[摘" "要]" "目的:建立副溶血弧菌的lux報告基因融合實驗平臺,為后續(xù)研究基因轉(zhuǎn)錄調(diào)控機(jī)制奠定基礎(chǔ)。方法:采用PCR擴(kuò)增opaR的啟動子區(qū)序列,并將其克隆入pBBRlux質(zhì)粒中,構(gòu)建重組質(zhì)粒opaR-lux。將opaR-lux重組質(zhì)粒分別轉(zhuǎn)入野生株(WT)、opaR突變株(ΔopaR)和aphA突變株(ΔaphA)中,檢測特定培養(yǎng)條件下三者發(fā)出的冷光值(Lux)以及在600 nm處的吸光度值(OD600),以“Lux/OD600”表示單位OD600下的相對平均冷光單位(relative light unit, RLU)。通過比較各菌株的RLU大小,判斷OpaR和AphA對opaR的調(diào)控關(guān)系,以檢驗實驗平臺的穩(wěn)定性。結(jié)果:成功構(gòu)建出帶有opaR的pBBRlux重組質(zhì)粒;在低密度(OD600lt;0.4)時,AphA負(fù)調(diào)控opaR的轉(zhuǎn)錄,當(dāng)細(xì)菌達(dá)到高密度(OD600=0.8)時,AphA則對opaR的轉(zhuǎn)錄不起調(diào)控作用;在細(xì)菌從低密度生長到高密度(即OD600lt;0.8)中,OpaR對自身的轉(zhuǎn)錄存在負(fù)調(diào)控作用。結(jié)論:成功建立了副溶血弧菌的lux報告基因融合實驗平臺,用于后續(xù)轉(zhuǎn)錄調(diào)控機(jī)制的研究。
[關(guān)鍵詞]nbsp; "副溶血弧菌;OpaR;AphA;lux
[中圖分類號]" "R378" " " " " " " "[文獻(xiàn)標(biāo)志碼]" "A" " " " " " " "[文章編號]" "1674-7887(2024)04-0349-05
Construction and application of the lux reporter assay platform in Vibrio parahaemolyticus
[Abstract]" "Objective: To construct the lux fusion assay platform for investigating gene regulation in Vibrio parahaemolyticus, and lay a foundation for further research of gene transcriptional regulation mechanism. Methods: The entire promoter region of opaR was amplified by PCR and then cloned into the vector of pBBRlux, yielding the recombinant opaR-lux plasmid. The recombinant plasmid was introduced into the wild type(WT) strain, as well as the opaR mutant(ΔopaR) and aphA mutant(ΔaphA). Subsequently, luminescence(Lux) and the OD600 values were measured under specific culture conditions. The relative light unit (RLU) was calculated using the formula: Lux/OD600, which represents the change in the lux relative to the OD600 values of cells. Consequently, the stability of the lux fusion assay platform can be evaluated by evaluating the regulatory relationship between OpaR and AphA on opaR based on their respeactive RLU differences. Results: The recombinant plasmid pBBRlux with opaR was successfully constructed. At low cell density(OD600lt;0.4), AphA negatively regulated the transcription of opaR; however at high cell density(OD600=0.8), AphA did not exert any regulatory effect on the transcription of opaR. In contrast, OpaR consistently exhibited a negative regulatory effect on its own transcription from low cell density to high cell density(OD600lt;0.8). Conclusion: The lux fusion assay platform in Vibrio parahaemolyticus has been successfully established, providing a valuable tool for future studies on transcriptional regulation mechanisms.
[Key words]" "Vibrio parahaemolyticus; OpaR; AphA; lux
副溶血弧菌(Vibrio parahaemolyticus)系弧菌科弧菌屬,是一種嗜鹽性的革蘭陰性菌,廣泛分布于全球海洋和河口環(huán)境的沿海微咸水以及海產(chǎn)品中[1-2]。副溶血弧菌作為一種食源性致病菌可導(dǎo)致人體炎癥性胃腸炎,也可導(dǎo)致傷口感染和菌血癥[3]。副溶血性弧菌表達(dá)多種不同的毒力因子且具有很強的生物膜形成能力[3],使菌株在環(huán)境中生存和引起人類疾病中發(fā)揮重要作用。OpaR和AphA分別是副溶血弧菌的群體感應(yīng)系統(tǒng)(quorum sensing, QS)[4]在高密度和低密度條件下的核心調(diào)控子[5]。在低密度條件下,AphA有較高的表達(dá)量,其直接抑制opaR、qrr2-4及其自身的轉(zhuǎn)錄[6]。在高密度條件下,OpaR表達(dá)量較高,其直接結(jié)合在自身的啟動子區(qū)從而抑制自身的轉(zhuǎn)錄,另外OpaR直接抑制aphA的轉(zhuǎn)錄并且對qrr2-4具有直接的正調(diào)控作用[7]。此外,AphA和OpaR參與了大量相關(guān)基因的調(diào)控,進(jìn)而來影響副溶血弧菌的生物膜形成、動力以及毒力等[5-10]。
對于副溶血弧菌基因轉(zhuǎn)錄機(jī)制的研究現(xiàn)已存在許多相當(dāng)成熟的研究方法,例如實時定量PCR、LacZ報告基因融合實驗等方法[5]。Lux報告基因系統(tǒng)同樣作為研究轉(zhuǎn)錄調(diào)控機(jī)制的重要方法,在其他菌株中已廣泛運用[11]。為了驗證lux報告基因系統(tǒng)在副溶血弧菌中同樣適用,本研究利用分子克隆技術(shù)成功構(gòu)建了opaR-lux重組質(zhì)粒,并驗證了AphA和OpaR對opaR的抑制作用,證明了lux報告基因融合實驗平臺的穩(wěn)定性,為進(jìn)一步研究副溶血弧菌基因調(diào)控機(jī)制提供依據(jù)。
1" "材料與方法
1.1" "材料
1.1.1" "菌株" "實驗所用的副溶血弧菌RIMD2210633(野生株,WT)、aphA非極性突變株(ΔaphA)、opaR非極性突變株(ΔopaR),大腸埃希氏菌S17以及質(zhì)粒pBBRlux(氯霉素抗性,攜帶無啟動子的luxCDABE基因[12-13]編碼序列)均由南通大學(xué)附屬南通第三醫(yī)院檢驗科保存。本研究所用氯霉素質(zhì)量濃度為10 μg/mL或2.5 μg/mL,氨芐西林質(zhì)量濃度為100 μg/mL。
1.1.2" "主要試劑" "氯化鈉購自國藥集團(tuán)化學(xué)試劑有限公司;胰蛋白胨購自O(shè)XOID;酵母粉購自索萊寶生物科技有限公司;HI培養(yǎng)基(2.5% Bacto heart infusion)購自BD Bioscience;2×Phanta Max Master Mix、2×Taq PCR Master mix、T4 DNA連接酶、DNA分子量標(biāo)準(zhǔn)購自諾唯贊公司;PCR產(chǎn)物純化試劑盒購自QIAGEN;限制性核酸內(nèi)切酶Sal Ⅰ和BamH Ⅰ購自BioLabs等。
1.2" "重組質(zhì)粒的構(gòu)建
1.2.1" "引物設(shè)計與PCR擴(kuò)增" "根據(jù)opaR啟動子區(qū)DNA序列及pBBRlux質(zhì)粒的限制性內(nèi)切酶位點,利用生物學(xué)軟件Oligo7設(shè)計PCR擴(kuò)增引物(表1),并以WT的全基因組為模板,擴(kuò)增opaR啟動子區(qū)DNA片段,擴(kuò)增參數(shù)為:95 ℃×3 min,(95 ℃×30 s,54 ℃×30 s,72 ℃×50 s)×30個循環(huán),72 ℃×5 min。擴(kuò)增產(chǎn)物用PCR產(chǎn)物純化試劑盒按照操作步驟進(jìn)行回收。
1.2.2" "pBBRlux質(zhì)粒與opaR啟動子區(qū)DNA序列的酶切與連接" "利用限制性核酸內(nèi)切酶Sal Ⅰ和BamH Ⅰ對質(zhì)粒pBBRlux和純化后的opaR啟動子區(qū)DNA片段進(jìn)行酶切。酶切體系:限制性內(nèi)切酶Sal Ⅰ和BamH Ⅰ各1 μL,opaR啟動子區(qū)DNA片段1 μg,10×Smart Buffer為5 μL,補加去離子水至總體積50 μL。酶切體系置于37 ℃孵育1 h,對酶切產(chǎn)物用PCR產(chǎn)物純化試劑盒進(jìn)行回收。將回收后的酶切產(chǎn)物按下列體系進(jìn)行連接:T4連接酶1 μL,10×Ligase Buffer為1 μL,opaR啟動子區(qū)DNA片段和pBBRlux質(zhì)粒的酶切產(chǎn)物按照10∶1的摩爾比加入,補加去離子水至總體積為10 μL。16 ℃連接12 h。
1.2.3" "opaR-lux重組質(zhì)粒的熱激轉(zhuǎn)化" "在酶連體系中加入100 μL大腸埃希氏菌S17感受態(tài)細(xì)胞,輕輕混勻,冰浴30 min。42 ℃、90 s進(jìn)行熱休克,立即冰浴2 min,然后加入900 μL預(yù)熱的LB液體培養(yǎng)基,于37 ℃靜置1 h。1 520 g 4 ℃離心5 min,棄上清。加入100 μL LB液體培養(yǎng)液重懸菌體,均勻涂布于含有10 μg/mL氯霉素的LB平板上,37 ℃培養(yǎng)至出現(xiàn)單克隆。挑取3~5個單克隆于含有10 μg/mL氯霉素的LB平板上擴(kuò)大培養(yǎng)。
1.2.4" "opaR-lux重組質(zhì)粒的鑒定" "挑取經(jīng)擴(kuò)大培養(yǎng)的單克隆于已加入20 μL無菌去離子水的八聯(lián)管中,99 ℃加熱10 min作為PCR模板,以opaR-lux-F/opaR-lux-R、pBBRlux-F/opaR-lux-R、opaR-lux-F/pBBRlux-R、pBBRlux-F/pBBRlux-R為鑒定引物(表1),作PCR鑒定。用引物pBBRlux-F/pBBRlux-R對opaR-lux重組質(zhì)粒進(jìn)行測序驗證。
1.3" "重組質(zhì)粒的接合轉(zhuǎn)移" "接種5 μL攜帶opaR-lux重組質(zhì)粒的大腸埃希氏菌S17(作為供體菌)和副溶血弧菌(WT、ΔopaR和ΔahpA作為受體菌)甘油菌種于5 mL LB液體培養(yǎng)基中,37 ℃,200 r/min培養(yǎng)12~14 h。供體菌和受體菌各取500 μL于無菌EP管中,1 520 g離心5 min,棄上清,加入1 mL無菌PBS洗2次。然后用100 μL LB肉湯將菌體重懸,將供體菌和受體菌混合,取50 μL點種在LB平板上,待菌液干燥后,30 ℃靜置4~6 h,用1 mL PBS刮下菌斑并重懸,取50 μL在含有2.5 μg/mL氯霉素、100 μg/mL氨芐西林的HI平板上三區(qū)劃線,37 ℃培養(yǎng)至長出單克隆。挑取3~5個單克隆在含有2.5 μg/mL氯霉素、100 μg/mL氨芐西林的HI平板上擴(kuò)大培養(yǎng)。挑取經(jīng)擴(kuò)大培養(yǎng)單克隆至已加入20 μL無菌去離子水的八聯(lián)管中,99 ℃加熱10 min,作為PCR模板,以opaR-lux-F/R、pBBRlux-F/R、toxR-RT-F/R、opaR-RT-F/R、aphA-RT-F/R為引物對(表1),作PCR鑒定。
1.4" "Lux報告基因融合實驗" "接種5 μL含有opaR-lux重組質(zhì)粒的WT、ΔopaR和ΔahpA于5 mL HI肉湯中,于37 ℃、200 r/min培養(yǎng)12 h。1∶100轉(zhuǎn)接至5 mL HI肉湯中,37 ℃、200 r/min培養(yǎng)至OD600=1.0,1∶1 000轉(zhuǎn)接至5 mL HI肉湯中,37 ℃、200 r/min培養(yǎng),分別取OD600=0.05、0.1、0.2、0.4、0.6、0.8和1.0的培養(yǎng)產(chǎn)物200 μL于96孔板中,檢測冷光值(Lux)及OD600。計算相對平均冷光單位(relative light unit, RLU)=Lux/OD600,并以RLU為縱坐標(biāo),OD600為橫坐標(biāo)作冷光表達(dá)曲線。
2" "結(jié)" " " 果
2.1" "OpaR啟動子區(qū)擴(kuò)增" "以野生株基因組DNA為模板,利用引物對opaR-lux-F/opaR-lux-R,通過PCR擴(kuò)增opaR的啟動子區(qū),PCR產(chǎn)物用1%瓊脂糖凝膠電泳,如圖1所示,opaR啟動子區(qū)片段與引物設(shè)計理論大?。?66 bp)一致。
2.2" "重組質(zhì)粒的鑒定" "將opaR的核心啟動子區(qū)克隆入載體質(zhì)粒pBBRlux的多克隆位點內(nèi)的兩個酶切位點Sac Ⅰ和BamH Ⅰ之間,且在不含啟動子區(qū)的表達(dá)生物冷光的基因luxCDABE上游,以構(gòu)建opaR-lux重組質(zhì)粒,并轉(zhuǎn)化入大腸埃希氏菌S17中。經(jīng)PCR鑒定獲得含有opaR-lux重組質(zhì)粒的大腸埃希氏菌S17的陽性克隆,如圖2所示,實際片段大小與理論值一致。
2.3" "Lux實驗菌株的鑒定" "將opaR-lux重組質(zhì)粒分別轉(zhuǎn)入WT、ΔopaR、ΔaphA(所獲菌株分別用WT/opaR-lux、ΔopaR/opaR-lux和ΔaphA/opaR-lux表示),如圖3所示,挑取平板上單克隆經(jīng)PCR驗證,獲得了含有opaR-lux重組質(zhì)粒的三株菌,即WT/opaR-lux、ΔopaR/opaR-lux和ΔaphA/opaR-lux,且實際片段大小與理論值一致。
2.4" "OpaR 和AphA均抑制opaR的轉(zhuǎn)錄" "WT/opaR-lux、ΔopaR/opaR-lux和ΔaphA/opaR-lux菌株按上述培養(yǎng)后,用微孔板讀數(shù)儀檢測菌株的冷光值,如圖4所示,低密度(OD600lt;0.4)時,攜帶opaR-lux重組質(zhì)粒的ΔopaR和ΔaphA的RLU值顯著高于WT,表明低密度條件下OpaR和AphA均抑制opaR的轉(zhuǎn)錄。隨著細(xì)菌的不斷生長,當(dāng)達(dá)到高密度(OD600=0.8)時,攜帶opaR-lux重組質(zhì)粒的WT和ΔaphA的RLU值趨于一致,即AphA對于opaR的抑制作用解除;然而攜帶opaR-lux重組質(zhì)粒的ΔopaR的RLU值仍然高于WT,表明在高密度條件下,OpaR仍然抑制自身基因的表達(dá)??傊?,AphA在低密度時抑制opaR的轉(zhuǎn)錄,而OpaR在低密度到高密度(即OD600lt;0.8)整個過程中均抑制自身基因的轉(zhuǎn)錄。
3" "討" " " 論
QS介導(dǎo)細(xì)菌之內(nèi)及之間的交流[14],比如對毒力、生物膜形成及環(huán)境適應(yīng)性等的調(diào)節(jié)[5, 7-10],使副溶血弧菌能夠在水生及海洋環(huán)境中得以生存。AphA和OpaR對副溶血弧菌的QS均存在一定的調(diào)控作用[6-7]。在低密度條件下,AphA有較高的表達(dá)量,其可以直接抑制opaR的轉(zhuǎn)錄[6]。在高密度條件下,OpaR表達(dá)量較高,其直接結(jié)合在自身的啟動子區(qū)從而抑制自身的轉(zhuǎn)錄[7]。
本課題組在前期關(guān)于基因調(diào)控的研究[15-18]中,多采用LacZ報告基因融合實驗,但是該實驗測量β-半乳糖苷酶的活性需要先使用超聲儀裂解菌體獲得酶蛋白,再使用相應(yīng)試劑測量酶活性,前后步驟繁瑣、花費時間較長、試劑盒價格偏高、成本高。Lux報告基因融合實驗可以克服上述缺點,只需要待細(xì)菌長到規(guī)定時間點,取出菌液于微孔板讀數(shù)儀檢測菌株的冷光值即可,費時只需幾分鐘,縮短了檢測時間。此外,檢測過程無需其余試劑,只需避光微孔板作為菌液載體,降低了實驗成本。本研究通過構(gòu)建opaR-lux重組質(zhì)粒來研究AphA與OpaR之間的調(diào)控關(guān)系,以驗證lux報告基因系統(tǒng)的可靠性。Lux報告基因融合實驗結(jié)果表明當(dāng)副溶血弧菌處于低密度生長條件下時,AphA負(fù)調(diào)控opaR。在OD600=0.8即細(xì)菌處于高密度條件下時,AphA表達(dá)量大大降低,其對opaR的調(diào)控作用消失,而此時OpaR大量表達(dá),其對自身基因存在一定的抑制作用。這與此前qRT-PCR和LacZ報告基因融合實驗研究結(jié)果[6-7]一致,說明lux報告基因融合實驗平臺的搭建是成功可靠的,并且具有快捷、方便、省時、降低成本等優(yōu)點,可用于后續(xù)副溶血弧菌基因調(diào)控機(jī)制的研究。
[參考文獻(xiàn)]
[1]" "MATSUDA S, HIYOSHI H, TANDHAVANANT S, et al. Advances on Vibrio parahaemolyticus research in the postgenomic era[J]. Microbiol Immunol, 2020, 64(3):167-181.
[2]" "RAGHUNATH P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin(TRH) in Vibrio parahaemolyticus[J]. Front Microbiol, 2014, 5:805.
[3]" "YEUNG P S, BOOR K J. Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections[J]. Foodborne Pathog Dis, 2004, 1(2):74-88.
[4]" "BALL A S, CHAPARIAN R R, VAN KESSEL J C. Quorum sensing gene regulation by LuxR/HapR master regulators in vibrios[J]. J Bacteriol, 2017, 199(19):e00105-e00117.
[5]" "ZHANG Y Q, HU L H, QIU Y, et al. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence[J]. Environ Microbiol, 2019, 21(3):1054-1067.
[6]" "SUN F J, ZHANG Y Q, WANG L, et al. Molecular characterization of direct target genes and cis-acting consensus recognized by quorum-sensing regulator AphA in Vibrio parahaemolyticus[J]. PLoS One, 2012, 7(9):e44210.
[7]" "ZHANG Y Q, QIU Y F, TAN Y F, et al. Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus[J]. PLoS One, 2012, 7(4):e34622.
[8]" "VAN KESSEL J C, RUTHERFORD S T, SHAO Y, et al. Individual and combined roles of the master regulators AphA and LuxR in control of the Vibrio harveyi quorum-sensing regulon[J]. J Bacteriol, 2013, 195(3):436-443.
[9]nbsp; "WANG L, LING Y, JIANG H W, et al. AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus[J]. Int J Food Microbiol, 2013, 160(3):245-251.
[10]" "LU R F, OSEI-ADJEI G, HUANG X X, et al. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios[J]. Future Microbiol, 2018, 13:383-391.
[11]" "MEIGHEN E A. Molecular biology of bacterial biolumin-escence[J]. Microbiol Rev, 1991, 55(1):123-142.
[12]" "ZHOU Y Y, ZHANG H Z, LIANG W L, et al. Plasticity of regulation of mannitol phosphotransferase system operon by CRP-cAMP complex in Vibrio cholerae[J]. Biomed Environ Sci, 2013, 26(10):831-840.
[13]" "XU X, STERN A M, LIU Z, et al. Virulence regulator AphB enhances toxR transcription in Vibrio cholerae[J]. BMC Microbiol, 2010, 10:3.
[14]" "YILDIZ F H, VISICK K L. Vibrio biofilms: so much the same yet so different[J]. Trends Microbiol, 2009, 17(3):109-118.
[15]" "GAO H, ZHANG L Y, OSEI-ADJEI G, et al. Transcriptional regulation of cpsQ-mfpABC and mfpABC by CalRin Vibrio parahaemolyticus[J]. Microbiologyopen, 2017, 6(4):e00470.
[16]" "OSEI-ADJEI G, GAO H, ZHANG Y, et al. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus[J]. Oncotarget, 2017, 8(39):65809-65822.
[17]" "ZHANG Y Q, GAO H, OSEI-ADJEI G, et al. Transcriptional regulation of the type VI secretion system 1 genes by quorum sensing and ToxR in Vibrio parahaemolyticus[J]. Front Microbiol, 2017, 8:2005.
[18]" "ZHANG Y Q, HU L F, OSEI-ADJEI G, et al. Autoregulation of ToxR and its regulatory actions on major virulence gene loci in Vibrio parahaemolyticus[J]. Front Cell Infect Microbiol, 2018, 8:291.