国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

氫嗎啡酮對脂多糖誘導(dǎo)小鼠肺泡巨噬細(xì)胞高爾基體應(yīng)激影響

2024-10-17 00:00:00李少娜賈長新吳秀云朱尤壯趙芹徐業(yè)翔
青島大學(xué)學(xué)報(醫(yī)學(xué)版) 2024年4期

[摘要]目的探討氫嗎啡酮(HM)對脂多糖(LPS)誘導(dǎo)的小鼠肺泡巨噬細(xì)胞高爾基體應(yīng)激的影響及其機制。

方法以10 mg/L LPS處理小鼠肺泡巨噬細(xì)胞系MH-S,構(gòu)建肺泡巨噬細(xì)胞高爾基體應(yīng)激模型。將細(xì)胞隨機分為Control組(A組,正常培養(yǎng))、LPS組(B組,給予10 mg/L的LPS)、LPS+HM組(C組,給予1 μmol/L HM和10 mg/L LPS)、Nrf2 siRNA+LPS+HM組(D組,Nrf2 siRNA轉(zhuǎn)染后給予1 μmol/L HM和10 mg/L LPS)和NC siRNA+LPS+HM組(E組,NC siRNA轉(zhuǎn)染后給予1 μmol/L HM和10 mg/L LPS)。采用ELISA法檢測細(xì)胞上清液白細(xì)胞介素1β(IL-1β)和白細(xì)胞介素6(IL-6)含量;檢測丙二醛(MDA)含量與超氧化物歧化酶(SOD)活性;采用Western blot法檢測核因子E2相關(guān)因子2(Nrf2)、血紅素加氧酶-1(HO-1)、高爾基體基質(zhì)蛋白130(GM130)、高爾基體蛋白97(Golgin-97)、甘露糖苷酶Ⅱ(Mannosidase Ⅱ)、鈣轉(zhuǎn)運ATP酶2C型成員1(ATP2C1)蛋白表達水平;透射電鏡下觀察細(xì)胞高爾基體形態(tài)學(xué)改變。

結(jié)果與A組比較,B組IL-1β、IL-6、MDA含量顯著升高及Nrf2、HO-1蛋白表達上調(diào),SOD活性顯著降低及GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白的表達下調(diào)(F=2.33~47.61,P<0.05);與B組比較,C組IL-1β、IL-6、MDA含量顯著降低,SOD活性顯著升高及Nrf2、HO-1、GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達上調(diào)(P<0.05);與C組比較,D組IL-1β、IL-6、MDA含量顯著升高,SOD活性顯著降低及Nrf2、HO-1、GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達下調(diào)(P<0.05)。透射電鏡顯示,C組細(xì)胞高爾基體損傷、空泡化與碎片化較B組減輕;D組細(xì)胞高爾基體損傷、空泡化與碎片化較C組加重。

結(jié)論HM通過調(diào)控Nrf2/HO-1信號通路抑制LPS誘導(dǎo)的肺泡巨噬細(xì)胞高爾基體應(yīng)激,減輕細(xì)胞炎癥與氧化應(yīng)激反應(yīng)。

[關(guān)鍵詞]氫嗎啡酮;脂多糖類;巨噬細(xì)胞,肺泡;高爾基體;氧化性應(yīng)激;血紅素加氧酶-1;小鼠

[中圖分類號]R965

[文獻標(biāo)志碼]A

[文章編號]2096-5532(2024)04-0523-05doi:10.11712/jms.2096-5532.2024.60.135

[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]

[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240927.1331.002;2024-09-2908:36:49

Effect of hydromorphone on Golgi stress in lipopolysaccharide-attacked mouse alveolar macrophages

LI Shaona, JIA Changxin, WU Xiuyun, ZHU Youzhuang, ZHAO Qin, XU Yexiang

(Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China)

; [Abstract]ObjectiveTo investigate the effect of hydromorphone (HM) on Golgi stress in lipopolysaccharide (LPS)-attacked mouse alveolar macrophages and its mechanism.

MethodsThe mouse alveolar macrophage cell line MH-S was attacked with 10 mg/L LPS to establish a model of Golgi stress, and then the cells were randomly divided into control group (group A, normal culture), LPS group (group B treated with 10 mg/L LPS), LPS+HM group (group C treated with 1 μmol/L HM and 10 mg/L LPS), Nrf2 siRNA+LPS+HM group (group D treated with 1 μmol/L HM and 10 mg/L LPS after Nrf2 siRNA transfection), and NC siRNA+LPS+HM group (group E treated with 1 μmol/L HM and 10 mg/L LPS after NC siRNA transfection). ELISA was used to measure the content of interleukin 1β (IL-1β) and interleukin 6 (IL-6) in cell supernatant; the content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured; Western blot was used to measure the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Golgi Matrix Protein of 130 (GM130), Golgin-97, Mannosidase Ⅱ, and ATP2C1; transmission electron microscopy was used to observe the morphological changes of Golgi apparatus.

ResultsCompared with group A, group B had significant increases in the content of IL-1β, IL-6, and MDA and the protein expression levels of Nrf2 and HO-1 and significant reductions in the activity of SOD and the protein expression levels of GM130, Golgin-97, Mannosidase Ⅱ, and ATP2C1 (F=2.33-47.61,P<0.05). Compared with group B, group C had significant reductions in the content of IL-1β, IL-6, and MDA and significant increases in the activity of SOD and the protein

expression levels of Nrf2, HO-1, GM130, Golgin-97, Mannosidase

Ⅱ, and ATP2C1 (P<0.05). Compared with group C, group D had significant increases in the content of IL-1β, IL-6, and MDA and significant reductions in the activity of SOD and the protein expression levels of Nrf2, HO-1, GM130, Golgin-97, Mannosidase Ⅱ, and ATP2C1 (P<0.05). Transmission electron microscopy showed that compared with group B, group C had alleviation of 76S6jeEz77S5xcTvvFmbFA==the damage, vacuolization, and fragmentation of Golgi apparatus, and compared with group C, group D had aggravation of the da-

mage, vacuolization, and fragmentation of Golgi apparatus.

ConclusionHM inhibits Golgi stress in LPS-attacked alveolar macrophages by regulating the Nrf2/HO-1 signaling pathway, thereby alleviating cellular inflammation and oxidative stress response.

[Key words]hydromorphone; lipopolysaccharides; macrophages, alveolar; Golgi apparatus; oxidative stress; heme oxyge-

nase-1; mice

內(nèi)毒素急性肺損傷(ALI)是一種由膿毒癥誘發(fā)的嚴(yán)重且難以控制的肺部炎癥反應(yīng),目前尚無特效的臨床治療方法,是重癥監(jiān)護室病人死亡的主要原因之一[1]。肺泡巨噬細(xì)胞作為肺組織抵御致病微生物和外源性顆粒的第一道防線,在維持機體免疫系統(tǒng)穩(wěn)態(tài)和調(diào)控炎癥反應(yīng)方面發(fā)揮著至關(guān)重要的作用[2]。高爾基體是肺泡巨噬細(xì)胞內(nèi)的一個細(xì)胞器,主要參與脂質(zhì)和蛋白質(zhì)等物質(zhì)的細(xì)胞內(nèi)運輸。高爾基體應(yīng)激反應(yīng)可影響肺組織細(xì)胞的功能狀態(tài),從而對ALI的發(fā)病和病程產(chǎn)生重要影響[3]。作為機體重要的內(nèi)源性保護機制之一,核因子E2相關(guān)因子2(Nrf2)/血紅素加氧酶-1(HO-1)信號通路的激活可抑制過度的高爾基體應(yīng)激反應(yīng),從而為ALI提供保護[4]。氫嗎啡酮(HM)是嗎啡的衍生物,由于其作用強于嗎啡且起效快,近年來被廣泛用于各種急慢性疼痛的綜合治療。研究證實,HM對ALI有保護作用[5],但其作用機制尚不清楚。本研究旨在探討HM是否能通過調(diào)控Nrf2/HO-1信號通路減輕肺泡巨噬細(xì)胞的高爾基體應(yīng)激反應(yīng),從而為ALI的臨床治療提供新的依據(jù)。

1材料與方法

1.1實驗材料

1.1.1細(xì)胞株本實驗所用小鼠肺泡巨噬細(xì)胞系MH-S,購自通派(上海)生物科技有限公司。

1.1.2藥品與試劑鹽酸HM注射液(宜昌人福藥業(yè)有限公司);脂多糖(LPS,Sigma公司);白細(xì)胞介素1β(IL-1β)和白細(xì)胞介素6(IL-6)試劑盒(北京索萊寶科技有限公司);丙二醛(MDA)試劑盒與超氧化物歧化酶(SOD)試劑盒(南京建成生物工程研究所);Nrf2抗體和高爾基體基質(zhì)蛋白130(GM130)抗體(上海優(yōu)寧維生物科技股份有限公司);HO-1抗體和高爾基體蛋白97(Golgin-97)抗體(北京友誼中聯(lián)生物科技有限公司);鈣轉(zhuǎn)運ATP酶2C型成員1(ATP2C1)和甘露糖苷酶Ⅱ(Mannosidase Ⅱ)抗體(上海拓然生物科技有限公司);Nrf2 siRNA、Negative Control siRNA(NC siRNA,上海吉瑪制藥技術(shù)有限公司);Lipofectamine 3000轉(zhuǎn)染試劑盒(美國Invitrogen公司)。

1.1.3儀器電泳儀和轉(zhuǎn)膜槽(北京六一生物科技有限公司);全自動化學(xué)/熒光/凝膠成像分析系統(tǒng)(中國雪科電器有限公司);H-7500型透射電鏡(日本HITACHI公司)。

1.2實驗方法

1.2.1細(xì)胞培養(yǎng)和建模根據(jù)文獻方法[6],用MH-S細(xì)胞培養(yǎng)液在37 ℃、體積分?jǐn)?shù)0.05 CO2條件下培養(yǎng)MH-S細(xì)胞。選擇生長狀態(tài)良好的MH-S細(xì)胞,用10 mg/L LPS處理細(xì)胞,構(gòu)建LPS誘導(dǎo)小鼠肺泡巨噬細(xì)胞模型。

1.2.2細(xì)胞的分組與處理將培養(yǎng)的MH-S肺泡巨噬細(xì)胞分為Control組(A組)、LPS組(B組)、LPS+HM組(C組)、Nrf2 siRNA+LPS+HM組(D組)和NC siRNA+LPS+HM組(E組)。A組細(xì)胞正常培養(yǎng),C組在實驗前2 h加入1 μmol/L HM,D組和E組肺胞巨噬細(xì)胞在實驗前48 h分別轉(zhuǎn)染Nrf2 siRNA和NC siRNA,并在實驗前2 h加入1 μmol/L HM。B、C、D、E組分別在實驗0 h加入10 mg/L LPS建立LPS誘導(dǎo)MH-S細(xì)胞模型。經(jīng)LPS作用24 h后,收集各組細(xì)胞及其上清液進行相關(guān)實驗檢測。

1.2.3ELISA法檢測細(xì)胞培養(yǎng)上清液IL-1β、IL-6含量根據(jù)文獻方法[7],收集各組細(xì)胞培養(yǎng)上清液,1 000 r/min離心15 min。采用ELISA法檢測各組細(xì)胞培養(yǎng)上清液中IL-1β和IL-6的含量,嚴(yán)格按照ELISA試劑盒說明書進行操作,使用酶標(biāo)儀在波長450 nm處測定吸光度(A)值,繪制標(biāo)準(zhǔn)曲線,計算IL-1β和IL-6的含量。

1.2.4細(xì)胞MDA含量與SOD活性檢測收集各組細(xì)胞,用PBS沖洗,1 000 r/min離心10 min,倒掉上清液,留取細(xì)胞沉淀,加入等滲PBS制備細(xì)胞懸液,用二奎琳甲酸(BCA)法測定蛋白濃度,應(yīng)用MDA試劑盒和SOD試劑盒測定細(xì)胞中MDA含量和SOD活性,嚴(yán)格按照試劑盒說明書操作。

1.2.5Western blot法測定蛋白表達將RIPA裂解液加入含有細(xì)胞的六孔板中,用刮刀輕輕刮掉細(xì)胞并吸入離心管內(nèi),置于冰上裂解15 min。將離心管上下混勻,置于離心機內(nèi)低溫(4 ℃)12 000 r/min離心20 min,去上清液用BCA法測定蛋白濃度,計算上樣量。每份樣品取40 μg,95 ℃變性10 min,加入凝膠孔中,將電壓調(diào)至60 V進行電泳,然后轉(zhuǎn)移至PVDF膜上。將反應(yīng)膜置于封閉液中,37 ℃封閉1 h,然后將反應(yīng)膜分別放入稀釋后的一抗中,4 ℃反應(yīng)過夜。用TBST洗滌3次以清除游離的一抗,每次洗滌10 min,再放入稀釋的二抗中緩慢搖動60 min,用TBST洗滌3次以清除游離的二抗。將反應(yīng)膜浸于ECL發(fā)光液中,室溫下反應(yīng)3 min。使用全自動化學(xué)/熒光/凝膠成像分析系統(tǒng)成像并用Image J軟件對條帶進行灰度值分析,計算目的蛋白灰度值與內(nèi)參蛋白β-actin灰度值的比值,對各組目的蛋白的表達情況進行統(tǒng)計分析。

1.2.6透射電鏡觀察細(xì)胞高爾基體的形態(tài)學(xué)變化

根據(jù)文獻方法[8],將各組細(xì)胞用刮刀刮下,置于離心機中1 000 r/min離心10 min,棄上清液,留取細(xì)胞沉淀,加入25 g/L戊二醛固定,將細(xì)胞制片,將切片浸入醋酸鈾中染色20 min,隨后浸入枸櫞酸鉛中繼續(xù)染色5 min,將染色后的切片置于單口銅網(wǎng)中,在透射電鏡下觀察細(xì)胞高爾基體形態(tài)學(xué)變化。

1.3統(tǒng)計學(xué)分析

使用GraphPad Prism 9.0軟件進行統(tǒng)計學(xué)分析。所得計量資料數(shù)據(jù)以±s表示,多組比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗。P<0.05表示差異具有統(tǒng)計學(xué)意義。

2結(jié)果

2.1各組MH-S細(xì)胞培養(yǎng)上清液中IL-1β和IL-6含量比較

本文5組IL-1β和IL-6含量比較,差異均有顯著性(F=2.33、2.60,P<0.05)。與A組比較,B組IL-1β和IL-6含量顯著增加(P<0.05);與B組比較,C組IL-1β和IL-6含量顯著降低(P<0.05);與C組比較,D組IL-1β和IL-6含量顯著增加(P<0.05);C組與E組比較,IL-1β和IL-6含量差異無統(tǒng)計學(xué)意義(P>0.05)。見表1。

2.2各組MH-S細(xì)胞MDA含量和SOD活性比較

本文5組MDA含量和SOD活性比較,差異均有統(tǒng)計學(xué)意義(F=2.57、3.25,P<0.05)。與A組比較,B組細(xì)胞MDA含量顯著增加,SOD活性顯著下降(P<0.05);與B組比較,C組細(xì)胞MDA含量顯著降低,SOD活性顯著上升(P<0.05);與C組比較,D組細(xì)胞MDA含量顯著增加,SOD活性顯著下降(P<0.05);C組與E組比較,MDA含量與SOD活性差異無統(tǒng)計學(xué)意義(P>0.05)。見表2。

2.3各組MH-S細(xì)胞Nrf2、HO-1及高爾基體應(yīng)激相關(guān)蛋白表達比較

本文5組細(xì)胞Nrf2、HO-1、GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達比較,差異有統(tǒng)計學(xué)意義(F=2.54~47.61,P<0.05)。與A組比較,B組細(xì)胞Nrf2、HO-1蛋白的表達顯著上調(diào),GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達顯著下調(diào)(P<0.05);與B組比較,C組細(xì)胞Nrf2、HO-1、GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達顯著上調(diào)(P<0.05);與C組相比較,D組細(xì)胞Nrf2、HO-1、GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達水平顯著下調(diào)(P<0.05);C組與E組比較,Nrf2、HO-1、GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1蛋白表達差異無統(tǒng)計學(xué)意義(P>0.05)。見圖1、表3。

2.4各組MH-S細(xì)胞高爾基體形態(tài)學(xué)變化比較

A組細(xì)胞高爾基體形態(tài)學(xué)正常,排列致密;其余

4組均可見不同程度的高爾基體損傷、空泡化與碎片化。與B組比較,C組細(xì)胞高爾基體損傷減輕,空泡化與碎片化減輕;與C組比較,D組細(xì)胞高爾基體損傷程度加重,空泡化與碎片化均加重;C組與E組細(xì)胞高爾基體損傷程度類似。見圖2。

3討論

肺泡巨噬細(xì)胞是肺內(nèi)主要的抗原反應(yīng)細(xì)胞,在受到內(nèi)毒素等炎癥介質(zhì)刺激后,會迅速激活一系列信號通路,包括Nrf2/HO-1信號通路、核因子κB和絲裂原激活的蛋白激酶信號通路,進而引發(fā)一系列生化反應(yīng)[9]。高爾基體應(yīng)激是指當(dāng)細(xì)胞在受到外界刺激時,高爾基體功能紊亂,產(chǎn)生大量未折疊蛋白而引發(fā)的細(xì)胞應(yīng)激反應(yīng)[10]。其主要特點包括刺激源多樣、反應(yīng)迅速、涉及多種信號通路等[11]。適當(dāng)?shù)母郀柣w應(yīng)激可通過增加抗氧化酶活性、增加細(xì)胞壁厚度、激活細(xì)胞自噬與凋亡等機制保護細(xì)胞免受內(nèi)毒素?fù)p傷,但是過度的高爾基體應(yīng)激會導(dǎo)致細(xì)胞蛋白質(zhì)合成和降解失衡、物質(zhì)運輸障礙,甚至細(xì)胞死亡,因此對高爾基體應(yīng)激的調(diào)控至關(guān)重要[12]。

GM130是位于高爾基體順面的一種基質(zhì)蛋白[13];Golgin-97是高爾基體特異性連接蛋白,主要位于高爾基體反面[14];Mannosidase Ⅱ位于高爾基體中間體,參與糖蛋白的合成[15];ATP2C1是一種高爾基體特異性Ca2+/Mn2+ATP酶,對維持高爾基體功能至關(guān)重要[16]。因此,本研究選擇GM130、Golgin-97、Mannosidase Ⅱ、ATP2C1作為高爾基體應(yīng)激的標(biāo)志物。本文研究結(jié)果顯示,給予MH-S肺泡巨噬細(xì)胞10 mg/L LPS刺激24 h后,LPS組細(xì)胞培養(yǎng)上清液中炎癥因子IL-1β和IL-6的表達水平顯著升高,細(xì)胞MDA含量增加,SOD活性降低,高爾基體應(yīng)激相關(guān)蛋白GM130、Golgin-97、Mannosidase Ⅱ和ATP2C1表達下調(diào)。

Nrf2/HO-1信號通路激活是生物體內(nèi)重要的內(nèi)源性防御機制,有助于細(xì)胞抵抗氧化應(yīng)激損傷。Nrf2是一種轉(zhuǎn)錄因子,當(dāng)細(xì)胞受到氧化應(yīng)激等刺激時,Nrf2從細(xì)胞質(zhì)轉(zhuǎn)移至細(xì)胞核,并與DNA上的啟動子區(qū)域結(jié)合,促進HO-1等抗氧化基因的表達,進而生成一氧化碳、膽綠素和亞鐵離子,發(fā)揮清除氧自由基等抗氧化作用[17]。HM是一種阿片類鎮(zhèn)痛藥,通過作用于阿片受體和抑制疼痛信號傳遞發(fā)揮鎮(zhèn)痛作用[18]。此外,HM還具有抗炎作用,其機制

可能與抑制炎癥因子和前列腺素合成、調(diào)節(jié)免疫細(xì)胞活化和增殖有關(guān),但具體作用機制尚未研究清楚[19]。本文研究結(jié)果顯示,HM抑制了LPS誘導(dǎo)的MH-S細(xì)胞的高爾基體應(yīng)激反應(yīng),上調(diào)了Nrf2和HO-1的蛋白表達,減輕了細(xì)胞的炎癥與氧化應(yīng)激反應(yīng)。當(dāng)應(yīng)用siRNA技術(shù)敲減Nrf2基因后,HM對肺泡巨噬細(xì)胞的保護作用被部分逆轉(zhuǎn),并伴隨著細(xì)胞Nrf2和HO-1蛋白表達的下調(diào)。

綜上所述,HM通過調(diào)控Nrf2/HO-1信號通路減輕高爾基體應(yīng)激反應(yīng),從而減輕LPS誘導(dǎo)的MH-S肺DoZsDd57xKN584Sbug+J8zoeR/uPfaEtzOqF1Xx4akk=泡巨噬細(xì)胞的炎癥與氧化應(yīng)激反應(yīng)。本實驗的局限性在于HM對肺泡巨噬細(xì)胞的作用機制僅在離體細(xì)胞水平得到驗證,尚需進一步的動物實驗和臨床試驗研究,從而為HM的臨床應(yīng)用提供理論依據(jù)。

[參考文獻]

[1]LAI K, SONG C K, GAO M L, et al. Uridine alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage[J]. International Journal of Molecular Sciences, 2023,24(6):5093.

[2]MA Y, WANG Z X, WU X Y, et al. 5-Methoxytryptophan ameliorates endotoxin-induced acute lung injury in vivo and in vitro by inhibiting NLRP3 inflammasome-mediated pyroptosis through the Nrf2/HO-1 signaling pathway[J]. Inflammation Research: Official Journal of the European Histamine Research Society, 2023,72(8):1633-1647.

[3]KIM W K, CHOI W, DESHAR B, et al. Golgi stress response: new insights into the pathogenesis and therapeutic targets of human diseases[J]. Molecules and Cells, 2023,46(4):191-199.

[4]LI S N, XU Y X, HE S M, et al. Tetramethylpyrazine ame-

liorates endotoxin-induced acute lung injury by relieving Golgi stress via the Nrf2/HO-1 signaling pathway[J]. BMC Pulmonary Medicine, 2023,23(1):286.

[5]SHI J, DU S H, YU J B, et al. Hydromorphone protects against CO2 pneumoperitoneum-induced lung injury via heme oxygenase-1-regulated mitochondrial dynamics[J]. Oxidative Medicine and Cellular Longevity, 2021,2021:9034376.

[6]WU X Y, WU L L, WU Y, et al. Heme oxygenase-1 ameliorates endotoxin-induced acute lung injury by modulating macrophage polarization via inhibiting TXNIP/NLRP3 inflammasome activation[J]. Free Radical Biology & Medicine, 2023,194: 12-22.

[7]ZHANG J, LI J, AN Z Z, et al. Hydromorphone mitigates cardiopulmonary bypass-induced acute lung injury by repres-

sing pyroptosis of alveolar macrophages[J]. Shock, 2023,60(1):92-99.

[8]SHI J, YU T X, SONG K, et al. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway[J]. Redox Biology, 2021,41: 101954.

[9]BETTER J, ESTIRI M, MATT U. Cultured mouse alveolar macrophages: a new step toward targeted cell therapy?[J]. American Journal of Respiratory Cell and Molecular Biology, 2022,66(1):3-4.

[10]VIETTRI M, ZAMBRANO J L, ROSALES R, et al. Flavivirus infections induce a Golgi stress response in vertebrate and mosquito cells[J]. Scientific Reports, 2021,11(1):23489.

[11]OH-HASHI K, HASEGAWA T, MIZUTANI Y, et al. Elucidation of brefeldin A-induced ER and Golgi stress responses in Neuro2a cells[J]. Molecular and Cellular Biochemistry, 2021,476(10):3869-3877.

[12]MENG S Q, LIU J F, WANG Z W, et al. Inhibition of Golgi stress alleviates sepsis-induced cardiomyopathy by reducing inflammation and apoptosis[J]. International Immunopharmacology, 2024,133: 112103.

[13]MEI M, BAO S L. Generation of GM130 conditional knockout mouse[J]. Methods in Molecular Biology (Clifton, N J), 2023,2557:61-81.

[14]GRIMALDI G, FILOGRANA A, SCHEMBRI L, et al. PKD-dependent PARP12-catalyzed mono-ADP-ribosylation of Golgin-97 is required for E-cadherin transport from Golgi to plasma membrane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(1):e2026494119.

[15]ARMSTRONG Z, KUO C L, LAHAV D, et al. Manno-epi-cyclophellitols enable activity-based protein profiling of human α-mannosidases and discovery of new Golgi mannosidase Ⅱ inhibitors[J]. Journal of the American Chemical Society, 2020,142(30):13021-13029.

[16]ZONFRILLI A, TRUGLIO F, SIMEONE A, et al. Loss of ATP2C1 function promotes trafficking and degradation of NOTCH1: Implications for Hailey-Hailey disease[J]. Experimental Dermatology, 2023,32(6):787-798.

[17]LIU X J, LV Y F, CUI W Z, et al. Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway[J]. FEBS Open Bio, 2021,11(11):2966-2976.

[18]WANG Y H, LIU Y, LIU J T, et al. Coadministration of curcumin and hydromorphone hydrochloride alleviates postoperative pain in rats[J]. Biological & Pharmaceutical Bulletin, 2022,45(1):27-33.

[19]Hydromorphone. In: LiverTox: clinical and research information on drug-induced liver injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2020.

(本文編輯牛兆山)

北安市| 榕江县| 嘉义县| 沧源| 普定县| 安岳县| 延津县| 岳西县| 石泉县| 大丰市| 东明县| 房产| 通化市| 杭州市| 漳州市| 广水市| 灵川县| 大足县| 宜都市| 泉州市| 绩溪县| 兴和县| 平乡县| 乃东县| 湘乡市| 乐亭县| 美姑县| 象州县| 林西县| 普格县| 抚顺县| 湘潭市| 南郑县| 建瓯市| 合江县| 台北县| 克东县| 高唐县| 廉江市| 永定县| 隆化县|