cells (HIECs) by regulating gene expression[J].Nutrients,2022,14(22):4901.
[12]HAN J,F(xiàn)ENG W,YAO R,et al.MiR-30a-centered molecular crosstalk regulates Th17 differentiation[J].Cellular amp; Molecular Immunology,2022,19(8):960-961.
[13]MELNIK B C,SCHMITZ G.MicroRNAs: milk’s epigenetic regulators[J].Best practice amp; research Clinical endocrinology amp; metabolism,2017,31(4):427-442.
[14]MIRRA P,NIGRO C,PREVENZANO I,et al.The destiny of glucose from a microRNA perspective[J].Frontiers in Endocrinology,2018,9:46.
[15]WAGSCHAL A,NAJAFI-SHOUSHTARI S H,WANG L,et al.Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis[J].Nat Med,2015,21(11):1290-1297.
[16]ROUSH S,SLACK F J.The let-7 family of microRNAs[J].Trends in Cell Biology,2008,18(10):505-516.
[17]GAUDET A D,F(xiàn)ONKEN L K,WATKINS L R,
et al.MicroRNAs: roles in regulating neuroinflammation[J].The Neuroscientist,2018,24(3):221-245.
[18]HAN M,WANG S,F(xiàn)RITAH S,et al.Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling[J].Brain,2020,143(2):512-530.
[19]FANG H,YANG M,PAN Q,et al.MicroRNA-22-3p alleviates spinal cord ischemia/reperfusion injury by modulating M2 macrophage polarization via IRF5[J].J Neurochem,2021,156(1):106-120.
[20]KUMARSWAMY R,VOLKMANN I,THUM T.Regulation and function of miRNA-21 in health and disease[J].RNA Biol,2011,8(5):706-713.
[21]FATIMA A,LYNN D J,O’BOYLE P,et al.The miRNAome of the postpartum dairy cow liver in negative energy balance[J].BMC Genomics,2014,15:279.