[摘要]目的通過行為學(xué)、免疫印跡技術(shù)及免疫組織化學(xué)技術(shù)探討大麻素Ⅱ型(CB2)受體對1-甲基-4-苯基吡啶(MPTP)誘導(dǎo)的慢性帕金森?。≒D)模型小鼠運(yùn)動功能、黑質(zhì)(SN)區(qū)酪氨酸羥化酶(TH)蛋白表達(dá)及小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞活化的影響。
方法將30只8周齡雄性C57BL/6野生型(WT)小鼠隨機(jī)分為WT對照組(A組)、WT MPTP組(B組)、WT CB2受體激動劑(JWH133)組(C組)、WT MPTP+JWH133組(D組)和WT MPTP+JWH133+CB2受體拮抗劑(AM630)組(E組),12只8周齡雄性CB2受體敲除(CB2-KO)C57BL/6小鼠隨機(jī)分為CB2-KO對照組(F組)和CB2-KO MPTP組(G組)。模型組小鼠首先腹腔注射20 μg/(kg·d)AM630和(或)10 μg/(kg·d)JWH133,每天1次,連續(xù)注射30 d;然后腹腔注射30 mg/(kg·d)的MPTP,每周2次,持續(xù)4周。對照組小鼠腹腔注射等量的生理鹽水。應(yīng)用行為學(xué)實(shí)驗(yàn)檢測各組小鼠爬桿與轉(zhuǎn)棒時(shí)間,免疫印跡技術(shù)檢測SN區(qū)TH蛋白的表達(dá),免疫組織化學(xué)染色檢測SN區(qū)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞數(shù)量和形態(tài)變化。
結(jié)果與A組相比,B組小鼠爬桿時(shí)間增加,轉(zhuǎn)棒時(shí)間減少;與B組相比,D組小鼠爬桿時(shí)間減少,轉(zhuǎn)棒時(shí)間增加;與D組相比,E組小鼠爬桿時(shí)間增加,轉(zhuǎn)棒時(shí)間減少;與F組相比,G組小鼠爬桿時(shí)間增加,轉(zhuǎn)棒時(shí)間減少。上述差異具有統(tǒng)計(jì)學(xué)意義(F=29.70、45.45,q=4.87~18.09,P<0.05)。與A組相比,B組小鼠SN區(qū)TH蛋白表達(dá)水平下降;與B組相比,D組小鼠SN區(qū)TH蛋白表達(dá)水平上調(diào);與D組相比,E組小鼠SN區(qū)TH蛋白表達(dá)水平235a007ab0da0788f67618cbce1e13718f1515b1efc38d204e8c11bfeb149e8f下降;與F組相比,G組小鼠SN區(qū)TH蛋白表達(dá)水平下降。上述差異具有統(tǒng)計(jì)學(xué)意義(F=24.88,q=5.09~8.88,P<0.001)。小鼠SN區(qū)活化的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞計(jì)數(shù)顯示,與A組相比,B組明顯增加;與B組相比,D組明顯減少;與D組相比,E組明顯增加;與F組相比,G組明顯增加。上述差異具有統(tǒng)計(jì)學(xué)意義(F=269.80、708.50,q=13.29~54.78,P<0.01)。
結(jié)論激活CB2受體能夠改善MPTP誘導(dǎo)的慢性PD模型小鼠的運(yùn)動功能障礙,抑制小鼠SN區(qū)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的活化。
[關(guān)鍵詞]受體,大麻酚,CB2;帕金森??;1-甲基-4-苯基吡啶;旋轉(zhuǎn)棒性能試驗(yàn);黑質(zhì);小神經(jīng)膠質(zhì)細(xì)胞;星形細(xì)胞;小鼠,近交C57BL
[中圖分類號]R392.1;R742.5
[文獻(xiàn)標(biāo)志碼]A
[文章編號]2096-5532(2024)04-0478-05doi:10.11712/jms.2096-5532.2024.60.093
[開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版]https://link.cnki.net/urlid/37.1517.R.20240726.0931.005;2024-07-2616:43:35
Effect of cannabinoid type 2 receptor activation on motor function and glial cell activation in the substantia nigra in a mouse model of chronic Parkinson’s disease
LIU Xinyu, ZHANG Li, MA Zegang(Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China); [Abstract]ObjectiveTo investigate the effect of cannabinoid type 2 (CB2) receptor on motor function, the protein expression of tyrosine hydroxylase (TH), and the activation of microglial cells and astrocytes in the substantia nigra (SN) in a mouse model of chronic Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2, 3, 6-tetrahydropyridine (MPTP) based on beha-
vioristics, Western blotting, and immunohistochemistry. MethodsA total of 30 wild-type (WT) male C57BL/6 mice, aged 8 weeks, were randomly divided into WT control group (group A), WT MPTP group (group B), WT CB2 receptor agonist JWH133 group (group C), WT MPTP+JWH133 group (group D), and WT MPTP+JWH133+CB2 receptor antagonist AM630 group (group E), and 12 CB2 receptor-knockout (CB2-KO) male C57BL/6 mice were randomly divided into CB2-KO control group (group F) and CB2-KO MPTP group (group G). The mice in the model group were given intraperitoneal injection of 20 μg/(kg·d) AM630 and/or 10 μg/(kg·d) JWH133 once a day for 30 consecutive days, followed by intraperitoneal injection of 30 mg/(kg·d) MPTP twice a week for four weeks, while those in the control group were given intraperitoneal injection ofan equal volume of normal saline. Behavioral experiments were used to measure the time of poleclimbing and the time spent on the rotating rod; Westernblotting was used to measure the protein expression of TH in the
SN; immunohistochemical staining was used to observe changes in the number and morphology of microglial cells and astrocytes in the SN.
ResultsCompared with group A, group B had a significant increase in the time of poleclimbing and a significant reduction in the time spent on the rotating rod; compared with group B, group D had a significant reduction in the time of poleclimbing and a significant increase in the time spent on the rotating rod; compared with group D, group E had a significant increase in the time of poleclimbing and a significant reduction in the time spent on the rotating rod; compared with group F, group D had a signi-
ficant increase in the time of poleclimbing and a significant reduction in the time spent on the rotating rod (F=29.70,45.45;q=4.87-18.09;P<0.05). Compared with group A, group B had a significant reduction in the protein expression level of TH in the SN of mice; compared with group B, group D had a significant increase in the protein expression level of TH; compared with group D, group E had a significant reduction in the protein expression level of TH; compared with group F, group G had a significant reduction in the protein expression level of TH (F=24.88,q=5.09-8.88,P<0.001). Compared with group A, group B had significant increases in the numbers of activated microglial cells and astrocytes in the SN of mice; compared with B, group D had significant reductions in these numbers; compared with group D, group E had significant increases in these numbers; compared with group F, group G had significant increases in these numbers (F=269.80,708.50;q=13.29-54.78;P<0.01).
ConclusionActivation of CB2 receptor can improve dyskinesia and inhibit the activation of microglial cells and astrocytes in the SN of mice with MPTP-induced chronic PD.
[Key words]receptor, cannabinoid, CB2; Parkinson disease; 1-methyl-4-phenylpyridinium; rotarod performance test; substantia nigra; microglia; astrocytes; mice, inbred C57BL
帕金森?。≒D)是一種常見的神經(jīng)退行性疾病,其臨床表現(xiàn)為運(yùn)動緩慢、靜止性震顫、強(qiáng)直和姿勢不穩(wěn)以及其他一些非運(yùn)動癥狀[1-2]。PD病理特征是黑質(zhì)(SN)多巴胺能神經(jīng)元丟失、α-突觸核蛋白聚集以及鐵沉積。大麻素Ⅱ型(CB2)受體主要分布在外周組織當(dāng)中,包括脾臟、免疫細(xì)胞、扁桃體、胸腺和肝臟等[3]。近年來研究發(fā)現(xiàn)CB2受體在中樞神經(jīng)系統(tǒng)也有表達(dá),包括SN、海馬、腹側(cè)被蓋區(qū)等[4]。免疫熒光染色證實(shí),在大鼠和小鼠的多個腦區(qū)都有CB2受體表達(dá)[5]。大腦發(fā)生炎癥時(shí),活化的膠質(zhì)細(xì)胞上CB2受體上調(diào),并在許多神經(jīng)系統(tǒng)疾病中起重要作用。有研究表明,在1-甲基-4-苯基吡啶(MPTP)誘導(dǎo)的急性PD模型小鼠中,CB2受體激活對小鼠SN多巴胺能神經(jīng)元具有保護(hù)作用[6],同時(shí)可抑制膠質(zhì)細(xì)胞神經(jīng)毒性遞質(zhì)的產(chǎn)生和外周免疫細(xì)胞的浸潤[7],從而保護(hù)多巴胺能神經(jīng)元。但是,CB2受體的激活對慢性PD模型小鼠的保護(hù)作用及具體機(jī)制尚不夠清楚,所以本研究通過使用MPTP建立慢性PD小鼠模型[8-9],觀察CB2受體激活對模型小鼠的運(yùn)動功能及SN區(qū)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞活化的影響。
1材料與方法
1.1實(shí)驗(yàn)材料
1.1.1實(shí)驗(yàn)動物及飼養(yǎng)選用SPF級雄性健康C57BL/6J野生型(WT)和CB2受體敲除(CB2-KO)小鼠,8周齡,體質(zhì)量為18~22 g,其中WT小鼠購于北京維通利華實(shí)驗(yàn)動物技術(shù)有限公司,CB2-KO小鼠由美國巴羅神經(jīng)研究所贈予。小鼠飼養(yǎng)環(huán)境:室溫23~26 ℃,濕度40%~60%,12 h-12 h晝夜循環(huán)光照,自由飲水進(jìn)食。每籠3~4只。實(shí)驗(yàn)開始前小鼠需要適應(yīng)飼養(yǎng)環(huán)境1周。
1.1.2主要試劑來源CB2受體激動劑JWH133、CB2受體拮抗劑AM630均購于美國APE x BIO生物科技公司;神經(jīng)膠質(zhì)酸性蛋白(GFAP)抗體、離子鈣結(jié)合銜接分子-1(IBA-1)抗體均購于美國Cell Signaling Technology公司,酪氨酸羥化酶(TH)抗體、山羊抗兔熒光二抗均購于美國Thermo Fisher Scientific公司;MPTP購于Sigma公司。其他試劑均為國產(chǎn)分析純。
1.2實(shí)驗(yàn)方法
1.2.1動物分組及處理將30只野生型小鼠隨機(jī)分為對照組(A組)、MPTP組(B組)、JWH133組(C組)、MPTP+JWH133組(D組)和MPTP+JWH133+AM630組(E組)共5組,12只CB2基因敲除小鼠隨機(jī)分為對照組(F組)和MPTP組(G組)兩組。根據(jù)小鼠體質(zhì)量,模型組小鼠首先腹腔注射20 μg/(kg·d) 的AM630和(或)10 μg/(kg·d) 的JWH133,每天1次,連續(xù)注射30 d;然后腹腔注射30 mg/(kg·d) 的MPTP,每周2次,持續(xù)4周。對照組小鼠腹腔注射等量的生理鹽水。
1.2.2運(yùn)動行為學(xué)檢測①爬桿實(shí)驗(yàn):將一根直徑1 cm、高60 cm的木桿垂直放置在籠中,桿的頂部有一個直徑2 cm的球形突起,將小鼠頭朝上放置在球形突起的頂部,記錄小鼠從轉(zhuǎn)頭到頭朝下爬到桿底部時(shí)間。②轉(zhuǎn)棒實(shí)驗(yàn):首先將小鼠放在旋轉(zhuǎn)棒上
適應(yīng)2 min,打開轉(zhuǎn)棒,在5 min內(nèi)轉(zhuǎn)速從4 r/min勻速增加到40 r/min。小鼠隨轉(zhuǎn)棒開始爬行,小鼠脫落轉(zhuǎn)棒,系統(tǒng)會自動停止計(jì)時(shí),并記錄小鼠在轉(zhuǎn)棒上停留的時(shí)間。上述兩個實(shí)驗(yàn)均為每只小鼠進(jìn)行3次測試并取平均值進(jìn)行統(tǒng)計(jì)分析。每只小鼠每次測量的時(shí)間間隔不少于1 h。
1.2.3免疫印跡檢測將含有10 μg蛋白質(zhì)的樣品通過100 g/L十二烷基硫酸鈉聚丙烯酰胺凝膠進(jìn)行電泳分離,隨后轉(zhuǎn)移到聚偏二氟乙烯膜(PVDF)上。將PVDF置于50 g/L脫脂牛奶中室溫封閉2 h,加TH(1∶2 000)和β-actin (1∶10 000)一抗于4 ℃孵育過夜。然后使用TBST洗滌目的條帶3次,每次10 min,加山羊抗兔IgG(H+L)(1∶10 000)二抗在室溫下共同孵育1 h。用ECL檢測試劑盒顯現(xiàn)蛋白質(zhì)條帶,以Image J軟件分析TH蛋白的表達(dá)。
1.2.4免疫組織化學(xué)染色檢測將各組小鼠灌注取腦,先后用200和300 g/L的蔗糖溶液對其脫水沉糖,應(yīng)用切片機(jī)對小鼠SN區(qū)進(jìn)行連續(xù)切片。將腦片置于40 g/L甲醛溶液中固定10 min;用PBS漂洗 3次,每次10 min;用PBST稀釋的體積分?jǐn)?shù)0.05驢血清溶液封閉腦片1 h后,將腦片置于一抗(IBA-1(1∶200),GFAP(1∶300))中4 ℃搖床孵育過夜;PBS漂洗3次,每次10 min;加入二抗室溫避光搖床孵育2 h后,每孔中加入DAPI染色液50 μL繼續(xù)孵育 5 min;PBS漂洗 3次,每次 10 min。將腦片平鋪至潔凈的病理防脫載玻片上,適當(dāng)干燥后用體積分?jǐn)?shù)0.70的甘油封片,使用Olympus數(shù)字病理切片掃描系統(tǒng)進(jìn)行觀察并掃描。分別計(jì)數(shù)每個高倍視野(400倍)內(nèi)SN區(qū)IBA-1和GFAP陽性細(xì)胞總數(shù)并取平均值。
1.3統(tǒng)計(jì)學(xué)處理
應(yīng)用Graph Pad Prism 8.0統(tǒng)計(jì)軟件進(jìn)行分析。實(shí)驗(yàn)所得計(jì)量資料數(shù)據(jù)以±s表示,多組均數(shù)比較采用單因素方差分析(One-way ANOVA),并應(yīng)用Turkey法進(jìn)行兩兩比較。以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1CB2受體激活對小鼠運(yùn)動功能影響
與A組相比,B組小鼠爬桿時(shí)間顯著增加(F=45.45,q=8.37,P<0.001),D組可抑制MPTP所引起小鼠爬桿時(shí)間顯著增加(q=6.55,P<0.001),E組可以阻斷JWH133的作用從而使小鼠爬桿時(shí)間顯著增加(q=4.87,P<0.05);與F組相比,G組小鼠爬桿時(shí)間顯著增加(q=18.09,P<0.001)。與A組相比,B組小鼠轉(zhuǎn)棒時(shí)間顯著減少(F=29.70,q=10.86,P<0.001),D組可以抑制MPTP所引起小鼠轉(zhuǎn)棒時(shí)間顯著減少(q=5.84,P<0.01),E組可以阻斷JWH133的作用從而使小鼠轉(zhuǎn)棒時(shí)間顯著減少(q=5.48,P<0.01);與F組相比,G組小鼠爬桿時(shí)間顯著增加(q=12.62,P<0.001)。見表1。
2.2CB2受體激活對小鼠SN區(qū)TH蛋白表達(dá)影響
免疫印跡檢測結(jié)果顯示,與A組相比,B組小鼠SN區(qū)TH蛋白表達(dá)顯著下降(F=24.88,q=8.88,P<0.001),D組抑制了MPTP誘導(dǎo)的小鼠SN區(qū)TH蛋白表達(dá)下降(q=5.09,P<0.01),E組阻斷了JWH133的作用從而使TH蛋白表達(dá)下降(q=5.96,P<0.01);與F組相比,G組小鼠SN
區(qū)TH蛋白表達(dá)下降(q=7.58,P<0.001)。見表1。
2.3CB2受體激活對小鼠SN區(qū)膠質(zhì)細(xì)胞活化影響
免疫熒光染色結(jié)果顯示,與A組小鼠SN區(qū)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞陽性細(xì)胞數(shù)相比,B組兩者陽性細(xì)胞數(shù)增加(F=269.80、708.50,q=33.46、52.96,P<0.01),D組抑制了MPTP誘導(dǎo)的兩種陽性細(xì)胞數(shù)的增加(q=13.90、22.90,P<0.01),E組阻斷了JWH133的作用從而使兩種陽性細(xì)胞數(shù)量增多(q=13.29、22.06,P<0.01);與F組相比,G組小鼠SN區(qū)活化的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞數(shù)量顯著增加(q=32.32、54.78,P<0.01)。見表1。
3討論
PD是繼阿爾茨海默?。ˋD)之后第二常見的慢性神經(jīng)退行性疾病,其病理學(xué)特征是中腦SN區(qū)多巴胺能神經(jīng)元的進(jìn)行性丟失[10]。PD病人以運(yùn)動和非運(yùn)動癥狀為特征,通常表現(xiàn)出靜止性震顫、強(qiáng)直、運(yùn)動遲緩和彎腰姿勢等。PD還可能與神經(jīng)行為障礙(抑郁、焦慮)、認(rèn)知障礙(癡呆)和自主神經(jīng)功能障礙(例如多汗癥)等密切相關(guān)[11-13]。目前,左旋多巴(L-dopa)替代療法是臨床治療PD的重要手段,但卻不能抑制PD的進(jìn)展。因此,探究導(dǎo)致多巴胺能神經(jīng)元死亡的確切機(jī)制,針對性地尋找治療靶點(diǎn),是目前改善PD療效的關(guān)鍵。
近年越來越多的研究顯示,大麻素具有神經(jīng)保護(hù)和調(diào)節(jié)運(yùn)動的作用[14-26]。CB2受體是內(nèi)源性大麻素系統(tǒng)(ECS)的組成部分之一,ECS由兩種內(nèi)源性大麻素和大麻素Ⅰ及Ⅱ型(CB1和CB2)受體以及合成和降解它們的酶組成[14-15]。不同于CB1受體的激活,CB2受體的激活沒有精神副作用,而且廣泛地分布在神經(jīng)膠質(zhì)細(xì)胞中[16]。因此,CB2受體及其特定配體近年來獲得更多的關(guān)注。JWH133是一種合成激動劑,對CB2受體具有高選擇性[17],能夠特異性地激活CB2受體,可以減少M(fèi)PTP引起的小鼠SN多巴胺能神經(jīng)元的死亡[18],以及抑制MPP+誘導(dǎo)的星形膠質(zhì)細(xì)胞炎癥反應(yīng)和影響鐵離子的轉(zhuǎn)運(yùn)[19]。同時(shí),JWH133還具有抗癌、心臟保護(hù)、抗炎和免疫調(diào)節(jié)活性的作用[20-23],其還被證實(shí)對缺血性卒中、抑郁癥、焦慮癥、AD、癲癇和神經(jīng)性疼痛等疾病具有神經(jīng)保護(hù)作用[24-26]。因此,這提示JWH133可能具有很好的藥用前景4892674c46cce019ca367a4f78057125ca4b8b343c00178f511bcbf8f7e98992。
神經(jīng)炎癥是促進(jìn)PD進(jìn)展的重要病理因素,是由中樞神經(jīng)系統(tǒng)中的免疫細(xì)胞活化引發(fā)的,神經(jīng)炎癥是中樞神經(jīng)系統(tǒng)損傷、感染、毒性或自身免疫的結(jié)果。有研究表明,神經(jīng)膠質(zhì)細(xì)胞的異常激活可能介導(dǎo)神經(jīng)炎癥,導(dǎo)致神經(jīng)退行性疾病。在PD病人尸體解剖的SN中,除了多巴胺能神經(jīng)元丟失之外,還檢測到活化的膠質(zhì)細(xì)胞和大量的炎癥因子[27],這表明神經(jīng)炎癥參與了PD的發(fā)病。因此,有效抑制膠質(zhì)細(xì)胞介導(dǎo)的炎癥反應(yīng),可能有助于PD的治療。研究表明,未活化M0小膠質(zhì)細(xì)胞中CB2受體的激活與細(xì)胞遷移密切相關(guān),因?yàn)锽V2細(xì)胞中CB2受體激活會觸發(fā)細(xì)胞遷移,這可能與小膠質(zhì)細(xì)胞板狀偽足前緣的CB2受體表達(dá)有關(guān)[28]。脂多糖/干擾素γ刺激的原代小膠質(zhì)細(xì)胞與CB2受體的配體AEA共同治療,可以劑量依賴性方式增加白細(xì)胞介素-10的表達(dá),而白細(xì)胞介素-10是M2極化的標(biāo)志物[29]。提示CB2受體的激活不僅能夠減少促炎型小膠質(zhì)細(xì)胞的激活,而且還能增加抗炎型小膠質(zhì)細(xì)胞的表達(dá)。以上研究提示,激活CB2受體與神經(jīng)炎癥的治療存在正向關(guān)系。
本文課題組前期研究已經(jīng)證實(shí),激活CB2受體可抑制MPP+處理的BV2小膠質(zhì)細(xì)胞M1極化,并且促進(jìn)BV2小膠質(zhì)細(xì)胞從M1型轉(zhuǎn)化為M2型[30]。所以,我們選擇IBA-1和GFAP特異性地標(biāo)記小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞,在小鼠SN區(qū)進(jìn)行免疫組織化學(xué)分析,檢測了小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞激活的數(shù)量變化,并且通過觀察小鼠的運(yùn)動行為學(xué)實(shí)驗(yàn)指標(biāo)變化來進(jìn)一步佐證我們的觀點(diǎn)。本文研究結(jié)果顯示,JWH133能夠抑制MPTP誘導(dǎo)的小鼠SN區(qū)膠質(zhì)細(xì)胞的激活并且改善模型鼠的運(yùn)動行為障礙,而進(jìn)一步使用CB2受體抑制劑AM630驗(yàn)證的結(jié)果顯示JWH133作用被阻斷。
綜上所述,激活CB2受體能夠改善MPTP誘導(dǎo)的慢性PD模型小鼠的運(yùn)動功能障礙,抑制小鼠SN區(qū)小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞的活化。CB2受體激活在PD發(fā)病中發(fā)揮了抗炎作用,但其涉及到的機(jī)制仍未明確,有待進(jìn)一步探究。由于CB2受體在神經(jīng)膠質(zhì)細(xì)胞中廣泛表達(dá),而作為CB2受體特異性激動劑的JWH133,可能對治療PD等神經(jīng)退行性疾病的藥物開發(fā)具有很好前景,值得進(jìn)一步研究。
[參考文獻(xiàn)]
[1]GONALVES E D, DUTRA R C. Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand[J]? Drug Discovery Today, 2019,24(9):1845-1853.
[2]GRECO R, DEMARTINI C, ZANABONI A M, et al. The endocannabinoid system and related lipids as potential targets for the treatment of migraine-related pain[J]. Headache, 2022,62(3):227-240.
[3]HOWLETT A C, ABOOD M E. CB1 and CB2 receptor pharmacology[J]. Advances in Pharmacology (San Diego, Calif), 2017,80:169-206.
[4]BOROWSKA M, CZARNYWOJTEK A, SAWICKA-GUTAJ N, et al. The effects of cannabinoids on the endocrine system[J]. Endokrynologia Polska, 2018,69(6):705-719.
[5]LEUNG K. 1-(2,4-Dichlorophenyl)-4-cyano-5-(4-[11C]methoxyphenyl)-N-(pyrrolidin-1-yl)-1H-pyrazole-3-carboxamide[M/OL]// Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda
(MD): National Center for Bio-
technology Information (US); 2004-2013. https://www.ncbi.nlm.nih.gov/books/NBK5923/.
[6]GARCA C, PALOMO-GARO C, GMEZ-GALVEZ Y, et al. Cannabinoid-dopamine interactions in the physiology and physiopathology of the basal Ganglia[J]. British Journal of Pharmacology, 2016,173(13):2069-2079.
[7]PRICE D J, KENNEDY H, DEHAY C, et al. The development of cortical connections[J]. The European Journal of Neuroscience, 2006,23(4):910-920.
[8]PETROSKE E, MEREDITH G E, CALLEN S, et al. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment[J]. Neuroscience, 2001,106(3):589-601.
[9]SELVAKUMAR G P, JANAKIRAMAN U, ESSA M M, et al. Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson’s disease[J]. Brain Research, 2014,1585:23-36.
[10]PAKKENBERG B, MLLER A, GUNDERSEN H J, et al. The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 1991,54(1):30-33.
[11]RAY S, AGARWAL P. Depression and anxiety in parkinson disease[J]. Clinics in Geriatric Medicine, 2020,36(1):93-104.
[12]GOLDMAN J G, SIEG E. Cognitive impairment and dementia in parkinson disease[J]. Clinics in Geriatric Medicine, 2020,36(2):365-377.
[13]CHEN Z C, LI G L, LIU J. Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment[J]. Neurobiology of Disease, 2020,134:104700.
[14]DI MARZO V, PISCITELLI F. The endocannabinoid system and its modulation by phytocannabinoids[J]. Neurotherapeutics, 2015,12(4):692-698.
[15]BISOGNO T, MACCARRONE M. Endocannabinoid signaling and its regulation by nutrients[J]. BioFactors, 2014,40(4):373-380.
[16]NAGOOR MEERAN M F, SHARMA C, GOYAL S N, et al. CB2 receptor-selective agonists as candidates for targeting infection, inflammation, and immunity in SARS-CoV-2 infections[J]. Drug Development Research, 2021,82(1):7-11.
[17]CHEN M, YAN X T, YE L, et al. Dexmedetomidine ameliorates lung injury induced by intestinal ischemia/reperfusion by upregulating cannabinoid receptor 2, followed by the activation of the phosphatidylinositol 3-kinase/akt pathway[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020:6120194.
[18]CHUNG Y C, SHIN W H, BAEK J Y, et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease[J]. Experimental & Molecular Medicine, 2016,48(1):e205.
[19]JIA Y, DENG H, QIN Q Y, et al. JWH133 inhibits MPP+-induced inflammatory response and iron influx in astrocytes[J]. Neuroscience Letters, 2020,720:134779.
[20]QAMRI Z, PREET A, NASSER M W, et al. Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer[J]. Molecular Cancer Therapeutics, 2009,8(11):3117-3129.
[21]SERVETTAZ A, KAVIAN N, NICCO C, et al. Targeting the cannabinoid pathway limits the development of fibrosis and autoimmunity in a mouse model of systemic sclerosis[J]. The American Journal of Pathology, 2010,177(1):187-196.
[22]AKR M, TEKIN S, OKAN A, et al. The ameliorating effect of cannabinoid type 2 receptor activation on brain, lung, liver and heart damage in cecal ligation and puncture-induced sepsis model in rats[J]. International Immunopharmacology, 2020,78:105978.
[23]ZHU M, YU B Q, BAI J X, et al. Cannabinoid receptor 2 agonist prevents local and systemic inflammatory bone destruction in rheumatoid arthritis[J]. Journal of Bone and Mineral Research, 2019,34(4):739-751.
[24]KRUK-SLOMKA M, MICHALAK A, BIALA G. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system[J]. Behavioural Brain Research, 2015,284:24-36.
[25]SHENG W S, CHAUHAN P, HU S X, et al. Antiallodynic effects of cannabinoid receptor 2 (CB2R) agonists on retrovirus infection-induced neuropathic pain[J]. Pain Research & Ma-
nagement, 2019,2019:1260353.
[26]CAO Q J, YANG F H, WANG H. CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways[J]. The International Journal of Neuroscience, 2021,131(8):735-744.
[27]XU S B, LU J N, SHAO A W, et al. Glial cells: role of the immune response in ischemic stroke[J]. Frontiers in Immu-
nology, 2020,11:294.
[28]WALTER L, FRANKLIN A, WITTING A, et al. Nonpsy-
chotropic cannabinoid receptors regulate microglial cell migration[J]. The Journal of Neuroscience, 2003,23(4):1398-1405.
[29]CORREA F, HERNANGMEZ M, MESTRE L, et al. Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB[J]. Glia, 2010,58(2):135-147.
[30]王夢雅,劉曼,馬澤剛. 激活CB2受體對MPP+誘導(dǎo)BV2小膠質(zhì)細(xì)胞iNOS和Arg-1表達(dá)的影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2023,59(2):195-198.
(本文編輯于國藝)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2024年4期